

© 2012 Karan Bhagat

ii

TUTORIAL ON DESIGNING AND IMPLEMENTING A

DIRECT DIGITAL SYNTHESIZER (DDS) ON A

FIELD PROGRAMMABLE GATE ARRAY (FPGA)

BY

KARAN BHAGAT

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Adviser:

 Professor José E. Schutt-Ainé

iii

ABSTRACT

Many telecommunication applications require a fast switching, fine tuning and superior

quality sinusoidal signal source for their components. One such a frequency synthesizer is a

Direct Digital Synthesizer (DDS).

This thesis utilizes a design that, aims to combine digital circuit design and electronic

communication knowledge, and apply it in a practical environment. It does so, by providing a

tutorial on designing and implementing a DDS on a FPGA using Xilinx’s ISE software. The

thesis also examines the final results as well as shows the unwanted spurs that are generated.

Since this is purely a digital design, it does not implement a Digital-to-Analog Converter

(DAC) or a Low-pass Filter (LPF). Using a Virtex 6 design for the FPGA, you can achieve close

to perfect sinusoids, without any phase change, with varying Frequency Tuning Words (FTWs).

iv

To my family, for their love, support, motivation and patience.

To my Adviser, for his support, guidance and advice.

To my fellow student coworkers, for their advice and assistance.

v

ACKNOWLEDGMENTS

I would like to thank my graduate school adviser, Professor José E. Schutt-Ainé, for all his

support and guidance over the past two and a half years. Thanks to Yuanwang Yang, who started

this project, helped designed it, and from whom I took over the mantle. I thank Thomas

Comberiate for his continuous guidance and support on the subject. I thank Karnik Radadia for

his immense help on this project. I would also like to acknowledge James Hutchinson, the editor

in the ECE Publishing office, for his advice on various formatting issues of this thesis.

Lastly, I would like to thank my parents, brother and sister-in-law for their continuous moral

support, motivation, understanding and patience throughout my education.

vi

TABLE OF CONTENTS

Chapter 1. INTRODUCTION ... 1

1.1 Overview and Purpose .. 1

1.2 Outline... 2

Chapter 2. FUNDAMENTALS AND BACKGROUND OF DDS .. 3

2.1 Structure and Theory of Operation ... 3

2.2 Spurs in the DDS .. 5

Chapter 3. BACKGROUND IN VERILOG ... 7

3.1 Resources .. 7

3.2 Necessary knowledge for designing the DDS ... 7

Chapter 4. FPGA DESIGN FLOW AND DESCRIPTION .. 9

4.1 Design Flow .. 9

4.2 Design Flow Description .. 10

Chapter 5. FPGA DESIGN TUTORIAL .. 12

5.1 Functional/Device Specifications ... 12

5.2 HDL Coding.. 13

5.3 Behavioral Simulation .. 20

5.4 Logic Synthesis ... 21

5.5 Gate Level Simulation .. 23

5.5 Mapping, Placement and Route (PAR) ... 24

5.6 Static Timing Analysis (STA)... 28

5.7 Post PAR Timing Simulation .. 28

5.8 FPGA Configuration and Programming ... 28

5.8 Final Behavioral Simulations .. 31

Chapter 6. DDS MEASUREMENTS ... 34

6.1 Timing Reports ... 34

6.1 Behavioral and Post Map Simulations .. 34

6.1 Different Frequency Tuning Word (FTW) Cases ... 35

Chapter 7. CONCLUSION AND FUTURE WORK .. 37

REFERENCES ... 38

APPENDIX A. CHOOSING A SIMULATOR AND SETTING UP MODELSIM 40

1

Chapter 1. INTRODUCTION

1.1 Overview and Purpose

Frequency synthesis is an extremely important technology used in the field of

telecommunications. A DDS plays an extremely important role in microwave/radio frequency

designs and projects that need a signal source which have no disturbances and little to no noise.

A DDS, similar to a Numerically Controlled Oscillator (NCO), is used to generate a sinusoid

signal, or any other wave form of utmost clarity, that can switch frequencies very easily and

quickly. It is a partial digital design which can be easily designed and implemented and yet

provide a fine tuning resolution.

In the field of electrical engineering, a DDS is usually preferred over an analog signal

generator for capabilities such as below [1].

1. Extremely fast frequency tuning while keeping the phase continuous with no overshoots

or undershoots.

2. No need for manual tuning or tweaking thereby adding to more redundancies.

3. A digital controlled environment can easily be tested and reconfigured from anywhere

and anytime when needed.

4. Frequency resolution is in the micro-hertz range.

5. Many ambient problems (e.g. temperature, dust between components, dielectric presence,

etc.) do not affect the circuit.

The purpose of this thesis is to help design such a DDS on a FPGA. With the growing needs

of flexibility, extreme accuracy and effectiveness, FPGAs have started to play a very big role in

the domain of digital circuit design. FPGAs are generally similar to development boards that are

able to operate any circuit you design for them. They also have many switches and ports on the

board that help in testing and debugging. The biggest advantage of using an FPGA is that

designs can be created and changed over a very short period of time and the designer does not

have to wait many months for the circuit to get completed unlike an Application Specific

Integrated Circuits (ASIC).

2

1.2 Outline

This thesis will serve as a complete tutorial that will give you a good background on a DDS

as well as teach you how to design it in Verilog as well as how to implement it on an FPGA.

Chapter 2 provides an insight to the fundamental and background knowledge behind the

operation of a DDS, additionally going over some of its drawbacks.

Chapter 3 talks about the requirement of Verilog coding in the field circuit design. Apart

from stating some resources, it also goes over some necessary examples that are needed to design

the DDS.

Chapter 4 elaborates on the design flow for designing circuits for an FPGA.

Chapter 5 presents you with a detailed step-by-step tutorial on designing, implementing and

simulating the entire DDS on the FPGA. This chapter will utilize Xilinx’s ISE software (which

has many embedded tools) to facilitate all the three functions.

Chapter 6 shows the different results obtained when testing the testing the DDS for different

frequency parameters.

Finally, Chapter 7 concludes this thesis by discussing the learning’s from this thesis and

provides some ideas into future work that can be done.

3

Chapter 2. FUNDAMENTALS AND BACKGROUND OF DDS

In the following chapter you will go through the theory behind the design of a DDS and

study its problems.

2.1 Structure and Theory of Operation

A DDS is composed of simple yet important blocks which need to be designed very well to

perform properly. Essentially it is composed of four components excluding the reference clock: a

Phase Accumulator (PA) which includes a register, a Lookup table (LUT), a Digital-to-Analog

Converter (DAC) and a Low-pass filter (LPF) [2][3]. Figure 2.1 represents a design of a

conventional DDS [2].

The main considerations of the DDS are that the PA and DAC should run on the same clock

and the LUT consists of a Read Only Memory (ROM). Even though the PA is clocked, it still

operates very fast. The DAC and LPF however, are speed and power consumption hogs due to

their design [4].

The circuit starts with a Frequency Control/Tuning Word (FCW/FTW) applied to the PA. At

each clock cycle, the PA keeps incrementing by the M-bit FTW (M = 32 for our design) and the

result is stored in an inbuilt register. The output of this register is given back and added to the

input FTW creating a cycle. The output of the PA is then truncated and given to the LUT. The

process of truncation is a simple elimination of the lower order bits. The LUT then accepts the

W-bit word (W = 12 for our design) as the phase of the sine wave and in turn generates the

amplitude of a sine wave. Hence the LUT is also called a phase-to-amplitude converter. This

quantized version of the sine wave is then fed into the DAC which creates an analog output. The

LPF at the end smoothens out the output of the signal [2].

Figure 2.1: Basic structure of a DDS

4

Phase Accumulator (PA): The PA is principally a combination of an adder, a counter and a

register. At each clock cycle the M-bit word of the PA increments by the FTW, thereby

producing a quantized saw-tooth waveform as in Figure 2.2 [1]. Each dot on the saw-tooth

waveform is the value that comes out of the register.

Now since we give an input of an M-bit word, the PA has 2
M

 possible values. The final

frequency of the sine wave is directly depended on the frequency of this saw-tooth wave form

produced at the PA. Thus larger the M word, faster the PA jumps which leads to a higher

frequency at the output. From the output of the PA we can derive the ultimate frequency of the

sine wave as in Equation 2.1

An important fact to remember is that in any circuit where a signal is sampled, such as here,

the Nyquist theorem will always apply. The Nyquist theorem states: “If a function x(t) contains

no frequencies higher than B hertz, it is completely determined by giving its ordinates at a series

of points spaced 1/(2B) seconds apart,” [5] [6]. Thus the above function is conditional, given that

Equation 2.2 holds true [6].

Lookup Table (LUT): The LUT behaves as a Phase-to-Amplitude conversion unit, thereby giving

us a discrete sine wave at the output. To keep the LUT reasonably sized we truncate the bits from

the PA and feed the higher order bits to the LUT [7]. For our design we choose bits 29 through

(2.1)

(2.2)

Figure 2.2: PA saw-tooth output

5

18 as the 12 bit W-word. This allows the hardware to be reasonably sized and not extremely

power hungry. The LUT will contain unique values of a sine wave over one period, however

even in that one period, the sine wave is symmetrical. To further exploit this symmetrical nature,

we can fill the table with values that correspond to only a quarter of a sine wave period [7].

For the FPGA design you will need a coefficients file containing the values of the LUT.

Generate this file with the help of Matlab and store it as a ‘*.coe’. This file will then be added to

your ROM in Section 5.2 step 11.j.

Digital-to-Analog Converter (DAC): A second truncation process is carried out here, as the

output of the LUT is truncated to the appropriate number of bits and then given to the DAC. The

DAC creates an analog waveform from the discretized sine wave. An important fact to note here,

is that the DAC is solely responsible for the limiting the design’s maximum attainable frequency.

It doesn’t matter how fast the PA is clocked as the DAC (which is one of two analog components

in the entire design) forms the bottleneck.

Low-pass Filter (LPF): The LPF behaves as a reconstruction filter that smoothens out the signal

from the DAC. Since we do not want any aliases of the fundamental frequency, this LPF also

behaves as an antialiasing filter [1], thereby limiting us to the Nyquist frequency. Typically, a

Chebyshev filter is used to build this stage due to its “sharp frequency response characteristics,”

[1].

For the DDS design in this paper you will not implement a DAC and LPF because the FPGA

development board used for the design does not have those two components on board. Hence we

will simulate the behavior of the DAC using a different simulator in Section 5.8

2.2 Spurs in the DDS

Due to the design’s inherent qualities, the generated sinusoid is not perfect and contains

certain disturbances/spikes/spurs [6].

Phase Truncation Spurs: To design a smaller sized LUT which draws less power, we eliminate

some of the Least Significant Bits (LSBs) of the 32 bit word from the PA. This truncation of bits

leads to spectral impurity known phase truncation spurs and it is the biggest cause of noise and

6

spikes in the DDS system. Since this part of the system is completely digitally designed, there

are many algorithms that can be implemented to reduce these spurs.

Quantization Noise Spurs: In the DDS design presented here, we truncate the output of the LUT

even further and give it to the DAC. The DAC however, accepts a signed binary number with a

certain precision. To achieve this, the input bits are further rounded. This modification and

quantization leads Quantization Noise Spurs.

Quantization Nonlinearity Spurs: As the technical tutorial on DDS by Analog Devices states,

these spurs are a “consequence of the inability to design a perfect DAC,” [1]. Due to the DAC’s

inherent design and non-ideal transfer function behavior, every input will have few errors

associated to it and thus you will not attain an ideal output. These errors, caused essentially due

to the non-linearity of the DAC lead to Quantization Nonlinearity Spurs, can only be reduced by

increasing the precision of the DAC.

7

Chapter 3. BACKGROUND IN VERILOG

Digital circuits are designed and modeled using Hardware Description Languages (HDLs).

Verilog and VHDL (Very high speed integrated circuit HDL) are two such types of industry

standardized HDLs.

As a beginner it is recommended to design circuits in Verilog as VHDL has a higher learning

curve and needs to be more explicit when defining different modules.

3.1 Resources

1. The best resource for viewing examples of Verilog/VHDL files is the “World of ASIC”

website [8].It contains Tutorials, examples, suggestions for different tools that are used with

digital design, list of books to use as an additional references, as well as some Frequently

Asked Questions (FAQs).

2. Another good resource is a document titled “Verilog Tutorial” by Deepak Kumar Tala [9].

He is the same person who manages the website mentioned in the previous point. This

tutorial goes over the design and tool flows, basic program designs, syntaxes and semantics,

operators, gate level designs, behavioral modeling, writing test benches, modeling Finite

State Machines (FSMs), etc.

3.2 Necessary knowledge for designing the DDS

Xilinx’s ISE tool (used in this project) contains many examples as well as tips to instantiate

models in your design. Section 5.2 step 5 of this tutorial will give you instructions on accessing

those features.

Given below are some examples of code that will be necessary to use when designing your

DDS.

Registers and Wires: You will need to use many registers and wires for internal connections and

storage in your design.

reg register_name; //single bit register

wire[11:0] wire_name //A 12-bit wide bus

8

Always blocks: To modify or perform certain functions recurrently or at a given time, use the

always instruction.

always@(posedge clk) //Used for only one instruction

clkout <= clk; //sending the clk signal to clkout at every positive edge of the clk

always #5 clk = ~clk; //changing the clk singal every 5ns

always@(posedge clk) //Begin and end constructs used when multiple operations

 begin //need to be carried out

 lowaddress <= address[17:0];

 plusormunis <= address[31];

 end

Initial statement: Used when you need to execute a statement only once at the beginning of a

simulation [8]. This statement is very important for the testbench file (Refer Section 5.2 step

13).

initial begin
 // Initialize Inputs

 clk = 0;

 en=1;

 phasestep = 1048576;

end

Module and endmodule statement: Your entire design for any module needs to be included

within these two constructs.

module dds(clk, phasestep,rom_en, data2DAC,clkout);

 input clk;

 input [31:0] phasestep;

 output [12:0] data2DAC;

//Add remaining input and output ports.

//Add entire design and instantiations.

endmodule

9

Chapter 4. FPGA DESIGN FLOW AND DESCRIPTION

For a circuit designer there are typically two ways to design and implement digital circuits:

1. Application Specific Integrated Circuits (ASIC) Implementation

2. Field Programmable Gate Arrays (FPGA) Implementation.

The main difference between the two is that in the case of FPGAs you can program a ready

development board and thus implement and test your design setup in a quicker time frame.

ASICs however are capable of a complete custom design [10]. The advantage of the latter makes

it cost much less and takes up a lesser space since the device only contains devices that are

absolutely necessary to run your application.

From a research standpoint it is recommended to use an FPGA since you can easily modify

your designs and test them using the numerous test switches and ports that are present on board.

Hence for this project you will implement the DDS on an FPGA.

4.1 Design Flow

Shown below, in Figure 4.1, is a rough FPGA process design flow that every person should

follow when designing a circuit [11][12].

Figure 4.1: FPGA Design Flow

10

4.2 Design Flow Description

Functional/Device Specifications: In this stage the designer is supposed to enter in the

configuration (make/model/speed/class/family) of the FPGA into the designing tool. The

designing tool then performs some preliminary setup to enable you to access that particular

FPGA device’s intellectual properties (IPs), designs and components [13][14].

Hardware Description Language (HDL) Coding: For this step, the designer codes his entire

design in a hardware readable language (Verilog or VHDL). The designer also has an option to

implement his project via a schematic based entry, however when he needs to utilize algorithms

for the design, a HDL based entry is preferred [13][14].

Logic Synthesis: Synthesis is a process that converts the HDL code into a gate level netlist. This

netlist describes the different types of components, elements, interconnections between those

components and other necessary details like area occupied, temperature of operation etc. Another

added feature of synthesis is that it also checks the syntax of your code. In some cases it also

maps your design to the particular FPGA family that was selected in the Device Specifications

[13][14].

In this tutorial, Xilinx’s ISE tool will use the embedded Xilinx Synthesis Technology (XST)

to perform the synthesis of the circuit. This tool goes through all the relevant processes,

additionally, generating a schematic view of our HDL [13][14].

Mapping: This process maps the generic logic design (which is composed of different gates, flip

flops, modules and input/output switches) to the logic technology contained inside the chosen

FPGA device [13][14].

Placement & Route (PAR): This phase is one of the most crucial steps in the entire

implementation. As the name suggests, the Placement is responsible for deciding which locations

should the components be placed within the FPGA. The Routing is then responsible for the

connections between those different components. PAR is extremely important because it is

performed around the designer’s timing and area constraints. As a result, a bad placement might

cause problematic routing, thereby leading to violations in the design [15].

11

FPGA Configuration and Programming/Implementation: This last phase of the FPGA design

flow incorporates loading the design onto the FPGA and then testing the circuit. This stage

converts your entire design into a ‘bitstream’ file which is loaded onto the development board.

Once loaded, your FPGA is ready to run with your designed circuit [15].

Design Verification: In every design it is extremely important to meet certain conditions and

satisfy important criteria at the end. Thus after every crucial designing step, the designer has to

test if the circuit meets those different constraints (for e.g. functional logic, timing and area

stipulations) [15].

For this part Xilinx has given us the flexibility to choose its own internal tool, ISE Simulator

(ISim), or an external tool, ModelSim. Whenever we want we can change our choice by right-

clicking on the topmost module within the view pane and then clicking on Design Properties

Simulator. The descriptions for each of the different testing stages are given below:

i. Behavioral Simulation: This stage is responsible for verifying the HDL functionality. It is

important to remember that this step only tests your code, and not the Gate Level

verification [14]

ii. Gate Level Simulation: Once the Synthesis is completed and we have a gate level netlist,

this simulation tests the timing and functionality of the circuit down to the gate design.

iii. Static Timing Analysis (STA): Once your PAR is completed and the STA is carried out,

the designer can analyze important aspects of the circuit like setup and hold times for the

circuit, critical paths within the circuit and clock skew rates. A STA traces through every

possible path in your circuit and can debug slow paths or many more glitches that could

hamper the circuit.

iv. Final Post PAR Timing Simulation: This is the final timing simulation post PAR. This

simulation gives the designer an entire timing summary of the circuit, which is very close

to the actual results seen when implemented on the FPGA.

12

Chapter 5. FPGA DESIGN TUTORIAL

For your project you will use Xilinx’s ISE Design Suite. The ISE is a comprehensive tool

allows the designer to initially describe the entire design and then perform the other required

steps with the help of other tools. Think of it as a top level tool that calls upon the other tools

when desired.

First and foremost you will need to download the latest ISE suite from Xilinx’s website

which is available on a freeware basis for a period of thirty days. Then open ISE by clicking on

the shortcut on the desktop or Start Menu Xilinx ISE Design Suite ISE Design Tools

Project Navigator

5.1 Functional/Device Specifications

1. Create a new project. File New Project and enter your project name.

Remember to select HDL for your Top-level source type as shown in Figure 5.1.

Figure 5.1: New Project Wizard

13

2. Fill in your device specifications as in Figure 5.2. Appendix A step 1 shows how you can

change your device specifications/properties anytime during your project when you feel

necessary.

5.2 HDL Coding

The ISE suite is truly a wonderful tool that allows the designer to create and instantiate

different types of modules and Intellectual Properties (IPs) very easily. As mentioned in Section

2.1 you will not implement the DAC and LPF in this design project. Furthermore, for this tutorial

we shall stick with designing the modules in Verilog only.

1. To create your top level module (e.g. dds_top.v) go to Project New Source or click on

in the top left of the View Pane as shown [Figure 5.3].

Figure 5.2: Device Specifications

14

2. Select Verilog Module and type ‘dds_top’ or ‘dds’ for the File name. Select Next.

3. This next window [Figure 5.5] allows you to enter the inputs and outputs of the module.

Check the ‘Bus’ box for the ‘phasestep’ and the ‘data_2_dac’ signals and enter their bit

width. For our design ‘phasestep’ is 32 bits wide and ‘data_2_dac’ is 12 bits wide.

Figure 5.3: View Pane

Figure 5.4: New Source File

15

4. Once you go ahead, you will get a Verilog file as shown below on the left side of Figure 5.6

Figure 5.5: Configuring Inputs and Outputs

Figure 5.6: Stating Inputs and Outputs in a module

16

Figure 5.6 also indicates how to start any Verilog file. Verilog allows you the flexibility to

assign port calling slightly differently, by first defining the names of the inputs and outputs

and then later categorizing them. The alternative representation is shown on the right hand

side of the Figure 5.6.

5. An extremely nice feature of ISE is that Xilinx has given the designers access to many

templates that are readily available in the tool. For example, if you need to make a function

declaration or create a flip flop, a lookup table, a comparator, an encoder, a decoder, or a

User Constraint File (UCF) etc., go to Edit Language Templates Verilog/UCF and

select the appropriate device. To instantiate the same in your design file, right-click on the

desired template and select Use in File [Figure 5.7].

 Figure 5.7: Instantiating Examples of Code

17

6. The ISE tool allows you to easily implement Xilinx IPs. When using IPs it is important to

select the right family and device of the FPGA (Section 5.1 step 2) since the devices you

implement are completely dependent on the type of FPGA used.

For our DDS we will be using two of such IP’s. In the top level DDS file (dds_top.v/dds.v)

we will implement the Phase Accumulator, and then later on we will implement a Block

Memory Generator for the Sine LUT.

To implement the Phase Accumulator IP, go to Project New Source (as seen before in

Section 5.1 step 1) and type ‘Accumulator’ for the File Name. Select IP (CORE Generator

& Architecture Wizard for the source type [Figure 5.8].

7. Once you go to the next page, you shall notice you can select your IP according to its

function or you can view it by its name. Select Basic Elements Accumulators and add

the Accumulator IP.

Figure 5.8: Instantiating an IP

18

8. According to our DDS, we will be using a 32 bit input and output PAC. So, for the next

stage, change the following variables to values shown below:

a. Input Type: Unsigned

b. Input Width: 32

c. Output Width: 32

d. Latency Configuration: Automatic

e. Bypass: Unchecked

9. Leave everything else unchanged and click Generate. Figure 5.10 should now show what

your View Pane should look like.

Figure 5.9: Accumulator IP

Figure 5.10: View Pane showing Accumulator not instantiated

19

10. Figure 5.10 shows that the Accumulator has been generated but has not been instantiated

within the design. ISE has very unique feature that shows you how to instantiate any module

that you generate or create. To do the following select the Accumulator IP and double-click

on View HDL Instantiation Template in the Processes Pane (located below the View

Pane). Copy the relevant code, paste it within the top level entity and edit the inputs and

outputs of the module. Your top level entity shall now contain an instantiation of the module

as marked within Figure 5.11.

11. The next IP that we you need to embed is the Sine Lookup Table. For this IP, instantiate the

Block Memory Generator and make the following changes, while leaving everything else

the same:

a. Interface type: Native. Go to the Next page.

b. Memory Type: Single Port ROM.

c. Algorithm: Low Power. Go to the Next page.

d. Read Width: 12.

e. Read Depth: 4096. Go to the Next page.

f. Register Port A Output of Memory Primitives: Checked.

g. Register Port A Output of Memory Core: Checked.

h. Pipeline Stages within Mux: 3.

i. Load Init File:Checked.

Figure 5.11: Instantiating an IP

20

j. Select the file with the sine wave coefficients you generated in Section 2.1. Go to the

Next page and eventually Generate the module.

12. When you instantiate the LUT in the design make sure to implement a conversion algorithm

that changes the output of the ROM depending on the two highest most significant bits

(MSBs). This algorithm is necessary to create an entire sine wave period from only quarter a

sine wave period that we stored. Now you can go ahead and design the remaining

components.

13. Finally, a very important and required module is the test bench file (dds_tbw.v). A test bench

file lists the behavior of the inputs, of the top level module, in the duration of the simulation

period. To create the test bench file, go to New Source and select Verilog Test Fixture as

the Source type.

5.3 Behavioral Simulation

ISim will be used as the preferred simulator for this Behavioral Simulation stage. Please refer to

Appendix A step 1 to change your simulator.

1. Select the Simulation under the view pane. Make sure Behavioral is selected for the

process. In the Processes pane you can check the syntax for the test bench, as well as

simulate the Behavioral Model for your device. After checking the syntax, double-click on

Simulate Behavioral Model.

Figure 5.12: Simulation Files view

21

2. If the Behavioral Simulation passes successfully, ISim will open in a separate window and

will give us results like in Figure 5.13.

For our design we use a FTW (named as ‘phasestep’) = 2^20 = 1048576. We notice that our

ROM behaves as expected, increasing continuously at every clock interval by the FTW.

3. To change the run time of the simulation, close the ISim window, go back to the ISE

window, right click on Simulate Behavioral Model under the Processes pane, and click on

Process Properties. Change the Simulation Run Time as you desire.

5.4 Logic Synthesis

Logic Synthesis is performed by Xilinx Synthesis Technology (XST) which is called upon by

ISE itself [16]. When performing Synthesis, the tool first checks the syntax of your entire design

and then compiles your HDL code into a netlist. This compilation does both, translates as well as

optimizes your HDL code [16].

For users that code a HDL circuit instead of a schematic based circuit, XST can generate

RTL and Technology Schematics of the designs.

Figure 5.13: ISim Behavioral Simulation

22

1. The first step to synthesize your circuit is to setup the Process Properties. Right-click on

Synthesize and click on Process Properties. Adjust the Property display level to

‘Advanced’. Go to the Synthesis Options tab and set Netlist Hierarchy to ‘Rebuilt’ as in

Figure 5.14..

2. Double-click on Synthesize-XST in the Processes pane.

3. Expand the Synthesize-XST in the Processes Pane. To view the generated RTL Schematic,

double-click on the same. Select Start with the Explorer Wizard and click OK. Select the

top level module and Add it to the Selected Elements and then click on Create Schematic

Figure 5.14: Synthesis Options

Figure 5.15: Creating an RTL Schematic

23

[Figure 5.15].

Once you click on Create Schematic you will get the top level schematic of your design as

in Figure 5.16. To enter one level deeper double-click on the ‘dds’ module. For these

schematic views, simple shortcuts can be used:

a. Double-click: Go one level deeper

b. Ctrl + Z : Go back one level or Undo

c. Ctrl + Y : Go forward one level or Redo

d. Ctrl + Mouse Scroll Wheel : Zoom

4. A Technology Schematic, which is just a post-synthesis schematic, can be created similarly.

5.5 Gate Level Simulation

Gate Level Simulation is done via the Synthesis stage.

1. Double-click on Generate Post-Synthesis Simulation Model located under Synthesize

under the Processes pane. A confirmation of the completion will be shown in the console bar

Figure 5.16: RTL Schematic

24

shown below. Once the Simulation model finishes, open the Design Summary tab. If you

cannot find the tab go to Project Design Summary/Reports.

2. To view the Synthesis report, in the main window, double-click on Synthesis Report under

Detailed Reports. From this report the designer can view vital information like the design

summary incorporating the final registers/flip-flops count, total number of gates used, clock

information, and different critical paths and their timings.

5.5 Mapping, Placement and Route (PAR)

The entire process of Mapping and PAR falls under the Design Implementation block.

Design Implementation also incorporates another additional step in the beginning called

Translate. According to Reference [14] this process “combines all the input netlists and (user)

constraints to a logic design file. This information is saved as a Native Generic Database

Figure 5.17: Synthesis Timing Report

25

(NGD)”. Once the Translate process has been completed the embedded tool automatically

performs the Mapping and PAR.

1. As a prerequisite to implementing any design on a FPGA, a User Constraint File (UCF) is

required which will first need to be created. To do so, click on New Source, select

Implementation Constraints File, type the file name and click Next.

2. In the View Pane, select the top level entity, and in the Processes pane expand User

Constraints, and double-click on Create Timing Constraints. You will get a window

similar to the one shown in Figure 5.18.

Double-click on the ‘clk’ signal in the Unconstrained Clocks section and enter ‘2.1ns’ in

the Specify time category within the Clock signal definition. Let the default Duty cycle of

50% be unchanged. Note: we use a 2.1ns period because we use a 475MHz clock frequency.

In the Constraint Type window on the left go to Inputs and double-click on ‘clk’ in the Is

Constrained by a Global OFFSET IN field. In the new window setup the desired clock

type and click Next. Enter in the desired External setup time and Data valid duration. For

this tutorial 2.1ns has been chosen for both [Figure 5.19].

Figure 5.18: Setting Clock Constraints

26

Similarly go to the Outputs and double-click on ‘clk’ and enter the required information.

Figure 5.19: Setting Clock Setup time (OFFSET IN)

Figure 5.20: Setting Clock to Pad time (OFFSET OUT)

27

3. Once you have created the Timing Constraints, you have to assign the Input and Output Pin

locations. Xilinx’s ISE tool uses the embedded PlanAhead Software to do so. Double-click

on I/O Pin Planning (PlanAhead) – Post-Synthesis under the User Constraints tab.

Here, you can locate your desired I/O (Input or Output) pin on the left under the Netlist tab,

or even below in the I/O Ports section [Figure 5.21]. To assign a particular pin you can

either drag the desired pin onto a particular pin within the Package view, or write the pin

location within the I/O Port Properties section on the left hand side.

Once you assign the remaining locations for the rest of the pins go to File Save Project,

and then close PlanAhead.

4. Once the initial requirements have been setup by following the previous steps, you are now

ready to Implement the design. To Implement the design simply double-click on Implement

Design. By doing so, the tool processes the Translate, Map and PAR for the design. You can

also choose to select the three processes individually by double-clicking on the respective

processes. For our project we will perform them separately.

Now Translate the design by expanding the Implement Design tab within the Processes

pane (in the ISE tool) and double-clicking on Translate.

Figure 5.21: I/O Pin Planning

28

5. To Map the design, expand the Implement Design tab within the Processes pane (in the ISE

tool) and double-click on Map.

6. When the Mapping has been completed double-click on Generate Post-Map Simulation

Model and open the Design Summary tab to view the Map Report.

To view the Static Time Analysis of the circuit post the Mapping stage, double-click on

Generate Post-Map Static Timing, then expand the same and double-click on Analyze

Post-Map Static Timing.

When the report opens up we notice that the STA gives us an upper bound of the clock

frequency. We initially setup a 2.1ns clock period (475MHz), but the post Map results show

that we can achieve a 541MHz clock (1.847ns period) for our design.

7. To Place and Route the design, expand the Implement Design tab within the Processes pane

(in the ISE tool) and double-click on Place & Route.

5.6 Static Timing Analysis (STA)

To view the STA of the circuit post the PAR, double-click on Generate Post-Place & Route

Static Timing, then expand the same and double-click on Analyze Post- Place & Route Static

Timing.

When the report opens up you will notice that the STA will give you a new upper bound

clock frequency. Here, we initially setup a 2.1ns clock period (475MHz), but the Post PAR

results show that we can achieve a 556MHz source clock (1.798ns period) for our design. Note

that the Post Map STA gave a max clock frequency of 541MHz clock (1.847ns period).

5.7 Post PAR Timing Simulation

Once the PAR has been completed double-click on Generate Post-Map Simulation Model

and open the Design Summary tab to view the PAR Report

5.8 FPGA Configuration and Programming

To Program the FPGA and generate a ‘bitstream’ file, ISE will use its embedded tool

iMPACT.

29

1. Select the top level entity and right click on Generate Programming File located under the

Processes pane. Now click on Process Properties. Select Startup Options in the Category

list, and make sure that the FPGA Start-Up clock is selected to CCLK. For devices that are

configured from the PROM of the development board, it is suggested to use the CCLK

option [1]. Click OK.

Double click on Generate Programming File. This will create a bitstream file named

‘dds.bit’. This file will later be used to put onto the FPGA.

2. The next step in the process is to create a PROM (Programmable Read Only Memory) file

that will be used to program the FPGA. As page 119 of Reference [16] states “In the

Processes pane, expand Configure Target Device, and double-click Generate Target

PROM/ACE File.

Once iMPACT opens [Figure 5.22], double click on Create PROM File and a PROM File

Formatter window will open up as in Figure 5.23.

Figure 5.22: iMPACT

Figure 5.23: Generating a bitstream file for the PROM

30

As shown in Figure 5.23, select Xilinx Flash/PROM, press the Green arrow button, then

Check the Auto Select PROM option and press the next Green arrow button. Enter your

desired Output File Name, and press OK. In the new window, add your ‘bit’ file. Select No

when it asks you to add another file. A window like Figure 5.24 should now come up.

Select the Xilinx FPGA icon on the right, and then double-click on Generate File in the

iMPACT Processes pane on the left side [Figure 5.25].

3. Save the iMPACT project. This project file can be imported later directly onto the FPGA

whenever required.

Figure 5.24: iMPACT Generate File Process

Figure 5.25: Bit file generation

31

5.8 Final Behavioral Simulations

You will use ModelSim to view the Post Map simulated behavior of the design because

ModelSim has a unique feature of viewing any signal as an Analog Waveform. Since the FPGA

does not have a DAC onboard, this feature is extremely useful to view the final output as a

proper sine wave. Please refer to Appendix A to setup ModelSim as the Simulator.

1. Once you setup ModelSim, select Simulation under the view pane and change the process to

Post-Map. Select the project file in the View pane and in the Processes pane double-click on

Compile HDL Simulation Libraries [Figure 5.26]. This command will compile all the

necessary libraries required by ModelSim. Note, this process will take a long time (roughly

under one and a half hours).

Once the compilation process has been completed, select the top level entity’s test bench file

and double-click on Simulate Behavioral Model [Figure 5.27].

Figure 5.26: Compilation of Libraries

Figure 5.27: Ready to simulate Post Map model

32

2. If the simulation passes successfully, ModelSim will open in a separate window. By default

ModelSim will show the waveforms for the outputs. To add more signals to the display,

expand your top level entity in the Instances and Processes panel on the left side. Expand

whichever block you need the signals from, locate the desired signal and double-click on the

signal or click on Add to Wave Window. As shown on page 131 of Reference [16], Figure

5.28 below is what the ModelSim window will look like.

3. All the waveforms will be in a digital format, so to view the analog format right click on the

‘dacout’ or whatever your final output signal is and go to Format Analog.

In the Figure 5.29 we see that the ‘phasestep’ (FTW) signal is set as 1048576 (2^20) which

confirms with the test bench. Making ‘dacout’ as an analog wave, shows the output as a sine

wave, thereby confirming that our DDS design works. The phase accumulator also behaves

as expected as we see the output ‘pac_address_out’ steadily increases and restarts when it

reaches its maximum.

The reason there are a lot of spikes on the output waveform is, you have only simulated an

analog behavior and not actually implemented the DAC and LPF. If you simulate a real DAC

and filter, most of the spikes shall disappear. Some of these spikes also represent the noise

and phase truncation spurs.

Figure 5.28: A look at ModelSim

33

4. To change the frequency of the sine wave, go back to ISE edit the FTW in the testbench file,

and re-run the simulation (no need to re-compile the libraries).

5. To view the expected behavior post PAR, change the simulation type to Post-Route and

repeat the above steps.

Figure 5.29: ModelSim's Post Map simulated output

34

Chapter 6. DDS MEASUREMENTS

This chapter discusses the final timing results and different simulation wave forms that were

achieved with the DDS design for the FPGA.

6.1 Timing Reports

When designing any circuit for an FPGA, the different processes involved will continuously

try and optimize the code thereby making it more efficient. Table 6.1 shows one such example

that was achieved with the maximum attainable source clock frequency.

From the above table we can see that, as the design progressed through the different stages,

we got a much faster clock source than what was initially setup.

6.1 Behavioral and Post Map Simulations

For this part you will see the difference between the final waveforms from the behavioral

simulation [Figure 6.1] and the Post PAR simulation [Figure 6.2]. For this case we will make the

FTW = 1048576.

Table 6.1 Clock Frequency at different stages

Clock Initial Setup Post Synthesis Post Map Post PAR

Maximum

Frequency
476.19MHz 558.972MHz 541.419MHz 556.174MHz

Minimum Time

Period
2.1ns 1.789ns 1.847ns 1.798ns

Figure 6.1: Behavioral Simulation

35

On comparison of the above two images, we notice that the Post Route waveform has many

spikes. These spikes are due to the phase truncation spurs. On implementing the DAC and LPF,

these spurs should dramatically reduce.

6.1 Different Frequency Tuning Word (FTW) Cases

In this section we will look at the differences obtained for different cases of FTWs.

Varying FTW: The FTW starts of from 1000000 and increments by 15000 at every positive clock

edge [Figure 6.3].

Figure 6.2: Post Route Simulation

Figure 6.3: Varying FTW

36

Doubling FTW: The FTW starts of from 50000 and doubles at every positive clock edge [Figure

6.4].

As you can see the frequency of the sine wave rapidly increases as the FTW doubles. Apart from

the general spurs, you will also notice certain bigger spikes in the waveform at times. These

bigger glitches are caused when the PA reaches its maximum value and restarts.

Figure 6.4: Doubling FTW

37

Chapter 7. CONCLUSION AND FUTURE WORK

In summary, this thesis laid down the path necessary to gain knowledge to design any circuit

for an FPGA, using a DDS as an example. It started by stating some Verilog examples that are

used for the HDL to design digital circuits and then went on to explain the background theory of

a DDS. This was followed by giving a broad overview on the essentials of FPGA design. These

three chapters are a stepping stone to any FPGA design. Using Xilinx’s ISE software and

implementing the DDS on a Virtex 6 FPGA, the tutorial stepped through the different phases of a

FPGA flow diagram and simultaneously showed screenshots to make sure you are the right path.

Finally, the thesis investigated the different results which were obtained when the inputs were

varied.

This project does not implement an actual DAC, thus the next step would be to implement

the DDS on the FPGA and feed the signal to a DAC and LPF whose output would then be given

to an oscilloscope. There are also many algorithms being developed in the industry to reduce the

different kind of spurs generated in the DDS. Thus additional future work, for this project, could

entail implementing some of those algorithms in the design, and comparing the difference

between a generic and an optimized DDS.

38

REFERENCES

[1] Analog Devices, “A technical tutorial on digital signal synthesis,” Application Note, 1999.

Available: http://www.analog.com/static/imported-

files/tutorials/450968421DDS_Tutorial_rev12-2-99.pdf

[2] T. M. Comberiate, “Phase Noise Spur Reduction in an Array of Direct Digital

Synthesizers,” M.S. thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2010.

[3] C. Shan, Z. Chen, H. Yuan and W. Hu, "Design and implementation of a FPGA-based

Direct Digital Synthesizer," in Electrical and Control Engineering (ICECE), 2011

International Conference, vol., no., pp.614-617.

[4] H. Omran, K. Sharaf, and M. Ibrahim, M, "An all-digital direct digital synthesizer fully

implemented on FPGA," in Design and Test Workshop (IDT), 2009 4th International, vol.,

no., pp.1-6.

[5] Shannon, C.E., "Communication in the Presence of Noise," Proceedings of the IRE,

January 1949, vol.37, no.1, pp. 10- 21.

[6] J. Vankka, Digital Synthesizers and Transmitters for Software Radio. Dordrecht, The

Netherlands: Springer, 2005

[7] Y. Yang, “A Novel Truncation Spurs Free Structure of Direct Digital Synthesizer,” 2011,

unpublished.

[8] World of Asic, 2012, web site. Available: http://www.asic-world.com/

[9] D. K. Tala, “Verilog Tutorial,” 2012, Available:

http://www.ece.umd.edu/courses/enee359a/verilog_tutorial.pdf

[10] FPGA vs. ASIC, Xilinx Inc., 2012, web page. Available at:

http://www.xilinx.com/fpga/asic.htm

[11] B. Mullane, C. MacNamee, “Developing a Reusable IP Platform within a System-on-Chip

Design Framework targeted towards an Academic R&D Environment,” Circuits and

System Research Centre (CSRC), University of Limerick, Limerick, Ireland.

[12] ISE FPGA Design Flow Overview, Xilinx Inc., 2008, web page. Available at:

http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_fpga_design_flow_overview.htm

39

[13] FPGA Design Flow Overview, FPGA Central, 2011, web page. Available at:

http://www.fpgacentral.com/docs/fpga-tutorial/fpga-design-flow-overview

[14] M. Chaitanya, “FPGA Design Flow,” 2012, web page. Available: http://www.vlsi-

world.com/content/view/28/47/

[15] FPGA design implementation (Xilinx design flow), CORE Technologies, April 03, 2009,

web page. Available: http://www.1-core.com/library/digital/fpga-design-

tutorial/implementation_xilinx.shtml

[16] Xilinx Inc., “ISE In-Depth Tutorial - UG695 (v 12.3),” September, 2010. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/ise_tutorial_ug695.

pdf

40

APPENDIX A. CHOOSING A SIMULATOR AND

SETTING UP MODELSIM

1. To choose either ISim or ModelSim as your simulator right-click on your top level entity and

select Design Properties [Figure A.1].

Now chose your desired simulator in the Simulator drop down field. Here in Figure A.2,

Modelsim-PE Mixed has been chosen. For ISim, select the same from the drop down menu.

Figure A.1: Selecting Design Properties

Figure A.2: Design Properties

41

2. Once you have ModelSim downloaded and installed, go back to ISE go to Edit

Preferences, expand ISE General, and select Integrated Tools. Add the path to the

ModelSim executable file in the Model Tech Simulator section and click OK [Figure A.3].

Now you have to add the modelsim.ini file to your project. Go to Project Add Source. In

the bottom right select the view option to All files and browse to the ModelSim directory and

add the modelsim.ini file. Generally it will be in C:\modeltech_pe_10.1b [Figure A.4].

Figure A.3: Giving the Path to ModelSim

Figure A.4: Selecting the 'modelsim.ini' file

