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ABSTRACT

This dissertation addresses a time-domain simulation method for use in high-speed circuit 

simulation. Efficient and very fast simulation is a requirement for today’s high-density, high­

speed circuit designs. Recently, a time-domain formulation, latency insertion method (LIM), was 

proposed that leads to the generation of update algorithms for the simulation of networks. The 

algorithms exhibit linear computational complexity and are scalable. Because of the time domain 

nature of the formulations, they can be extended to handle nonlinearities.

The basic goal of this dissertation is to extend the speed, accuracy, and application range of 

the LIM method. First, the formulation of the LIM method for the case of linear networks is 

presented by deriving the update algorithms. Next, the stability of these algorithms is addressed 

followed by an extension of the formulation to special elements and nonlinear networks. Then 

the possibility of extending unconditional stability to LIM is discussed. Finally, several networks 

are analyzed and simulated using the method for comparison with standard simulators. Trade­

offs among speed, stability, and accuracy are examined throughout the comparisons

Another objective of this dissertation is to address the importance of computer-aided 

design (CAD) implementation of the latest techniques into the existing platform. Good research 

should lead to useful and repeatable results. This dissertation therefore briefs the implementation 

of an n-port transmission line model into SPICE3f4, which also enables the integration of 

external simulation programs for n-port devices. Next this dissertation also shows the integration 

of LIM into SPICE, which produce an easy-to-use, and powerful simulator, which retains the 

familiar interface of SPICE simulator and the fast speed of LIM into an entity.
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1 INTRODUCTION

1.1 Background

The need for an increased density of input-output (I/O) pin connections and the reduction 

in size of high-speed digital circuits have led to an increase in the complexity of interconnect 

schemes. At the board and package levels the implementation of multilayer interconnects has 

led to structures with a high density of passive components. As a result, the three-dimensional 

(3-D) nature of present-day networks has rendered their analysis more challenging.

These challenges are also emerging at the chip level. As outlined by the International 

Technology Roadmap for Semiconductors (ITRS), the acceleration in processor performance 

has led to an increasing gap between manufacturing technology and present-day design tools. 

Total interconnect lengths will lead to unprecedented wiring density which will require novel 

design methodologies placing more emphasis on interconnect issues.

For example, in sub-130-nm designs, inductive effects during switching must be taken 

into account in the computer-aided design (CAD) of on chip power grid. Furthermore with 

signal bandwidth above 60 GHz, the high-frequency electromagnetic interference effect 

becomes quite a big problem for power grid design.

The simulation of very large networks consisting of large numbers of nodes is a major 

problem in the CAD of integrated circuits. Circuits of this size can typically require several 

days of CPU time on a workstation. There are two directions for solving this problem. The first 

is to reduce the problem size by utilizing different techniques (model-order reduction). The 

second is building a fast solver that directly solves the problem.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For the first approach, several investigators have introduced algorithms and numerical 

techniques such as the asymptotic waveform evaluation (AWE) [l]-[3] method to approximate 

network transfer functions. The fundamental idea behind the first approach, model-order 

reduction, rests in the implementation of a circuit representation based on a smaller number of 

poles than the original network. These poles account for most of the behavior of the network 

over the frequency range of interest. The resulting macromodel equivalent circuits can be used 

in conjunction with standard circuit simulators.

Work was later introduced to reduce the number of spurious poles generated by the 

reduction process. This includes the complex frequency hopping techniques, and the Krylov 

subspace methods [4]-[7]. More recent work on model order reduction techniques have focused 

on the passivity of the reduced equivalent circuits [8], [9]. There is also some direct reduction 

techniques such as Y-A transformation technique [10]. And hierarchical model order reduction 

[11] and frequency domain analysis [12] are some other recently proposed methods.

The second path we can take is to build a fast simulator. In this approach finite difference 

method is a popular and suitable candidate due to its simplicity and possible linear 

computational complexity. Several techniques [13], [14] have been developed to speed up the 

analysis. The transmission matrix method [13] is based on a multi-input/multi-output transfer 

function, which enables the entire network to be computed as the product of several small 

individual sparse square matrices. The transmission matrix method is about 10 times faster than 

SPICE. The preconditioned conjugate gradient (PCG) simulator [14] is based on the 

preconditioned Krylov-subspace iterative method, which is significantly faster than traditional 

iterative methods without preconditioning. The hierarchical method [15], [16] is an alternative 

method. The finite difference method (finite difference, finite element or finite volume

2
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methods) can simulate large problems through discretization of Maxwell’s equations. Among 

these, the finite-difference time-domain (FDTD) method is a preferred method for regular 

network. Some similar technique like transmission-line-modeling (TLM) [17] was also 

developed, which can solve voltage and current directly on regular network.

There is transmission-line-modeling altemating-direction-implicit (TLM-ADI) methods 

[18]-[19], which has two-dimensional (2-D) and 3-D versions. The 2-D TLM-ADI method can 

be only be applied to regular 2-D mesh network. And 3-D TLM-ADI method has the limitation 

of the fixed ratio of resistor/inductor for the entire network.

1.2 Objective

In this dissertation, we use a time-domain formulation that leads to the generation of 

update algorithms for the simulation of networks. The algorithms exhibit linear computational 

complexity and are scalable. Because of the time domain nature of the formulations, they can be 

extended to handle nonlinearities.

First, we present a formulation of the method for the case of linear networks by deriving 

the update algorithms. Next, the stability of these algorithms is addressed followed by an 

extension of the formulation to special elements and nonlinear networks. Then the possibility of 

extending unconditional stability to latency insertion method (LIM) is discussed. Finally, 

several networks are analyzed and simulated using the method for comparison with standard 

simulators. Trade-offs between speed, stability and accuracy are examined throughout the 

comparisons

Another objective of this dissertation is to address the importance of CAD 

implementation of latest techniques into existing platform. Good research should lead to useful 

and repeatable results. For the above purpose, this dissertation details the implementation of an

3
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n-port transmission line model into SPICE3f4, which also enables the integration of external 

simulation programs for n-port devices. Next this dissertation also shows the integration of LIM 

into SPICE, which produce an easy-to-use, and powerful simulator, which retains the familiar 

interface of SPICE simulator and the fast speed of LIM into an entity.

1.3 Organization

This document is organized as follows. Chapter 2 provides the basic information of 

SPICE device model installation and demonstrates it by installing an n-port transmission line 

model into SPICE. It also includes information on the general structure of a stamp-based circuit 

simulator such as data structure, device stamps, and the construction of circuit matrices. In 

Chapter 3, LIM is introduced in detail from several different aspects such as stability, speed, 

nonlinearity, frequency-dependent modeling, and unconditional stability. Chapter 4 gives the 

integration guide for LIM and SPICE. Chapter 5 shows the different numerical examples and 

comparison between SPICE and LIM. Chapter 6 is the conclusion.

1.4 SPICE3f4 Comments

The source code for SPICE3f4 is available from the University of California (UC), 

Berkeley free of charge. The version 3f4 is the final released version and technical support from 

UC Berkeley is no longer available. The program is written in C. Proficiency in C language is a 

prerequisite. The source was modified, compiled, and installed during the device installation 

procedure. In order to make the device installation procedure more comprehensible, code 

listings are provided throughout the dissertation, and only relevant portions of the code will be 

shown to conserve space. Copyright of the code listings is not shown. SPICE3f4 is copyright

4
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1990 by the regents of the University of California. All rights reserved. SPICE was originally 

written in 1985 by Thomas L. Quarles.

5
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2 N-PORT MULTICONDUCTOR TRANSMISSION LINE 
MODEL IMPLEMENTATION ON SPICE3F4

2.1 Introduction

Due to the rapid development of analog and digital electronics, computer-aided design 

becomes a very important part of the design of integrated circuits (ICs).

As process geometries continue to shrink, ever-thinner wires are packed more and more 

tightly together, producing unintended electrical effect—such as capacitance coupling and 

voltage drop—that impair signal integrity. These complex signal-integrity issues have profound 

effects on path delays and design timing. As process geometries move to 0.13 pm and below, 

signal-integrity timing issues have become a primary concern. They impede timing convergence, 

consume engineering resources, and result in needless overengineering, overly constrained 

designs, and costly schedule delays.

One of the fundamental problems in signal integrity is to simulate multiconductor 

transmission lines in a multifunctional simulator, or one that can perform several kinds of 

analyses, not just ordinary circuit analysis. For instance, as the speed of the clock increases and 

the IC becomes smaller, the delay of the interconnections becomes the dominant delay. The 

interconnections cannot be regarded as lumped element when the clock speed increased. Instead, 

they must be modeled as transmission lines to deal with the effects of the crosstalk noise, 

waveform distortion and signal attenuation effects [20]. This leads to the simulation of 

multiconductor transmission line in a circuit simulator.

6
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The discussion of device installation and modification is based on the basic knowledge of 

how a circuit simulator functions. So we need to understand the structure and operation of the 

simulator.

Here we modify a standard circuit analysis package to fulfill the basic requirement of 

simulating n-port devices in a simple way. In this work, we will discuss the installation and 

modification of devices within a SPICE simulator. We use SPICE3f4 because it is a circuit 

simulation package that is widely used in many academic and commercial simulators and it is 

an open source code.

Previous work implemented an n-port dummy device in SPICE3f4. The n-port 

transmission line model can be implemented from that framework. The difficulty lies in two 

aspects: (a) interface between input and actual matrix filling; (b) the modification of device data 

structure and original independent algorithm to incorporate it into SPICE’s variable timestep 

and order LMS (linear multistep) scheme. The first part involves the creation of appropriate 

parameters for user input. It also provides a mapping between the internal node and external 

terminals. The second part adds necessary contents into data structure and modifies the original 

algorithm to accommodate the variable time step environment of SPICE3f4.

2.1.1 General circuit simulation procedure

A general circuit simulation procedure is shown in Figure 2.1. First, the simulator needs 

the circuit description to get the netlist for that circuit. Then the information in the netlist is 

extracted out and refilled in an organized matrix form (this is the modified nodal form in 

SPICE). A matrix Equation (2.1) is also constructed, where A is an n x n matrix and b and x are 

n x  1 vectors. This matrix equation contains almost all the information needed for the circuit

7
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simulation including circuit structure information and the unknown nodal voltages and branch 

currents of the circuit.

Traditional description
Circuit

Description Netlist

GUI description

z___
Construction of 
C ircuit M atrixSolve M atrix

Output

Figure 2.1 General procedure o f circuit simulation

A -X  = b (2.1)

The matrix A contains the information of the elements in the circuit, i.e., resistor, inductor, 

and capacitor. The vector b contains the independent voltage and current sources. The vector x 

contains the nodal voltages and branch currents that need to be determined.

The solution of Equation (2.1) may be repeated multiple times, depending on the type of 

analysis to be performed. Due to the excellent modularization of SPICE, we can examine each 

step without interrupting other parts. In the following sections, each step in Figure 2.1 will be 

presented. We will focus on the construction of circuit matrices, which deal for the most parts 

with the device installation process in SPICE.

8
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2.1.2 Circuit description and netlist

The circuit simulator needs the information about the circuit to commence. There are 

usually two ways for users to describe the circuit and simulation information. The traditional 

way is a text file that contains the circuit element, topology, and simulation parameters. The 

simulator reads in the text file line by line and forms the netlist. Alternatively, users can draw 

the circuit through a graphical user interface (GUI), which is available in all of the commercial 

circuit simulation packages. The drawing will be converted to the netlist form as the traditional 

way. The netlist will be processed, and the information is stored in a SPICE-defined data 

structure, which will be discussed in later sections.

2.1.3 Data structure

The data structure is related to the algorithms of constructing the circuit matrix. There are 

two approaches to constructing a circuit matrix: node-by-node approach and device-by-device 

approach. The node-by-node approach is quite straightforward. The matrix is constructed by 

writing equations using Kirchoff s current law (KCL) node by node. This causes a data 

structure that is a linked list containing the information associated with each node. However, it 

is inefficient. For instance, let there be a device connected between nodes 1 and 2. The node-by- 

node approach will fill the device into the circuit matrix once at each node. So the constructing 

procedure will access the matrix twice for each device or element in the circuit.

To improve the efficiency of the node-by-node algorithm, SPICE introduce the device-by- 

device approach. It accesses the matrix only once per device and results in a data structure of a 

linked device list. The data structure shown in Figure 2.2 is a linked device element. Each 

device is an element, which has four pointers: two to point to the previous and following device

9
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types, one to point to the parameter list and one to point to the node list. The detail of device- 

by-device filling routine is explained in the next section.

Link Head ^  Device 1 ^

Parameter 
List of Dev 

1

Node 
List of 
D evi

Device 2 ^

Parameter 
List of Dev 

2

V-

Node 
List of 
Dev 2

Link End

Figure 2.2 Data structure used in the device-by-device approach

2.1.4 Construction of circuit matrix

In SPICE, the construction of the circuit matrix step uses a device-by-device filling 

routine. The flow chart of the matrix construction is shown in Figure 2.3.

Netlist

Construction of 
Circuit Matrix

Loading 
Device Stamp

Inserting into

Circuit

Solving Matrix

Parsing Device

Figure 2.3 Detailed steps o f construction o f a circuit matrix
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First, the netlist is parsed to get the corresponding device type and parameter. Then the 

routine turns to create the specified device type data structure and create a new device instance 

in the linked structure with the information of the element parameter. Parsing of a device is very 

important in the device installation procedure and will be covered in later section. The device 

stamp will be discussed in the next section.

After going through all the devices in the netlist, the data structure is formed and 

categorized by device type. This data structure facilitates the loading of the device stamp, which 

begins the actual matrix construction procedure. The procedure loads one device type and goes 

through all its device instances and fills the information to the matrix. Then it loads another 

device type and goes on until all the device types are loaded. At last the circuit matrix is ready 

to be solved by the simulator matrix solver.

2.1.5 Device stamps

Device stamp is a technique used by SPICE and many other simulation programs to

construct the modified nodal matrix. The basis of this technique is that each device makes an

independent contribution to the circuit matrix. The detail is shown in [21]. Each stamp

represents a pattern, which is the way that a device makes its own contribution to the matrix.

We show a simple linear resistor stamp to reveal this concept.

A linear resistor is described by Equation (2.2):

V = iR (2.2)

The stamp for linear resistor is the same for all analysis including dc, ac, and transient analysis.

We assume that a linear resistor is connected to node i and j ,  which is shown in Figure 2.4(a).

The linear resistor’s stamp is shown in Figure 2.4(b).

11
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rtNode i

R

V V.
'  J

u Node j

mck_i " l  /R  - 1  /R X X
m de_ j -HR HR VJ_ 11

(a)
(b)

Figure 2.4 (a) A simple linear resistor and (b) its device stamp

The Equations (2.3) and (2.4) at node i and j

V, -  V,
R

= L

V -  V _2 L — J
R J

(2.3)

(2.4)

are in matrix equations row 1 and 2 obtained by using Kirchoff s voltage law (KVL) and KCL. 

We can solve the matrix equation for V\ and Vj, if we know the value of R. From this simple 

resistor stamp, we can see that every element only takes effect on the nodes where it is 

connected. The more details on device stamps can be found in [21], [22]. In SPICE, each device 

has a unique device stamp. We can create stamps from the device’s intrinsic equation, 

experimental data, or behavioral models.

Another point to note is that the circuit matrix is dynamically constructed to avoid the 

unknown size of the circuit. The simulator allocates memory for each new row and column of 

the circuit matrix. While filling a device instance’s information, if the corresponding row and 

column in the circuit matrix is already created and occupied by some value, the new value will 

be added to the old value.

12
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2.1.6 Matrix solution techniques and sparsity

If the circuit network is linear, the circuit matrix is a linear equation matrix. A nonlinear 

circuit network leads to a nonlinear equation matrix. But solving the nonlinear equation matrix 

linearizes them. So solving a linear equation matrix is a fundamental technique. Many 

techniques, both direct and iterative, are used to solve a linear equation matrix. The direct 

method is often used for operating point (op) and dc bias-point (dc) analysis, and the iterative 

method is used for nonlinear device analysis such as transient analysis. In transient analysis, the 

matrix is solved directly or iteratively at each time step, depending on the type of device in the 

simulation. The transient analysis will be discussed in the next section. The direct method of 

Gaussian elimination, such as lower-upper matrix (LU) factorization, is often used [22]. The 

indirect method, such as Jacobi iteration and Gauss-Seidel (GS) or successive over-relaxation 

(SOR) iteration, is based on the converge condition of the error of some chosen function.

The sparsity is the characteristic of sparse matrix, which is the normal case in usual 

circuits. Sparse matrix means the entries of matrix are mostly zero. There are special techniques 

to manipulate sparse matrices for time and space saving. In SPICE, there is a sparse matrix 

package named s p a r s e .  Sparse matrix algorithms neither store nor perform operations on 

zeros. More details can be reached in [22], [23].

2.1.7 Simulator output

After the matrix is solved, the result is stored in many data structures. Then the routines 

that can store, manipulate and plot the results begin operating.

13
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2.1.8 Analysis

There are many analyses in a circuit simulator such as ac, dc, transient, pole-zero, and 

sensitivity analyses. Among them, dc, ac, and transient analyses are the key for simulating 

transmission lines.

An ac analysis computes a dc operating point and all of the necessary small signal 

parameters, and sweeps all ac sources through a set of frequencies, computing ac small signal 

response at these frequencies.

A dc analysis provides a simple dc analysis with all capacitances open-circuited and all 

inductances shorted. It does not require any parameter and always be called by other analysis as 

a preliminary step.

The transient analysis is the most complicated simulation. It permits the time dependent 

behavior of the circuit to be analyzed [24]. The whole procedure is shown in Figure 2.5.

2.1.9 Summary

In this chapter, we discussed the basic procedure of circuit simulation. The construction 

of the matrix is most important in the device installation procedure. In SPICE, the method of 

matrix construction uses stamps to insert devices into a circuit matrix. Any device must use its 

stamp to be modeled using voltages and currents. The stamp can be derived from the device’s 

intrinsic equation, experimental data, or behavioral models. Transient analysis is very 

complicated and important in circuit simulation. The time step is a very important issue in some 

device installation.

14
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Finished?
Nn

Yes

END

Fill Circuit Matrix

Solve Circuit Matrix

Time Increase

Store Results

Calculate Initial Condition

Store Results

Figure 2.5 Flow chart o f transient analysis

2.2 Detailed Implementation

The implementation has two stages. First a new model, NTRA, is modified the same way 

as in the dummy n-port device model PRES, which is implemented in [21]. Then the NTRA 

model can handle any number of ports. Second the data structure and the loading of the matrix 

process in ntraload.c and other files are modified to load in the appropriate current source and 

stamps. It also needs to record the previous timestep’s information to be used to calculate future 

value.

15
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2.3 User Manual

This is a simple guide for using the integrated TV-line transmission line device NTRA in 

SPICE3f4.

2.3.1 Procedure for testing /?-port transmission line model in SPICE

This new device can handle an arbitrary number of transmission lines with given RLGC 

parameters.

1. run 'spice'
2. In spice environment 

'source testnl.cir'
' ru n '
'plot v (3)'
'plot v (4)'
'plot v (5)'
'plot v (7)'

3. Quit SPICE using 'quit''
4. To reset the display, use the 'reset' command

To edit the netlist and A-line parameter fdes, you can use “emacs filename 

To plot a graph in SPICE, use X-win32 to login to a unix/linux machine. From there you 

can telnet into jsa4.ece.uiuc.edu, then you can plot the graph directly. Otherwise you will not be 

able to plot in SPICE. You have to use the “print” command.

2.3.2 New device “NTRA” for multiconductor transmission line

The A-line transmission line has 2A terminals. The numbering of the terminal should 

follow the rule shown in Figure 2.6, which will be discussed in detail later. The transmission 

line parameters and initial conditions are stored in a parameter file. Below is an example to 

illustrate the use of the new device NTRA in the spice netlist.

16
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1

2

N
N conductor 

Transmission Line

N+1

N+2

2N

Figure 2.6 Port naming o f N  conductor transmission line

In the example circuit shown in Figure 2.7, there is a three-line transmission line device 

named ntral. The format of the new iV-line device NTRA is like:

NTRAxxx # of terminals nodel node2 ... node2N nline=# of lines 
nodes=# of terminals userdata=RLGC datafile

V1

r
V2

o -

1 R2 2
w w
R3 3

8 R4 4

Drive Line 1

Sense Line

Drive Line 3

5 R5
- M / W

6 R6
H>-wv

7 R7
H>-aaat

Figure 2.7 Test example o f a three conductor transmission line 

The netlist of this example circuit is listed as below:

Multiconductor Transmission Line (3 line) Test Circuit 
vl 1 0 pulse(0 1 Ins Ins Ins 20ns 50ns)
R2 1 2 50
R3 0 3 50
R4 8 4 50
ntral 6 2 3 4 5 6 7 nline=3 nodes=6 userdata=nlinedatal 
R5 5 0 10000
R6 6 0 10000
R7 7 0 10000
v2 8 0 pulse(0 1 Ins Ins Ins 20ns 50ns)
.tran 0.1ns 4 0ns 0ns 0.1ns 
.END

17
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Now the details of numbering sequence of the NTRA device’s terminals and the

parameter file will be addressed in the following subsections.

(A) The node numbering sequence

The numbering follows the sequence top-left, bottom-left, top-right, bottom. You MUST

name the terminals in a continuously increasing numbering sequence such as 4 5 6 7 8 9.

An example of naming sequence is shown in Figure 2.8. Here we name the top-left terminal 4, 

followed by 5, and all the way to 9.

4 LINE 1 7

LINE 2 8

6___ LINE 3 9........ {

-+
I
- •

Figure 2.8 The naming example o f a three-line device

(B) The nline and nodes parameters

In the semantics, nline is the number of lines and nodes is the total number of terminals. 

Normally, for an A-line device, nline = A  and nodes = 2A.

(C) The format of the userdata file

The userdata file should be located in the directory, where you execute the command 

“spice.” The first line of this file has three parameters: “m h ” the number of time-points used for 

frequency determination for tlmod(); “Imax,” the order of approximation matrix; “npar,” some 

parameter used for parameter storage. This file contains the information about the R, L, G, C 

parameters of the A-line model and the initial voltage and current of each terminals and the 

length of each transmission line. Here the units of all the L and C are Nanohenry/meter or 

Nanofarad /meter. The unit of the length is in inches.
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3 LATENCY INSERTION METHOD (LIM)

3.1 Introduction

The simulation of networks with large numbers of nodes is serious challenge in the 

computer-aided design of integrated circuits. For example, power grids are rapidly becoming a 

limiting factor in high-performance microprocessors, the ability to analyze power grids 

efficiently is a critical requirement to obtain a robust design [25]—[28]. Circuits of this size can 

typically require several days of CPU time on a workstation. The multigrid method [29], 

hierarchical method [15],[16], PCG [14], hierarchical model order reduction [26], and 

frequency domain analysis [27] are the latest methods proposed. For solving these large 

problems, there is also TLM-ADI methods [18],[19], which has 2-D and 3-D versions.

The latency insertion method was recently developed to simulate the high-frequency 

response of large networks in the time domain [30], The method makes use of or introduces 

reactive latency in all branches and nodes of a circuit to generate update algorithms for the 

voltage and current quantities. The updating of branch currents and node voltages is performed 

in a leapfrog manner similar to the Yee algorithm used in the FDTD method [31]. 

Consequently, LIM has linear computational complexity and is thus substantially faster than the 

traditional matrix-vector product based methods such as the modified nodal analysis used in 

SPICE. The LIM formulation is enabled through the insertion of small inductors and capacitors 

throughout the network, which generate the latency at each node and branch and also impose 

conditions on the time step size and stability of the solution. In [32], the stability of the LIM 

solution is investigated in a manner analogous to the traditional FDTD schemes [33],[34].
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The remainder of the chapter is organized as follows. In Section 2, we show the basic 

formulation of LIM and demonstrated the linear computational complexity 0(n) of the scheme. 

Next, stability analysis is performed in Section 3. This is followed by Section 4, where LIM 

formulations are successfully developed for simple/general mutual inductors and the branch 

capacitor. In Section 5, the nonlinear simple bipolar junction transistor (BJT) model is 

demonstrated. In Section 6, the frequency dependent model such as skin-effect is demonstrated. 

Finally, the possibility of unconditionally stable LIM scheme is discussed in Section 7.

3.2 Basic Formulation

Distributed networks are often used to describe signal propagation on uniform 

transmission lines (Figure 3.1). This model is also a high-frequency representation of an 

interconnection. Figure 3.2 shows a more general interconnection topology in which signals can 

propagate in more than one direction. Such a model can be viewed as the high-frequency 

representation of an arbitrary network. In analyzing an arbitrary network, we can define a 

branch as a connection between two nodes (excluding the ground reference node). In defining 

the desired topology for such an analysis, the following requirements are made:

• Each branch of the network must contain an inductance; otherwise a small inductance is 

inserted into the branch to generate the latency.

• Each node of the network must provide a capacitive path to ground; otherwise, a small 

shunt capacitor is added to generate latency at that node.

In addition, it is also assumed that by using combinations of Thevenin and Norton 

transformations, all branches and nodes can be converted to this topology. After all 

augmentations and reductions are performed, network branches are represented with a voltage
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source, a resistor, and an inductor in series. All connections to ground are represented by a 

parallel combination of a current source, a capacitance and a conductance to ground from every 

node.

“ "X

Figure 3.1 Discrete distributed model for uniform transmission line. R, L , G, and C are the resistance, inductance,
conductance, and capacitance per unit length, respectively

Figure 3.2 Network with interconnect topology

First, the time variable is discretized, next the voltage and current quantities are 

collocated in half time steps to generate sequences of the form p"'1/2? F”+1/2, and p”+3/2 for 

voltages and f ,  In+X, and f +1 for currents.
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3.2.1 Branch algorithm

Each branch is represented as a combination of a voltage source, an inductor and a 

resistor in series. Current Iy is assumed to be directed from node i at voltage Vi to node j  at 

potential Vj (see Figure 3.3).

The discrete time equation reads

Trn+l/2 _ T /n + l /2  _  r
Vi j  ~  ij

f  jn+\ _  rrc ^
J_ J_

At
v

+ v ; - * r l/2 P -1)

Solving for the unknown current leads to

/«+1 = /« + ^L (Vin+in-V jn+m - R y l” + 4 T 1/2) (3.2)
Ly

At each time step, this operation is performed over all Nb branches of the network in order to 

update all the current values.

Lij Rjj Ey 
.— r m ) —

V i ---------►  Vj
!ij

Figure 3.3 Branch equation formulation

3.2.2 Node algorithm

Each node is modeled as a parallel combination of a current source, a conductance and a 

capacitor to ground as shown in Figure 3.4. The equation reads:

C,
f  y n + \ ! 2  _ y n - M 2 \  M,

+ GiVin+V2- H ? = - Y JI?k , (3-3)
k=1At

\

where Mt is the number of branches connected to node i (excluding connections to ground). 

This yields
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(3-4)

for i = 1,2, ... N„. At each time step, this operation is performed over all Nn nodes in order to 

update all the voltage quantities.

Computations of all branch currents then all node voltages are alternated as time 

progresses; thus a complete network simulation can be summarized by the following algorithm:

For time=l, Nt
For branch=l, Nb

Update current as per Equation (2) ;
Next branch;
For node=l, Nn

Update voltage as per Equation (4);
Next node;

Altogether, N t(Nn+Nb) operations are performed to obtain N t(Nn+Nb) values yielding hence an 

optimally efficient algorithm.

3.2.3 System of equations

After reviewing the basic formulation of LIM, the systems of equations for both linear 

and nonlinear systems are shown below.

G

Figure 3.4 Node equation formulation

Next time;
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The linear elements in a branch linked to a node (Figure 3.5) are discretized according to 

the following relations:

L,
(  j n + \  _  j n \

 J_
At

r / t t + 1 / 2  t / w + 1 / 2  n  rw , T ? f i + \ / 2

Vi - ‘ j  - K 0 J i j + I ':j (3.5)

c i
A t

= - ]T  7” -  G; F;"+1/2 + H "+V1
k=\

(3.6)

Hi

c)---------- '

O  C i.

b
rA

A
A

rj
\r

Vi lij
A /V — i . 
RU

Vj
-©

Lij Eij

Figure 3.5 Linear branch and node

The nonlinear elements of a branch linked to a node (Figure 3.6) are discretized as shown

below:

f  T t l + l  _  T l l ^

J_ tl_
At

v /
= Vin+l/2 - V f +l/2 - R y l ^ + E f 1'2 - / _1( /J +1) (3.7)

C;
f  y n + M 2  _ y n - \ l l  \  M< 

* i v  i

A t
= - ] T /J  -G j V f+xn + H ”+V2 - f ( V ”+l12) (3.8)

k= l

Vnon
Vi R«j lij

H iO  Ci Gi

C n Vnon Vj
E & - o

Lij lij=f(Vnon)

Figure 3.6 Nonlinear branch and node
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3.3 Stability Analysis of LIM

In order to analyze the stability of these solutions, various difference approaches need to 

be compared. In [30], the stability condition is given for the lossless case, where Ry and G, are 

both zero and correspond to the same condition obtained for FDTD:

In the linear case, [30] uses the forward and backward Euler schemes. When nonlinear 

elements are present, the backward Euler scheme is used. Without loss of generality, the 

independent sources can be ignored in the stability analysis. We first assume a homogeneously 

loaded grid with identical R, L, G, and C values at all branches and nodes. In addition, we 

assume that only two branches are connected to each node, which corresponds to a 

unidirectional network, labeled as x. This places the LIM algorithm in the same difference 

scheme category as the one-dimensional FDTD scheme used in [35], The inhomogeneous case 

will be discussed later. The homogeneous case is shown in Figure 3.7. The corresponding 

simplified differential equations for linear branch and node are respectively given by,

For the circuit representing transmission lines, the R, L, G, and C values are p.u.l. values. 

Next, from (3.10)-(3.11), we use the stability criterion based on the Von Neumann method for 

FDTD [33],[35] to obtain similar stability constraints for several difference formulations. 

Further details about the Von Neumann method can be found in [34],[36].

(3.9)

(3.10)
dt dx

(3.11)
dt dx
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Vn+1/2 R
■AAAr

ln+1

L u u J

Vn+3/2

Figure 3.7 Simplified homogeneous branch and node for stability analysis

LIM uses a central difference formulation for dV/dt and dl/dt according to (3.5)-(3.6). 

However, the resistive drop terms, RI and GV can take an explicit, semi-implicit, or fully 

implicit form. The three cases will be discussed later.

If the current in the branches are in x-direction, the discretized forms of (3.10) and (3.11) 

are given by

j-n+l Tit Tfit+l/2 j rn+l/2
£ I k ~ x k  _  y k+U2 ~ v k -M2  g j

At Ax

TT-n+l/2 jzf t—l /2 rn jn  
£>v k+\l2 ~ v k+\!2 _ i k + l ~ 1k

At Ax
-GV

(3.12)

(3.13)

The central difference formulation means that the time grids for the branch current and 

node voltage are interleaved. For example, V(t = n+1/2) is between I(t = n) and I(t = n+1). The 

resistance/conductance term can have several elements. For linear device the 

resistance/conductance term can be expressed as a linear combination of the current/voltage at 

the previous time steps. For nonlinear device, it should be linearized at each time step.

RI = —  (c_xI n+l + c0I n + cxI n~x + • • • + cnI°) 
At

„  . 1 3 1* Cl n+~ n— n— -
GV = — (d_xV 2 +d0V 2 +d,V 2 +— \-d ,V2)

At

(3.14)

(3.15)

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Here ct and di , i = -1,0,1,-•■,« are coefficients representing the linearized

current/voltage variables of any nonlinear devices. These coefficients depend on the scheme 

used and will be discussed in the following subsections.

Substituting (3.14)-(3.15) into (3.12)-(3.13), the difference equations are shown in (3.16)- 

(3.17):

nC j/n+l/2 _ C T/>3-1/2 , ^k+\
-r /k + \i2 - ~ z vk+\i2 + —A ~rAt At Ax Ax

— (d-xVk+m +d0Vk\ } H  +dxVk+u2 + -" + dn__lVk /hy 2) 
At

(3.16)

T/ft+1/2 T7p/?4'1/2 T T T
_ J sMI2_+_tdI2_+ 7«1 = ( 3«-‘ + r  / r 1+ . . .+ c / 0) (3.17)

Ax Ax At At At

To perform a stability analysis of the above system, the Von Neumann method used in 

[33],[35] is applied. A new vector uk is introduced to transform the system into a two-level

scheme. Each component of uk is considered as the discrete Fourier transform of the time 

domain signal. For example,

K i n  (3-18)

< ' = [ C , ‘A2 I T ' -  A  V T lR  -  v t l h f  (3.19)

00

= (3.20)
t =_oo

V"t±A() = e±,kt;V"t(C) (3.21)

Using (3.18)-(3.21), (3.16)-(3.17) can be transformed into the Fourier domain as follows:

A -U nk+X = B -U nk (3.22)
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A  =

(l + d_x)C /A t 

e ^ - l
Ax

0
0 0 ••• 0

(l + c_x)L / At 0 0 ••• 0

a(2«-l)x2 I (2ra-l)x(2n-l) y

Here, 0 (2m_i)x2 represents the zero matrix of (2 n - l)x 2  and / (2„_(2n -l)x (2n -l)

(3.23)

is an identity

matrix.

B

C ( l -d 0) elC 
At • Ax

L (l~ c0)0

0

-Lc,
At
1
0

At
0
1

0

~L c n

At

0
1

Cd, -Crf, -CW
At

0

At At

0

(3.24)

0
1

v 0 0 1 0 j

In order to insure stability, the magnitudes of all eigenvalues of the amplification matrix 

A~]B for the difference scheme have to be less than one for C, e \ - tu, n \ . This is investigated

through the characteristic polynomial of A~XB . For linear resistance and conductance, first- or 

second-order difference scheme will normally lead to only six nonzero terms of RI and GV: 

c_x,c0,cx and d_x,d0,dx. For example, for forward Euler difference, R I = R In, GV = GV"~I/2, 

which generates only two nonzero parameters: c0,d0. Then the characteristic polynomial of

A~lB is
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P(Z) =

, i h l ~ co | l ~ do 4y2sin2(^72)
1 +  C _J 1 +  C?_j (1  +  C _ j ) ( l  +  i / _ j )

. d  ( ( l - c 0)(l-c /0) (3.25)
1 + C_j (1 + C_x )(1 + )

r d f i - e - t t i c l L  cx( \ - d 0)
(1 + C_1)(1 + J_1) (1 + CLjXl+ </_!)

with the Courant number y = At /(Ax*Jl C) , (Ax = 1).

3.3.1 Explicit (forward Euler)

In the explicit case, the resistive voltage drop term RI is given by R In and the conductive

current term GV is given by GVn . This leads to c0 = dQ = , di & c; = 0, 0. This
L  C

is a first-order accurate scheme. Hence, the Courant number y  satisfies (see appendix for 

details) the following:

1 L GAc RGAt2
y < —J 4 -2 (— - + —  ) + — ^ ~  (3.26)

2y L C LC

According to y  = At /(Ax-jLC) , (Ax = 1), the above inequality (3.26) is used to solve for

the time step leading to the following stability condition:

A t< K x4 lC

K l  R G - 4

(3.27)
+16 v '

/

If RG > 8, K x > 1; the time step is larger than that of the unloaded FDTD case. For other 

cases, Kx can be any value. A special condition is when G = 0, the stability condition becomes

4 - 2 t £ (3 '28)
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When R is increased, the time step is decreased.

3.3.2 Semi-implicit (leap frog)

In the semi-implicit case, the resistive voltage drop term RI is expressed by 

R (In + / ”+1) /2  and the conductive current term GV is given by G(Vn+l/2 + VnA,2) / 2 . This is a 

second-order accurate scheme. We obtain

c_i =c0 = d_x - d 0 -  5 dl &cl = 0,/ * 0 ,-1 . Hence, from (3.25), the Courant number
2 L 2C

y  satisfies the condition:

1 ac + bd + abcd + l
r ~ 2 i  * -----------

A ,  j  A  t  i  A  1 j A  1a = l - c 0, b = l - d 0, c = -------- , d =
(3.30)

1 1 + d_ j

There are three cases, where the inequality in (3.30) can be satisfied:

(1) a and b e (0,1]

(2) ab< 0 and |6|<i<l

a & b< 0 and abed < 1

(3) f |a |c > l& |b |t/< l]
and 1 r

[|a|c <\8c\b\d > lj

Then the time step At is limited by
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A t < k 24 l c
X ------------------------------------------------------   (3.31)

K 2 = — ̂ (1 -  c0)(2 + d_x + d 0) + (1 + c_x)(2 + d_x -  d 0)

For a special case where c_x = c0, d_x & dQ=0, the stability condition is

A t< 4L C  (3.32)

This is the same criterion as in the lossless case. The time step At is not related to the 

value of the resistor.

3.3.3 Fully implicit (backward Euler)

In the fully implicit case, the resistive voltage drop term RI is given by R In+l and the

conductive current term GV is given by GVn+1/2 . This yields c_x = ^ ^ -  d_x= ^ ^ -  ,
L  C

di &ci = 0, i * - 1. This has a first-order accuracy with Courant number y  satisfying the

following conditions:

y < ^ 4  + 2(c_x + d_x) + c_xd_x

At iS VLC , K3 — — ̂ 4 + 2(c_x + d_x)-I-c_xd_x 

For the case c_x *  0, d_x = 0, the stability condition becomes

(3.33)

(3.34)

z 1 L n RAt
r - 2  r +2~ r

(3.35)

, ^ R C  
At < -----+ f  RC ^2+l c = 4 l c

r R ( C A

v 4 U y
+ „

R C
K4 i L /

+1 (3.36)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This stability limit is larger than that of the lossless case, because the factor

Vm 2 + 1+M , (M  = VCTI • R / 4 ) is always greater than one.

A similar result can be derived for the case where G *  0 and R = 0 . This stability 

condition shows that the backward Euler case could have larger time step but lower accuracy. 

Thus, for more accurate results, the semi-implicit scheme is the most appropriate.

At each time step, the nonlinear function can be linearized; in fact, the stability analysis

becomes more complex due to the time dependent parameters. For a branch diode, the

equivalent local resistance Req = VT /(I  + Is ) is used in the above stability analysis.

For inhomogeneous cases, where the L and C vary throughout network while R and G 

remain constant, the smallest LC  product obtained at any given node determines the stability of 

the system.

For inhomogeneous cases, where the R, G, L, and C are all different over the overall 

domain, a stability criterion cannot be formulated analytically. But for linear system, the 

stability condition can be limited by the smallest product of L and C connected to the same node 

for fully implicit difference scheme.

For multidimensional case, in which n pairs of branches are connected to a node i, the Lik 

and Ci are the inductance of the Mi branch and capacitance of node i, respectively. Then the 

stability condition becomes

At < Pik ■ m inU L ^C j} / Jn  , k = l,2,---2n  (3.37)
i,k

Here P ik  represents the coefficient from a given difference scheme (i.e., 

Pik = \/m 2 +1 + M  for backward Euler). Thus for an inhomogeneous medium, the stability 

condition will vary from one location to another, the overall stability condition is determined by
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the smallest LC  product which can limit the computational speed. Automatic partitioning 

algorithms may be used to subdivide the entire network into smaller blocks with different time 

step requirements.

3.4 Mutual Inductor and Branch Capacitor Modeling

3.4.1 Mutual inductance formulation (forward Euler)

The mutual inductor formulation used in [30] is an approximation. A more accurate 

formulation with branch resistance is derived below:

Fi - A ^ l + M i2^ + V i

dt dt (3.38)

Equations (3.38) are discretized as per the forward Euler method to give the following 

updating equations

, -<1 ----- ~ r (M n R2A t i ; - L 2St&ti; + L2&tVl"*',2 - M llAlV2"+'n )
iLrt jj 'y  JMl i 0
M 2 12 (3.39)

^  + r , ‘ 2 ( Atf,* -  LiR2 -  M l2A , V r 2 + h A t r r '12)

The model is shown in Figure 3.8. This model is difficult to expand to arbitrary number 

of coupling inductors. So another expandable form is proposed in the next section.

G ----------- W V ----- ^ -1  * --- 1--------©
v ii R1 v ijL1

M12
L2

V2i R2 V2*
G ----------- W V ' ...~ |2  ► 1-------- ©

Figure 3.8 Mutual inductors (forward Euler)
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3.4.2 Mutual inductor model (K element)

In general when more than two mutual inductors are present, mutual inductors are 

handled by using L matrix element, which cannot be discretized to an arbitrary L matrix. This 

means that the previous method cannot be extended. A new approach is developed to handle the 

general coupling of mutual inductors using the K  element, which was introduced in [37]. K  is 

the inverse of the partial inductance matrix L; it has a higher degree of locality as does the 

capacitance matrix. Furthermore, [37] shows that the K  matrix is diagonally dominant and 

hence positive definite. The off-diagonal terms are negative and can be removed without 

sacrificing the stability of the modified K  matrix. From the improved locality property of the K  

matrix, mutual inductors can be handled by inverting the L matrix into a K  matrix if K  is not 

directly available.

From the definition of K  = inv(L) , we have the general form of the inductance inductance 

equations given by: For mutual inductor modeling, semi-implicit scheme is used for the case 

without resistors. Combined explicit and semi-implicit scheme is used for the case with 

resistors.

hj dt dt MJV dt 
dL din dlv
dt dt dt (3.40)

V —L ^  i L l___ \-L
Vmj~ Lm dt N2 dt NN dt
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From (3.41), the simple branch update equation for general inductance coupling is 

deduced as shown below:

which is the updating equation for branch j.

For branches with resistor and voltage source, the update equation of ith branch becomes:

here, dtrk = AtK^ , Rm is the resistance of the mth branch. The numerical validation of 

this formulation is found in Chapter 5.

3.4.3 Branch capacitor formulation

When a capacitor is present within a branch, the standard LIM formulation must be 

modified. For this purpose, a small inductor is added in series with the branch capacitor 

between nodes i and j ,  as shown in Figure 3.9.

N

(3.42)
m=1

tt+1 = jn 2 -d trk  
1 ' 2  + dtrk

• w + 1 / 2

1 + dtrk / 2
(3.43)

(  N
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Figure 3.9. Branch capacitor model: the top diagram is standard approach; 
the bottom diagram is the proposed scheme

The standard approach consists of representing the capacitor as a resistor of value dt/C, 

which is derived from companion model of capacitor. A linear branch update equation can then 

be used as in (3.1).

where Vc and Vl are the voltages across the capacitor and inductor, respectively. With the 

presence of the inductor Lp, the updated voltage difference Vp Vj does not equal Vc- This 

limitation can be removed by using an efficient direct finite difference formulation for branch 

current and voltage as follows:

(3.44)

■n+1/2

■n+1 /2

(3.45)
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3.5 Bipolar Junction Transistor Model

The BJT model used in LIM is based on the Ebers-Moll representation [38],[39]. It is the 

basic model used in SPICE. The complete large signal model of the BJT used in SPICE also 

includes nonlinear capacitances and three terminal resistances used to simulate dynamic 

operation as well as the resistances for the three terminal regions. The Ebers-Moll. model 

consists of two diodes and two current-controlled current sources (CCCS). Thus in general, the 

simple static transistor model has four branches, when none of the terminals is connected to 

ground. This model is shown in Figure 3.10. When one of the terminals is connected to ground, 

the LIM model will have either two or zero branches. If the emitter (E) is connected to ground, 

the branch from B to E becomes grounded. It leads to only two branches. If base (B) is 

connected to ground, there will be no branch.

Alpha JForward*l_2 

CCCS1D b c / \

Dbe CCCS2

Alpha_Reverse*l_1

Figure 3.10 Simple BJT transistor model for LIM

In this work, the Ebers-Moll model is implemented to verify the feasibility of this 

approach. For each branch a small resistor and small inductor are introduced in series as 

required by LIM. The updating sequence for the branch current and node voltage must be
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respected; due to the presence of the CCCS, the reference branch current must be updated first 

in order to ensure correct result.

The updating procedure for the simple BJT model in LIM is shown below:

For time=l, Nt {
For branch#=l, Nb {
If (branch_type == linear)

Update current as linear formulation;
Else if (branch_type == diode)

Update current as nonlinear diode;
Else if (branch_type == voltage/current controlled current source) 

Update current from the reference node/branch;
/* for BJT transistor model */
/* First: update branch#l for diode BC

Second: update branch#2 for diode BE 
Third: update branch#3 for CCCS BC
Fourth: update branch#4 for CCCS BE

* /
Next branch;

}
For node#=l, Nn {
If (node_type == linear)

Update voltage as linear formulation;
Else if (node_type == diode)

Update voltage as nonlinear diode;
Else if (node_type == voltage/current controlled voltage source)

Update voltage from the reference node/branch;
Next node;
}

Next time;
}

It must be noted that for step 2, a user specified value determines the size of the inserted 

inductance and capacitance values. To minimize the impact of the inserted component, the 

inserted inductance and capacitance is limited to the one tenth of the smallest 

inductance/capacitance.

Using the above integration scheme, LIM can be invoked as a new command within 

SPICE and simulate the high-frequency transient response with speeds far superior than the 

standard SPICE.

The above LIM-SPICE integration enables an efficient simulation method for large 

networks. The detailed implementation is skipped here to save space.
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3.6 Frequency-Dependent Model

The frequency-dependent behavior of circuit element is a critical parameter in the 

simulation of integrated circuits. With higher processing speeds, digital signals have spectrum 

components that easily extend into the gigahertz range. The simulation of such circuits can be 

prohibitive and often requires several days of CPU time on a traditional workstation. In order to 

handle the skin effect of the conductors, a simple formulation is derived here and verified by the 

measurement result in Chapter 5.

The generalized branch and nodes LIM equations showing space dependence can be 

written in the S  domain as below:

In this paper, the frequency dependent effects of dielectric loss G and capacitance C are

losses of the conductor are taken into account, the resistance R and the inductance L vary with 

frequency. This dependence can be analytically described using various methods. In particular, 

a rational function expansion can be used to model the frequency-dependent of conductors as 

can be observed in [40], [41]. This expansion could be used to model the frequency dependent

Z(s)I = Z(s) = R(s) + sL(s)
dx

(3.46)

(sC + G)V -  —  
dx

(3.47)

ignored. It means that C and G are independent of frequency. When the frequency dependent

C and G.

(3.48)
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For modeling skin effect, the above formulation is replaced by a simpler and more

efficient approximation used in [42] in which the frequency dependences of the resistance R and

inductance L are shown as in (3.49)-(3.52).

Z(s) = R(s) + L(s) (3.49)

R(s) = Ro+Rs>[s, L(s) = Li(s) + Le (3.50)

In the above equations, R0 is the constant dc resistance per unit length (p.u.l.); Le is the

constant external inductance p.u.l. andL  is the internal inductance p.u.l., which decrease with 

yfs . The skin effect can then be represented by Zt(s) , which is defined as in (3.51)-(3.52).

Z(s) = Zi(s) + sLe (3.51)

Zi(s )^ R (s )  + sLi(s) (3.52)

Then the frequency-domain representation is given by

Zi 0 )  = R0 +RS 0 )  + sLi (5) (3.53)

Since Lt cc 1 / 4 s  , the frequency dependent impedance can be expressed as in [42]

Zt{s) = A + B*Js (3.54)

A = Rv, Rs( f )  = B yfny[f , Li( f )  = B / 2 ^ f  (3.55)

Equations (3.46) and (3.47) are transformed to yield

s ^ ; ( i ) tZ ,( s ) / ( i )  = - ®  (3.56)
OX

sCV(s) + GV(s) = (3.57)
dx

The term Zi(s)I(s) translates to a convolution in the time domain because

1<r>
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B
Zi (s)I(s) = AI(s) + ~  sl(s) 

sjs

z , © */(<)=A m + -?=
d ( t- r )

(3.58)

(3.59)

The integral in (3.59) can be evaluated using piecewise constant convolution techniques 

such as in [43], which have second-order accuracy:

\I7T

dl_
dt

1/2

/=« o

"-1 dl_ 
dtm=0

(m + 3 /2 ) 1

(m+1/2)

d r (3.60)

After substitution of (3.60) into (3.56) and discretization, the branch current update 

equation takes the form

\ - i
rn + l/2
£+1/2 Le + A /2  + ̂ = x¥

At

L.e
At

■sjnAt ° J

A I 2 + ^ ^ + h ^ ) - ^ £+1/2

(3.61)

where the variables and Ajnk+l/2 are defined as

1/2 1 1

't'o -  \ - r dT ’ 'J w /2 = E f e
o Vf m=0

1 /2 - m  j - n - 3 / 2 - m  
£+1/2  — £+1/2

(m + 3 /2 )

) I
(m+1/2)

d t (3.62)

We next transform the integral into a recursive convolution form. This is done by 

approximating with a series of exponentials [40]:

(m + 3 /2 )  ,  p  1 /2

J ■
(m +1/2)

(m + 3 /2 )  j p  1 /2  .  p

Pz(ot)= |  -j=dT = '^j ai ex$(bim), T'o = f —j=dr (3.63)
(m+l/2) ^  »=1 0 ^ T '=1

By substituting (3.63) into (3.62), we have a recursive convolution updating equation
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o n+ 1 
>+1/2

n /
_  V -1 / r n + l / 2 - m  j n - M l - m

,t ~  ai Z^y-k+ xn 11£+1/2
m=0

jexp(6;m)
(3.64)

= ®£+i/2,/ exp(^) + fl; ( / S ; 22 -  /£ } , '! ) ,  i = I - ; P

and °£+i/2,/ = ^1+1/2,/ = 0 for any 1 and k-

This process discretizes Equation (3.57), which then provides final LIM update equations 

implementing the skin effect. The branch currents and node voltages are updated by using

I\m+ 1 / 2
£+ 1/2 Le + A /2  + —JL='¥f

\ - i

At yjjtAt
f  J J3 ^

6 - A / 2  + ̂ = = ylJ
At y/trAt

o
r-n-l/2  ,

•‘ £ + 1/2  +

/

(3.65)

Vln+ 1

At 2
C__G_ 
At 2 '

W / n  (  ̂ (  rw+1/2 7n + l / 2  \
2 £ + ‘̂ (-'£+l/2 — ■'£-1/2 j (3.66)

where -  d)£+i/2,/ exP(^;) + a/ { jk tm  ~ ̂ £+1/2 ) ’ i ~ L ' ' '»^  •

Using the above updating equations, LIM can handle conductors with skin effect 

efficiently.

3.7 Possible Unconditionally Stable LIM

In order to expedite the simulation of a large circuit network such as power grid or 

interconnect network, using unconditionally stable difference updating scheme such as 

altemating-direction implicit (ADI) method to eliminate the stability condition is a preferred 

technique.
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There are two current unconditionally stable simulation methods: the 2-D and 3-D TLM- 

ADI method. Two-dimensional TLM-ADI has the limitation of a maximum of four branches 

connected to any node, which limits the range of the network it can simulate. Three- 

dimensional TLM-ADI can have up to 6 branches. But it has a critical assumption different 

from the 2-D case: The ratio of RJL for every branch must be the same constant in all the 

branches connected to a node. This assumption ensures the difference equations from KCL and 

KVL can be transformed into a second-order equation:

_7 d2v dv ,d2v d2v d2v .
3lc~^J + 3rc^ : ~ ('T T  + ' r 2 +T ^  = 0 (3-67)dt dt dx dy dz

The reason behind the above assumption is the basic theorem behind general ADI method

or other operator splitting based unconditionally stable method. For a two-level difference

equation system given by

(I  + A)vn+X+Bvn = g n (3.68)

Equation (3.68) can be transformed into the linear system shown as below:

{I + AiW ^ + J j AJp n+B p n = g n,
J=2

(I + 4 ) / C  ~ -  Af i n = g n, i = 2 , - , q ,  (3.69)(o m - 1)
Q

A /?«+* -  ^  ^
i=1

The new set of equations (3.69) is convergent to the original Equation (3.68) (consistent 

and stable) if

(1) Ai is positive semi definite, i = 1, ..., q,

(2) B is Hermitian, and
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(3) At and B commute.

The operator splitting new scheme (3.69) is then convergent to the original one (3.68). In 

general q = the spatial dimension.

Then there is a special case for q = 2, the third condition of A, and B commute can be 

eliminated. This good property ensures the 2-D TLM-ADI can work as it split each time step 

into two subiterations. However for 3-D TLM-ADI, the critical assumption is essential to satisfy 

the third condition of the above theorem.

Now we transform the LIM equations into following equations under the assumption that 

there are six branches connected to a node:

dv di di di,, „
C —  = - ( —  + —  + — ) - v G  

dt dx dy dz

x dt dx xx

L —  
y dt

—  ~ R i  
dy ”

L -  = - — - R i
2 dt dz 22

Then we got the matrix form of the above equations:

(3.70)

(3.71)

(3.72)

(3.73)

A =

du . —  = Au 
dt

-G - i  a - i  a - i  a
C C dx C dy C dz

- i  a - K
Lx dx Lx
- l  a ~Ry
Ly dx Ly
- i  a -R ,1 ^1 ^

4

(3.74)

(3.75)
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Using the previous theorems, there are two possible ways of achieving the 

unconditionally stable method. For the 2-D network, the approach can use the similar fractional 

step method in the 2-D TLM-ADI to gain unconditionally stable method. For the 3-D network, 

we need to find a way to split the operator A and guarantee the commutative condition. From 

(3.75), we can see that it is really difficult to decompose A into three submatrix and satisfy all 

three conditions of the above theorem.

So the tentative conclusion is that we can achieve unconditionally stable LIM for 2-D 

case and is quite impossible to get such nice result for 3-D case.
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4 SPICE-LIM INTEGRATION

4.1 Introduction

SPICE is a well-established platform for circuit simulation. LIM is a fast simulation 

method for large, high-frequency circuit simulation. The latency insertion nature of the method 

implies a high-frequency approach to the simulation of large networks with strong parasitic 

effects. LIM-SPICE integration provides a way to exploit the fast speed of LIM method in the 

familiar SPICE environment. The objective of the LIM-SPICE integration is to replace/bypass 

the modified nodal analysis (MNA) formulation within SPICE.

SPICE has data structures, input and output format, that are incompatible with LIM. So 

the integration requires three major modifications to SPICE: the input (front end), solver, and 

output. For the input part, a translation module is needed to parse the input netlist and translate 

the information into the appropriate data structure for LIM simulation. The inserted values are 

normally one-tenth of the smallest value of the circuit capacitor/inductor. The solver part is the 

LIM algorithm. The output part is to save the required information into SPICE’s raw file data 

format. The new flow of LIM-SPICE is shown in Figure 4.1.

The dark black boxes represent added/modified sections. More specifically, for 

integration into SPICE (version is 3f5) the following steps are required:

1. Create a new command “lim” in SPICE.

2. Implement a new parser based on SPICE’s own parser to translate the SPICE netlist 

into suitable LIM circuit topology.

3. Optimize the input circuit and create reduced LIM branches.

4. Perform DC analysis (nonlinear circuit only).

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. Initiate the time loop using the translated LIM input, DC simulation results and the 

transient simulation parameters.

6. Output the selected node voltage information into SPICE’s raw file format, which 

can be accessed by “nutmeg” command in SPICE.

LIM  in it.

T im e  L oop

O utput to S P IC E

LIM T ran sla t ion

S P IC E  input

Figure 4.1 Integration flow chart o f LIM and SPICE

It must be noted that for step 2, a user-specified value determines the size of the inserted 

inductance and capacitance values. This value is also related to the highest frequency of the 

input signal.

Using the above integration scheme, LIM can be invoked as a new command within 

SPICE and simulate the high-frequency transient response with speeds far superior than the 

standard SPICE.

An efficient method for the simulation of large networks has been presented. The method 

introduces or uses latency behavior in the network to generate update equations for the branch
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currents and node voltages. First simulation algorithms were derived for linear passive networks; 

the formulation was then extended to handle nonlinear elements. Comparisons with SPICE have 

shown speedups of several orders of magnitude.

This chapter is organized as follows. In Section 4.2, we show the basic structure of the 

parsing and optimization method of the new LIM-SPICE. This is followed by Section 4.3, 

where the integration of LIM and SPICE is illustrated in detail.

4.2 Basic Parsing and Optimization Structure of LIM-SPICE

The new LIM-SPICE modified several files and created some new files.

• Modified files: src/lib/fte/inpcom.c, src/lib/fte/makedefs, src/lib/fte/spcmdtab.c, 

src/include/fteext. h

• New files: main_limjiew.h, cell.h, mairix.h, com_lim.c, parsingjiew.c, matrix.c, 

inp2rnew.c inp2cnew.c inp2lnew.c inp2dotnew.c

The basic step is to modify and create the above files and re-build SPICE using command 

util/build lima.

4.2.1 Modified part

1. src/lib/fte/spcmdtab.c: Add the new command “lim” into SPICE’s command list, which

is shown in Figure 4.2.

2. src/include/fteext.h: Add the new main function “com_lim() ” into the SPICE’s front 

end. It is shown in Figure 4.3.

3. src/lib/fte/makedefs: Add new .c files into the compilation list shown in Figure 4.4.

4. src/lib/fte/inpcom.c: Modify the original SPICE function inp_readall{ ) and create a 

new function inp_readall_new( ). The procedure is to copy the function of
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inp_readall( ) to a new function inp_readall_new( ) in the same file and change 

several places, which is shown in Figure 4.5.

struct comm spcp_coms] = {

{ "let", com_let, false, false, true,
{ 040000, 040000, 040000, 040000 }, E_DEFHMASK, 0, LOTS, 
arg_let,

"varname = expr : Assign vector variables." } ,

{ "source", com_source, false, false, true,
{ 1, 1, 1, 1 }, E_DEFHMASK, 1, LOTS,
(int (*)()) NULL,

"file : Source a %s file." } ,
{ "lim", com lim, false, false, true,

{ 1, 1, 1, 1 }, E DEFHMASK, 1, LOTS,
(int (*)()) NULL,
"lim : LIM analyzes the file." } ,

}
Figure 4.2 Experts from spcmdtab.c after modification

extern int com lim();

Figure 4.3 Excerpt from fteext.h after modification

CFILES
parsing new.c inp2rnew.c inp2cnew. c inp21new.c inp2dotnew. c

com lim. c matrix, c
COBJS = ...

parsing new.o inp2rnew. o inp2cnew.o inp21new. o inp2dotnew. o
com lim.o matrix.c

breakp2.o: breakp2.c
com lim.o: com lim.c
matrix.o: matrix.c
parsing new.o: parsing new.c
inp2rnew.o: inp2rnew.c
inp2cnew.o: inp2cnew.c
inp21new.o: inp21new.c
inp2dotnew.o: inp2dotnew. cj

Figure 4.4 Excerpt from makedefs after modification
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void
inp_readall_new(fp, data, 

FILE *fp;
struct line **data;

numline

int *numline;

if (!(newfp = inp_pathopen(s, "r"))) {
perror(s); 
continue;

inp_readall (newfp, Snewcard, |nmnline|) ; 
(void) fclose(newfp);

default:
prev = working;
working = working->li next;
*numline = *numline + 1;

Figure 4.5 Excerpt from inpcom.c after modification

4.2.2 New function part

The main function for parsing and simulation is com_lim{) in src/lib/fte/com_lim.c.

A . src/lib/fte/com_lim.c

• com_lim{ ) and related functions freeOPTlist( ), freeLClist( ), freeKlist( ), 

freeNodelist(), freeDevlist();

LIM simulation related functions: viterate( ), citerate( ), cct( ), compsource( ), 

BranchVectorSpace(), NodeVectorSpace(), FreeBranchVector(), FreeNodeVector().

B. src/lib/fte/parsingnew, c

• hash(): calculate the hash key of device/node name string and used in indexing 

their own hash tables.

• Symtablnit{): symbol table initialization for storing device & node name tables.

• Devtab_insert(): insert a device name into device name symbol table.
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• NodgndJnsert(): insert ground node into the node name symbol table and create 

its corresponding node instance using mkgndNode().

• mkgndNode(): create the ground node instance.

• Nodtab_Insert{): insert a device name into node name symbol table and create its 

corresponding node instance using inserinewNode().

• insertnewNode(): create the node instance.

• OPTupdate(): update the optimization list during parsing.

• Opt_RL{): perform the optimization after parsing.

• RLC_insert( ): create new device instances during parsing used in inp2rnew(), 

inp2cnew(), and inp2lnew().

• gndR_update{): update the node’s information when a resistor connects to ground 

used in inp2rnew().

• gndC_update{ ): update the node’s information when a capacitor connects to 

ground used in inp2cnew().

C. src/lib/fte/matrix.c

Some matrix related manipulation functions.

D. src/lib/fte/inp2rnew. c

Parsing for resistor line.

E. src/lib/fte/inp2cnew. c

Parsing for capacitor line.

F. src/lib/fte/inp2lnew.c

Parsing for inductor line.

G. src/lib/fte/inp2dotnew.c

Parsing for dot line.

H. src/lib/fte/main lim new.h

Header file for parsing and optimization related functions.

I. src/lib/fte/cell.h

Header file for LIM simulation related functions.

J . src/lib/fte/matrix.h

Header file for matrix, c.
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4.2.3 Flow of parsing and optimization

The new parser utilizes the similar functions in SPICE. The old parser is generated by 

LEX and YACC. The parser of the LIM-SPICE uses the following flow in com_lim{) as shown 

below:

(1) inp_pathopen(): Open the configuration file, which contains the voltage source, save 

node name, and LIM related parameters. It is a SPICE function.

(2) inp_readall_new( ): Read in the circuit netlist file and store each line as a separate 

string. All the lines are stored in linked list structure: card or line. It is a modified SPICE 

function; I added the feature of counting the number of lines when read in the netlist files. 

This information will be used in the later function: hash( ) to calculate the key for the 

hash-table.

(3) Symtablnit( ): Initialize the symbol table for device name and node symbol table for 

node names.

(4) Nodgnd_Insert( ): Insert ground node name into node name table and create the 

corresponding node instance.

(5) Read in the configuration file and store LIM related parameters: scale, grdG, grdC, 

KinsR, RinsL, CinsL into the structure pparam.

• scale-, scale for different unit conversion, normally set to 1

• grdG: the default ground conductance for node

• grdC: the default ground capacitance for node

• KinsR: the default inserted resistance for inductor branch

• RinsL: the default inserted inductance for resistor branch

• CinsL: the default inserted inductance for serial capacitor branch

(6) Insert the voltage source nodes and save nodes into node name hash table and create 

the corresponding node instance using Nodtab _lnsert{).

(7) Initialize device arrays: Vol_R, Vol_L, VoljO, Vol_K, Vol_ckt.

(8) Parse the whole netlist line by line using different functions according to the first 

character of each logic line: INP2Rnew{) for Rxxx; INP2Cnew() for Cxxx.
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(9) Start optimization process to eliminate the redundant nodes and branches for two 

types of scenarios: R-L and R-L-R.

(10) Build the node and branch data structures for LIM simulation.

(11) Start LIM simulation.

(12) At each time step, save the wanted node voltages into array.

(13) Write the saved node voltages into SPICE’s raw data file format, which can be 

processed by “nutmeg ” command of SPICE.

The above gives a brief guideline for the LIM-SPICE integration. The detailed 

implementation is shown in [44].
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5 NUMERICAL EXAMPLES

To illustrate the validity of the stability conditions for the LIM method derived in the 

previous parts, several different stability criteria for different schemes are shown here.

The object under study is a 1-D RLGC circuit, as shown in Figure 5.1. The numerical 

spatial region consists of 22 segments in one direction. Each segment is loaded with the same R, 

L, G, and C value. The exciting source is a voltage pulse with rise and fall time of 0.1 ns and the 

width is 5 ns. All three difference schemes are tested.

Segment 1 Segment 2 —  • • — Segment 22

Vn+1/2 R |n+1
A / W - i  — ► rL aa_ aJ  

L

Vn+3/2 
 •

Figure 5.1 Test setup for validating derived stability conditions

(1) Explicit (forward Euler) case: R = 20.0 Q., L = 0.01 nH, G -  0, and C = 0.02 nF. 

According to the stability criteria in (3.29), the maximum time step is

At = VZc 1 +
R C 
4 \ L

\ 2 /  i— \' ' R ]C = 0.00099505 ns (5.1)

The node voltages of nodes 1, 2, and 3 are simulated at 0.99 Atmax and 1.01 A?max are 

shown in Figures 5.2 and 5.3. Obviously, the algorithm is stable when the time step is
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Figure 5.2 Node voltages at nodes 1, 2, and 3 with 0.99 A^max for explicit case
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3

2

1

O
0.8 1.2 1 .8- 0.2 O 0.2 0.4 0.6 1

Figure 5.3 Node voltages at nodes 1, 2, and 3 with 1.01 Aztmax for explicit case

0.99A^max, but it is unstable when the time step is 1.01 A?max. Therefore, the stability

condition of (3.29) is valid.

(2) Semi-implicit (leap frog) case: R = 20.0 Q, L = 0.01 nH, G -  0, and C — 0.02 nF.

According to the stability criteria in (3.32), the maximum time step is

At = 4LC  = 0.01414213 ns (5.2)
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The node voltages of nodes 1, 2, and 3 are shown in Figure 5.4 for 0.99 Afmax and in

Figure 5.5 for at 1.01 Afmax. Figure 5.4 shows that the solution is stable when the

maximum time step condition is met. Figure 5.5 shows that the node voltage becomes 

unstable after about 28000th time step when the stability condition is not satisfied. 

Thus, the stability condition of (3.32) obtained in the above sections are verified.

vl
v2
v3

5

4

3

2

1

O
O 10 20 30 40 SO 60 70 80 90 100

Figure 5.4 Node voltages at nodes 1,2 , and 3 with 0.99 Afmax for semi-implicit case

Vi ,
■ v2 j
■ v3 I

30
ns

Figure 5.5 Node voltages at nodes 1, 2, and 3 with 1.01 Afmax for semi-implicit case

(3) Fully implicit (backward Euler) case: R = 20.0 Q, L = 0.01 nH, G = 0, and C = 0.02 

nF. According to the stability criteria in (3.36), the maximum time step is
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At = \[LC

The node voltages of nodes 1, 2, and 3 are simulated at 0.99 Atmax and 1.01 Atmax are shown in

Figures 5.6 and 5.7. The node voltage in Figure 5.6 is stable while the voltage in Figure 5.7 

starts to increase from around 40th time step. The low accuracy of voltage waveform in Figure 

5.7 is due to the very large time step: 0.2 ns.

O 10 20 30 40 50 60  70 80 90 100
ns

Figure 5.6 Node voltages at nodes l, 2, and 3 with 0.99 Atmax for fully implicit case

-2 O 2 4 6 8 10 12 14 16 18 20
ns

Figure 5.7 Node voltages at nodes l, 2, and 3 with l .01 Afmax for fully implicit case
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Next, the linear computational cost of the LIM method is demonstrated with the ease of 

use in SPICE environment. Simulations were performed in the new LIM-SPICE simulator. To 

demonstrate the speed advantage of the LIM-SPICE simulator, several large-sized linear 

networks consisting of only resistors, self-inductors and ground capacitors were analyzed. The 

benchmark results for SPICE and LIM-SPICE are shown in Table 5.1. From Table 5.1, we can 

see that SPICE’s computational complexity is at best superlinear, but not linear. LIM’s speed 

does scale linearly from 4 s to 44 s for the cases time stop = 20 ns and 200 ns.

Table 5.1. Simulation speed comparison o f LIM-SPICE and SPICE

No. of 
Nodes 2002 3988

70 000 
timestop 
= 20 ns

70 000 
timestop 
= 60 ns

70 000 
timestop 

= 120 
ns

70 000 
timestop 

= 160 
ns

70 000 
timestop 

-  200 
ns

SPICE (sec)
Parsing < 1 2 914 914 914 914 914

Simulation 69 19 461 2200 6116 10812 16836
Total 69 21 1375 3114 7028 11726 17750

LIM SPICE 
(sec)

Parsing < 1 2 90 90 90 90 90
Simulation 49 2 4 13 26 35 44

Total 49 4 94 103 116 125 134
Speedup Total/Total 1.41 5.25 14.63 30.23 60.59 93.81 132.46

Results from Table 5.1 clearly indicate the superiority of the LIM method. The speedup 

factor in favor of LIM-SPICE goes up as the size of the network increases. Figure 5.8 shows a 

plot of the speedup factor versus problem size. The x-axis is logarithmic value of the equivalent 

problem size normalized to the smallest example. The problem size is proportional to the 

number of unknowns such as the node voltage and branch current at N time points. The y-axis 

shows the ration of the LIM-SPICE’s total runtime to the SPICE’s total runtime. The waveform 

verification for the test case of 2000 nodes is shown in Figure 5.9.
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Figure 5.9 Simulation results o f a test circuit with 2000 nodes; 

the above graph: simulation results o f LIM and SPICE; 
the bottom graph: error between LIM and SPICE
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Figure 5.10 indicates an interconnect network with lots of resistors, inductors, and 

capacitors. The exciting source is a pulse input which is has rise time = 1 ns, fall time = 1 ns, 

width = 4 ns, and rises from 0 V to 1 V. The node voltages have good agreement with SPICE 

simulation result. In Figure 5.10 the network consists of resistors, inductors, and capacitors, 

which has about 70K nodes. The exciting source is the same as the one in Figure 5.9. Good 

agreement with SPICE simulation is shown through error estimator LIM—SPICE.
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0 2 6 8 104 12 14 16 18 20
ns

Figure 5.10 Simulation results o f a test circuit with 70 000 nodes and timestop = 20ns; 
the above graph: simulation results o f LIM and SPICE; 

the bottom graph: error between LIM and SPICE

Next, results for the new branch capacitor model and mutual (forward Euler) inductor 

models were obtained and are shown in Figures 5.11 and 5.12, respectively. The test circuit in 

Figure 5.11 (a) has a branch capacitor of 0.1 nF, an inserted inductor of 0.001 nH, grounded
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capacitor of 0.001 nF, grounded resistor of 10 Q, and a diode with resistance of 0.001 Q. The 

exciting voltage source is a pulse, which has rise/fall time = 1 ns, width = 5 ns, delay = 0.2 ns. 

Figure 5.11 (b) shows the simulation result for node 1 and 2, which is also compared with 

SPICE by error estimator LIM—SPICE.

The test circuit for mutual inductor (F.E.) model in Figure 5.12 has very small grounded 

resistor of 1.0e-6 Q and grounded capacitors of 1 nF for all nodes. The voltage source is a pulse 

with rise/fall time = 1 ms, width = 5 ms, delay = 0.2 ms. The voltage waveform of node 2 is 

compared with SPICE using error estimator LIM—SPICE.
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Figure 5.11 Branch capacitor: (a) test circuit setup and (b) LIM and SPICE simulation results
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Figure 5.12 Mutual inductor (F.E.):
(a) test circuit setup and (b) LIM & SPICE simulation results o f node 2

To verify the accuracy and efficiency of the mutual inductor (K  element) model, a power 

grid network with only self/mutual inductors and capacitors is used as test circuit. The resistors 

of the circuit are kept small. The circuit consists of 150 self-inductors, 4500 mutual inductors, 

and 1700 capacitors. The results are shown in Figure 5.13. The simulation time for LIM-SPICE 

is 45 s against 1252 s for SPICE. This translates to a speedup factor of 28.
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the above graph: simulation results o f LIM and SPICE; 

the bottom graph: error between LIM and SPICE

Nonlinear capability of LIM is shown through the following two test examples. First a 

simple BJT inverter is simulated. Figure 5.14 shows the inverter test circuit setup and the LIM 

and SPICE simulation results of node voltages. The nodes shown in the Figure 5.14 are nodes 1, 

2, and 5 in the model. This simple circuit is defined as a cell. Four such cells are cascaded to 

define a second test structure. The simulation results are shown in Figure 5.15, which shows the 

voltage of internal node 5 of cells 1 and 3.
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Figure 5.15 Cascading BJT transistors test setup and simulation results
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To validate the above general formulation for skin effect in LIM, we use an example in 

[45], in which a 100-m twisted-pair cable is considered with the parameters shown in Table 5.2.

Table 5.2 Twisted-pair cable parameters

Z o 4 C V relative Rs
P

fJ  max

(Q) (nH  / m) (nF / m) (m / ns) (:Q /m ) (Q/m-GHzp) (GHz)

100 476.19047619 0.047619048 0.7 0 16 0.5 0.2

The circuit configuration is shown in Figure 5.16. The cable in Figure 5.16 is a 100-m 

twisted-pair cable with far end open circuited. The magnitude of the excitation pulse is 2.7 V, 

the rise and fall times are 1 ns, and the pulse width is 80 ns. The cable is modeled using 1000 

RLC blocks, as shown in Figure 5.17. The simulation results using our formulation and the 

measurement results from [45] are shown in Figures 5.18 and 5.19.

VI
Zs=50Ohm

Vs 6

■AAA/— • — Cable

Nearend Farend Ci

Vi lij

Rlj(f) Lij(f) Vi

Gi

Figure 5.16 Transmission line Figure 5.17 One segment o f the cable model
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6 CONCLUSION

This dissertation gave brief guidelines for implementing an «-port transmission line 

model in SPICE, which facilitates integrating LIM into SPICE. Then the stability analysis of the 

LIM simulation method for explicit, semi-explicit, and fully implicit difference schemes was 

presented. With the proper constraints, the largest possible time step could optimize the 

algorithm. Improved formulations for branch series capacitor and mutual inductors were 

proposed and verified through a power ground plane test circuit. The frequency-dependent 

modeling, such as skin effect, was proposed and implemented. Measurement results are used to 

verify the accuracy of the skin effect modeling. The integration guide for the LIM-SPICE 

simulator exploits the speed advantage of LIM in the familiar SPICE shell by integrating LIM 

as a new built-in command in SPICE3f5. The speed acceleration is verified through the testing 

of several large linear networks. Several orders of magnitude in simulation speedup has been 

observed. A BJT model is also developed to show the capability of simulating a general 

nonlinear circuit. These improvements help make the LIM algorithm more suitable for a larger 

class of simulations including power distribution networks and general nonlinear circuits. 

Possible unconditionally stability version of LIM is also addressed. Comparisons with SPICE 

have shown speedups of several orders of magnitude.
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APPENDIX A -  STABILITY ANALYSIS FOR EXPLICIT 
CASE

This appendix shows the detail derivation for the stability analysis of the explicit case:

L C
From the definition of the explicit scheme: RI = — c0I n, GV = — d0V 2 , the updating

At At

equation is transformed into the Fourier domain as below:

C  T/-n+l/2 _  C  Trn - \ t2  , ^k+l C  j  l r n - \ l2  /A , \
~ZVk+\l2 -~ T /k+ \l2  + —; -A - r “ 0N t+ i/2  (A -1)At At Ax Ax At

r/W + l/2  r/W +1/2 r .  r t
_ ^± h2_  + _HZ2_ + A /« + l = Jl j "  c /«  (A.2)

Ax Ax At k At k At 0 *

Using (3.18) and I"t±i ( ( )  = et,ksl"t ( ( ) ,V k"±l {C) = e±lt(Vt" ( ( ) ,  (A .l) becomes

[ ^ ( l - d o ) ^ r i / 2 ( f ) + 7 - ( c 'f - l ) / j " ( o y < d C  (A.3)
At *-n At Ax

^ V k % 2 ( O  = ^ ( l - J 0)V £ m (C )  + ̂ - ( e lC - l ) i r ' n (O  (A.4)At At Ax

Similarly, (A.2) becomes

- t - o r * - w R i l h C ) + ^ r \ 0 = ^ - c M ( 0  (A.5)Ax At At

Then uk+l = Wk+lil 4"+‘ 4” K k i i l f ,

A-U ;*'=B-UZ  (A.6)
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A =

f  C /A t

r y - i  
Ax 
0

v 0 

/

0 0 0

T/Af 0 0

0 0 0
0 0 0

(A.7)

B =

[-<70) e* -1 0 0
At Ax

0
L ( l- c 0)

0 0
At

0 1 0 0
0 0 1 0

(A.8)

So the characteristic polynomial of A lB is

i> (l) = 2 2 - l [ 2 - ( c 0 + d 0) - 4 r 2sm2( f /2 ) ] + ( l - c „ ) ( l - r f „ )  (A.9)

with the Courant number 7 = At/(ArVZC), (Ax = 1).

From the requirement of stability condition: |/l| < 1, for any , the stability condition 

becomes (3.26):

1 L ^ R A t  GAt. RGAt y < —j 4 - 2 ( ------ + ---- ) + ---------
2 V L C LC

The above gives the stability condition for explicit scheme of LIM.
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