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As the operation frequency of integrated circuit chips increases, electromagnetic 

effects of interconnect and packaging structures are no longer negligible and have to be 

accurately modeled and incorporated into the simulation, which is a challenging issue 

when simulation speed and accuracy are both required for facilitating the integrated 

circuit design.  

Electromagnetic effects of a passive system can be characterized by measurements or 

full-wave simulations in the frequency domain. The results are expressed either in the 

form of input-output responses of a multiport network with a large number of sampled 

data in frequency domain or in the form of a high-order state-space model. Neither form 

is compact enough to be incorporated into circuit simulation directly. Various model-

order reduction approaches have been developed to generate lower-order macromodels 

for the latter case, but are not applicable for the former case where a state-space 

expression is not available. 

An efficient black-box modeling approach is proposed to construct rational 

function macromodels from sampled frequency-domain system responses. Orthogonal 

polynomials are employed to overcome the ill-conditioning problem associated with the 

curve fitting procedure. The performance of different polynomials is investigated and 

compared. Causality and stability of the macromodel are ensured inherently by the 

proposed method. Passivity enforcement is also discussed. 
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The modified minimum phase, all pass, and delay (MAD) method for black-box 

modeling is proposed and validated. Using this method, a black-box system is modeled as 

three parts, a minimum phase subsystem, an all-pass subsystem, and a delay term. Since 

this model precisely capture the physical characteristics of complicated networks in a 

wide frequency range, it significantly improves both the modeling efficiency and 

accuracy compared to existing rational function approximation methods.   
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ABSTRACT 

As the operation frequency of integrated circuit chips increases, electromagnetic 

effects of interconnect and packaging structures are no longer negligible and have to be 

accurately modeled and incorporated into the circuit simulation, which is a challenging 

issue when simulation speed and accuracy are both required for facilitating the integrated 

circuit design.  

Electromagnetic effects of a passive system can be characterized by measurements or 

full-wave simulations in the frequency domain. The results are usually expressed in the 

form of input-output responses of a multiport network with a large number of sampled 

data.  The tabulated data cannot be incorporated into circuit simulation directly.  

An efficient black-box modeling approach is proposed to construct rational 

function macromodels from sampled frequency-domain system responses. Orthogonal 

polynomials are employed to overcome the ill-conditioning problem associated with the 

curve fitting procedure.  The performance of different polynomials is investigated and 

compared.  Causality and stability of the macromodel are ensured inherently by the 

proposed method. Passivity enforcement is also discussed. 

The modified minimum phase, all pass, and delay (MAD) method for black-box 

modeling is proposed and validated. Using this method, a black-box system is modeled as 

three parts, a minimum phase subsystem, an all-pass subsystem, and a delay term. Since 

this model precisely capture the physical characteristics of complicated networks in a 

wide frequency range, it significantly improves both the modeling efficiency and 

accuracy compared to existing rational function approximation methods.   
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1 INTRODUCTION 

The topic investigated in this work is the efficient macromodel construction for 

complex systems, particularly passive systems. 

This research is motivated by the increasing demand for accurate and efficient 

modeling of complex interconnect and packaging structures, which is a critical issue for 

signal integrity analysis in integrated circuit (IC) chip design, especially the state-of-the-

art system-on-chip (SoC) and system-in-package (SiP) techniques.  

As the operation frequency of today’s IC chips increases, the electromagnetic 

effects become so significant that they can no longer be ignored or even coarsely 

approximated. They have to be accurately modeled and incorporated into the chip 

simulation. Otherwise, the chip simulation results cannot be accurate enough to guide or 

validate the design process.  

The challenging issue here is how to incorporate the prohibiting complexity of 

electromagnetic effects into circuit simulation, where speed and accuracy are both 

necessary to facilitate the design process. Most interconnect and packaging structures 

have complicated three-dimensional (3D) geometries. Accurate characterization of these 

structures requires either measurement or full-wave electromagnetic simulations. The 

characterization results are usually expressed in three forms: (a) frequency domain 

response of the system in the form of tabulated data, (b) an equivalent circuit network, or 

(c) a matrix system constructed by discretizing either the differential or integral form of 

Maxwell’s equation.  
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None of these forms of results can be readily incorporated into circuit simulation 

directly for practical applications.  Method (a) involves a large number of sampling 

points. A direct Fourier transform for frequency-domain data or convolution for time-

domain data are both too time-consuming to be applicable.  Even the fast Fourier 

transform cannot satisfy the speed demand for computer-aided design simulators. Method 

(b) can be obtained by either the partial element equivalent circuit (PEEC) method [1], 

transmission line models, or other heuristic modeling approaches. For complicated 

structures, the resulting network may contain over several hundred thousand equivalent 

circuit components. Solving such a large circuit network is beyond the capability of 

existing circuit simulators. Method (c) can be obtained by applying various numerical 

methods such as the finite element method (FEM), the method of moments (MoM), etc. 

The dimension of the resultant matrix can exceed one million for surface discretization 

and 10 million for volume discretization.  Thus, it is not practical to use such a large 

matrix to model the physical structure in circuit simulation. 

For the above reasons, model order reduction (MOR) techniques [2]-[14] have been 

developed to approximate the original system by a simplified system with a much lower 

order. The lower-order system can be incorporated into circuit simulation for fast 

performance. The existing techniques in this area are reviewed in Chapter 2. 

Traditional MOR methods require a priori knowledge of the original system; that is, 

the state-space expression of the original system is needed to generate the reduced-order 

system. However, in many practical problems, the only available information is the input-

output characteristic of the system, where consequently the MOR cannot be applied. 

Hence, approaches based on curve-fitting techniques have been developed to generate 
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macromodels using rational functions directly from the input-output characteristic [15]-

[22]. Since the systems of interest in this work are passive physical systems, the 

macromodels have to satisfy certain properties including real time domain response, 

causality, stability, and passivity. These requirements are discussed in detail in Chapter 3.  

An efficient curve fitting technique using orthogonal polynomials is discussed in 

Chapter 4 to generate macromodels that satisfy physical constrains. The orthogonal 

polynomials are employed to avoid the ill-conditioned matrix resulted from the power 

series. Special treatments are conducted to guarantee the real time domain response and 

causality. 

Passivity is an important issue in macromodeling.  Interconnect and packaging 

structures are passive, so the constructed macromodel must be passive as well.  Violation 

of passivity may cause unstable simulation results even connected to certain stable 

network [23].  Most of the existing methods enforce passivity after the macromodel is 

constructed [16], [24]-[26].  Chapter 5 describes various approaches of passivity 

enforcement techniques. 

As the input data for the macromodeling process are obtained either from 

measurement or full-wave simulation, the data usually contain measurement or numerical 

noise and hence passivity might be violated. Although various approaches discussed in 

Chapter 5 can be used to generate passive macromodels, those approaches are valid under 

the condition that the passivity violation of the initial rational function obtained directly 

from curve fitting is relatively small. This is due to the perturbation nature of those 

passivity enforcement approaches. Our approach to avoid large passivity violation of the 

initial rational function is to perform passivity correction to the input data before the 
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curve fitting. Chapter 6 discusses the necessity and procedure to preprocess the input data 

including the noise filtering and passivity enforcement. 

In Chapter 7, a new method is proposed to improve the modeling accuracy and 

efficiency, particularly for high-speed interconnects where the delay is an important 

physical characteristic. The new method is to model the black-box system as a cascade of 

a minimum phase subsystem, an all-pass subsystem, and a delay term. Thus, the time-

domain delay can be explicitly extracted. On one hand, the time-domain delay itself is 

often a desirable parameter to be extracted in many practical applications.  On the other 

hand, the system can be modeled more accurately with a lower order with the time delay 

extracted. 

Chapter 8 concludes the work and proposes possible future work.  
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2 MODEL ORDER REDUCTION 

2.1 Introduction 

The increasing complexity involved in very large scale integration (VLSI) design 

demands efficient simulation techniques for larger and larger circuit systems.  

Particularly, to incorporate the electromagnetic effects in high-speed interconnect and 

packaging analysis, 3D distributed structures are modeled by Maxwell’s equation or its 

approximate forms.  These methods often result in a large matrix system.  Due to the 

complexity of the 3D structures, the resultant matrix system often exceeds the capability 

of existing solvers if solved directly.  In parallel, fast numeric algorithms that have been 

developed to accelerate the solution of large matrix systems, MOR methods are aimed at 

approximating the original high-order system with a lower-order system.  Existing MOR 

methods include asymptotic waveform evaluation (AWE) method [2]-[4], Padé via 

Lanczos (PVL) method [5], block Arnoldi method [13], passive reduced-order 

interconnect macromodeling algorithm (PRIMA) [27], passive reduction algorithm with 

embedded state-space systems (PRESS) [28], etc.  

The MOR methods have been applied to two types of problems: (a) large circuit 

network and the associated modified nodal analysis (MNA) matrix [29], [30], and (b) 

large discretized electromagnetic system and the associated matrix obtained from MoM, 

FEM, or PEEC method [1], etc. MOR methods generate a substitute system with a lower 

order than the original system. The reduced-order system is an approximation to the 

original one based on certain criteria. 
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Various MOR methods can all be cast into a general state-space expression [27] as 

follows: 

n n
T

N n

Cx Gx Bu
i L x
= − +

 =

� N

.<

 

where the dimensions of the matrices are  

  : , : , : , : , andC M M G M M B M N L N M N M× × × ×

The transfer matrix Y s  satisfying ( ) ( ) ( ) ( )Ni s Y s u s=  in the Laplace domain can be 

expressed as Y s .  The goal of MOR methods is to approximate Y s  

by , where G  and  are 

1( ) )sC B−

ˆ ˆ(G sC= + ˆ

(TL G= +

1 ˆ) B−

( )

ˆ ˆ( ) TY s L Ĉ PP ×  matrices and . Various 

MOR methods differ from one another in three aspects: (a) means to construct the 

reduced order matrices, (b) criterion of approximation, and (c) means to preserve stability 

and passivity. That is, if the original system is stable and passive, the reduced order 

system should also be stable and passive.  

MPN <≤

2.2 Model Order Reduction Methods 

MOR has been widely studied and applied to large-scale and distributed circuit 

analysis. The high-order system is represented by a lower-order system that can 

approximate the original system. The reduced-order system is then solved to get the 

system response.  

2.2.1 Moment matching 

Moment matching technique is applied in reducing the system order in the 

frequency domain.  The AWE approach, which is a form of Padé approximation [6], is 

based on moment matching.   
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For moment matching, the solution to the MNA equation, as described in Equation 

(2.1): 

( ) ( ) ( )Y s V s J s=      (2.1) 

is expressed as  

( ) 1

0
( ) ( ) i

i
i

V s Y s J s M s
∞

−

=

= = ∑      (2.2) 

where iM  is the ith moment of the system [29], [30].  The moments of the system can be 

calculated recursively [2].  The idea of the Pth order moment matching is that the reduced 

order system is an approximation of the original system in the sense that they have the 

same first P moments.  Padé approximation uses a rational function as in Equation (2.3) 

to approximate the first P moments as in the original system, where P=M+N+1: 

2
10 1 2

0 1 12
1 21

M
PM

PN
N

b b s b s b s M M s M s
a s a s a s

−
−

+ + + +
= + + +

+ + + +
" "
"

  (2.3) 

Although the Padé approximation has been intensively studied and widely applied 

[3], [7], [8], there are two major problems associated with it.  One is its instability.  The 

reduced-order poles obtained above are not necessarily in the left-half complex plane; 

thus, the resultant system could be unstable.  Also, the passivity cannot be guaranteed. 

The other problem is that the ill-conditioned matrix associated with solving the reduced 

order poles when the order of the system is relatively high.  

2.2.2 Krylov-subspace-based methods 

In order to circumvent the ill-conditioning problem associated with moment 

matching, methods based on the Krylov subspace [9] have been developed. The idea is to 

approximate the original MM ×  matrix A by a PP ×  matrix , where Â MP <<  and  Â
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is the projection of A, on a Krylov subspace of dimension P . The Lanczos process [10] 

and block Arnoldi method [13] are two widely employed algorithms to generate the 

Krylov subspace.  

0 )

0 )

In the kth iteration, Arnoldi algorithm generates an orthonormal basis  

based on the Gram-Schmidt procedure with 

0 1 1( , )kv v v −"

         (2.4) 1
0 0( ) ( , , k

kspan V span v Av A v−= "

Matrix A is transformed into a lower-order upper Hessenberg matrix H through V, 

resulting in 

AV VH=  

with V V , where the superscript H  is the complex conjugate transpose operator. H I=

 For Lanczos process, two orthogonormal basis vectors are formed based on  

and 

A

,HA  respectively.  In the kth iteration, besides Equation (2.4), we also have 

1
0 0( ) ( , , ( )H H k

kspan W span w A w A w−= "     (2.5) 

where V  and W  matrix are formed through three-term recurrence [11].  Original matrix 

A  is transformed into a reduced order tridiagonal matrix T  through 

HAV W T= ,  

with W V .  The eigenvalues of the reduced order matrix or T approximate those 

of the original matrix T .  

H I= H

The PVL [5] method and its extensions overcome the problem of solving the ill-

conditioned matrix.  However, the stability is still an issue, especially for the general 

RLGC  circuits.  
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2.2.3 Congruence transform 

The congruence transform is applied with the PVL to guarantee the stability of the 

reduced order RC  circuits [12].  The transformation defines HB V AV=  as the congruent 

of matrix A.  The two matrices B  and  have the same eigenvalues.  Later, Arnoldi-

based congruence transform is applied to guarantee the stability of 

A

RLC  circuits [13], 

[27].  

In [31], integrated congruence transform is introduced to solve the distributed 

networks, characterized by the transmission line model as described in Equation (2.6).  

( , ) ( , ) ( , )v z t Ri z t L i z t
z t

∂
= − −

∂ ∂
∂     (2.6) 

   ( , ) ( , ) ( , )i z t Gv z t C v z t
z t

∂ ∂
= − −

∂ ∂
 

where , ,R L G , and C  are the resistance, inductance, conductance, and capacitance per 

unit length.  

The Laplace transform of Equation (2.6) represents the system in frequency 

domain: 

( , ) ( ) ( , )d V z s R sL I z s
dz

= − +       (2.7) 

  ( , ) ( ) ( , )d I z s G sC V z s
dz

= − +  

Assume ˆ( , ) ( ) ( )iI z s u z x s=  and V z ˆ( , ) ( ) ( )vs u z x s= , the integrated congruence transforms 

the R , L , , and  matrix to G C
1

0

ˆ ( ) ( )T
i iR u z Ru z dz= ∫ , 

1

0

ˆ ( ) ( )T
i iL u z Lu z dz= ∫ , 

 and .  The reduced-order model is solved 
1

0

TG u∫ˆ = ( ) ( )v vz Gu z dz
1

0

( ) ( )T
v cC u z Cu z dz∫ˆ =
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based on these congruent matrices.  This algorithm solved the system with general R, L, 

G, C elements and guarantee the passivity preservation without first discretization of the 

transmission line.  

2.3 Conclusion 

Various MOR methods are reviewed and their advantages, disadvantages, and 

applicable conditions are discussed.  
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3 RATIONAL FUNCTION APPOXIMATION 

3.1 Introduction 

As the complexity of interconnects and packages keeps increasing and the clock 

speed gets faster and faster, the electromagnetic effects of distributed passive devices 

become an important issue in the system performance.  These effects are usually captured 

either by full-wave electromagnetic simulation or by frequency-domain measurements in 

large amount of tabulated data.  Therefore, the state-space model of the original system is 

not available.  In other words, the internal mechanics of a complicated system may not 

have an explicit expression.  While the MOR techniques described in Chapter 2 

effectively solved the large-scale lumped and distributed circuits, it will not be applicable 

for the case when the only known information is the input-output characteristics of the 

system.  

The time-domain response of such systems cannot be simulated directly by 

traditional circuit simulators such as SPICE [18].  And the MOR techniques discussed in 

the previous chapter are not capable of handling systems characterized by sampled data.  

A direct way to obtain the time-domain response is through inverse Fourier transform and 

direct convolution.  However, the computational cost is too high due to the large number 

of frequency sampling points.  

Polynomial is a straightforward approach for system approximation.  However, it 

will be hard for polynomials to capture the characteristic of the system around its poles.  

There are other kinds of approximation methods, but all have certain limitations and are 

not suitable for black box modeling.  Bode approximation is only good for real poles and 
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zeros [32], [33].  Padé approximation and its extensions use moments of the parameter 

around given frequency points and thus are dependent on the choice of the sampling 

frequency points [34], [35].  Digital filter design techniques solve similar problems but 

the frequency range is usually narrower and the problem size is smaller [36].     

An efficient method to solve this problem is to use rational function as a black-box 

model to approximate the physical characteristics of a complicated system [11], [16], 

[18].  Rational functions will be able to capture the system characteristic around system 

poles.  The internal details of the system are not required, and the system is modeled as a 

multiport network as shown in Figure 3.1.  

 

( )H s

 
Multiport network of 

passive structures 
 

1
2 

N 

 
 
 
 
 

Figure 3.1 N-port black-box model. 

( )H s  is the transfer function matrix of the system and can be expressed as in 

Equation (3.1):   

11 1

1

( ) ( )
( ) ( )

( ) ( )

N

ij

N N

H s H s
H s H s

H s H sN

 
 =  
  

"
#

"
#     (3.1) 

where  is the input and output transfer function between ports i  and ( )ijH s j .  can 

be either the scattering, admittance, or impedance matrices of the system.   

( )H s

The parameter matrix of the network, for instance, the  parameter matrix, is 

approximated by rational functions of s, which is the complex frequency obtained from 

S
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Laplace transform.  Each element of matrix  can be constructed by fitting the 

transfer function with the known sampled frequency-domain data.  

( )H s

a
+ +
+ +
"
"

The rational functions can be determined by various approaches from the input-

output characteristic data of the multiport network.  In this chapter, this widely used 

method is discussed as a context from which the work in this dissertation has been 

developed.   

The systems of interest are passive physical structures. Therefore, more 

complicated than a mere curve-fitting problem, the constructed transfer functions 

(macromodels) must have real coefficients and must be causal, stable, and passive.  In 

this chapter, we will first discuss the formulation of the macromodel.  Then we will 

discuss the requirements of the macromodel and how to implement them.  The process to 

ensure the first three features is discussed in this chapter; and the passivity enforcement 

will be discussed in Chapter 5.  For clear illustration, we consider the one port case in the 

following discussion and it can easily be expanded to multiport cases.  

3.2 Ordinary Power Series 

High-speed interconnects or distributed circuits that are characterized by sampled 

frequency-domain data, can be represented by a rational function as described in 

Equation (3.2): 

2
0 1 2

2
1 2

( )
1

M
M

N
N

b b s b s b sH s
a s a s s

+ +
=

+ +
    (3.2) 

where  is normalized to 1.  0a
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The coefficients of  are determined by approximating the original system 

frequency response with the transfer function in (3.2) in the sense of lease square error 

[20].  Therefore, the problem is formulated as to determine all the coefficients, 

( )H s

M , and 

 in (3.2) to minimize (3.3). N

2
( ) ( )f

i

s

originals
H s H s ds−∫                 (3.3) 

where [  is the interested frequency range. , ]i fS S

In order to estimate the coefficients of the transfer function, Equation (3.2) is 

written in terms of the angular frequency ω  as 

2
0 1 2

2
1 2

( ) ( ) ( )( )
1 ( ) ( ) ( )

M
M

N
N

b b j b j b jH j
a j a j a j

ω ω ωω
ω ω ω

+ + + +
=

+ + + +
"
"

   (3.4) 

Assume the total number of frequency samples is , theoretically, the coefficients 

of the rational function can be obtained by solving Equation (3.5), which is the matrix 

form of Equation (3.4). 

K

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

1

2 2 2
0 0 0 0 0 0 0 0 0

2 2
1 1 1 1 1 1 1 1 1

12 2
1 1 1 1 1 1 1 1 1

2

1 ( ) ( ) ( )

1 ( ) ( ) ( )

1 ( ) ( ) (

M N

M N

M

M N
K K K K K K K K K

N

b
b
bj j j j H j j H j j H j

j j j j H j j H j j H j
b
a

j j j j H j j H j j H j a

a

ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω− − − − − − − − −




 − − −    − − −  

 
 − − − 
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" "
#

" "
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" "

#

0

1

1

( )
( )
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H j
H j

H j

ω
ω

ω −






)

 
 
  =
  
      

 
 
  

#

 (3.5) 

Once the coefficients of ( )H jω  are obtained by solving (3.5), the roots of the 

denominator will be obtained from  

2
1 21 ( ) ( ) ( )N

Na j a j a jω ω ω+ + + +" 0=    (3.6) 
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Thus, the poles of the system will be available.  Once we have the poles of the system, 

we can solve the residues of the system by writing the system transfer function in the 

partial fraction expansion as 

0 1
1

( ) ( )
N

i

i i

rH j k k j
j p

ω ω
ω=

= + +
−∑    (3.7) 

where  and  are the direct and proportional constants, which represents the 

conductance term and the shunt capacitance term [37].  Terms 

0k 1k

ip  and  are the ith poles 

and residues of the system, respectively.  The transfer function will be obtained by 

solving the residues from Equation (3.7).  

ir

The above procedure will be straightforward if no constraints are imposed on the 

model.  However, the macromodel is constructed to represent physically real systems, 

which are constrained to passive systems in this work. Therefore, besides solving the 

minimized least square error in Equation (3.3), the constructed model has to satisfy the 

following criteria so that a physically real system is guaranteed. (1) The coefficients are 

all real. In this case, the poles of the system are either real or in complex conjugate pairs. 

And the residues are correspondingly real or in complex conjugate pairs. (2) The system 

is causal and stable. Any physical system should be causal in the sense that the system 

should not have any response prior to the input. The system is stable so that the output is 

bounded under bounded input. This is guaranteed by enforcing the system poles on the 

left-half of the complex plane and the difference between the orders of the numerator and 

the denominator be less than or equal to one, that is, 1N M− ≤ [16]. (3) The system is 

passive, which means the system does not generate any energy. Conditions (1) and (2) are 

necessary but not sufficient for passivity enforcement. We will discuss each requirements 
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of the model in detail below and find ways to guarantee the model to satisfy those 

requirements. 

3.3 Stability 

Stability is one characteristic that the macromodel needs to satisfy.  A stable system 

means that the system has bounded output for all bounded input.  The conditions for 

stability are ( )h t dt
∞

−∞
< ∞∫  for continuous systems and ( )h k

∞

−∞

< ∞∑  for discrete systems 

[38].  

In frequency domain, the transfer function needs to have all the poles in the left half 

of the complex plane.  For each term 1

is a+
 corresponding to a real pole − , the inverse 

Fourier transform gives the time domain response as e

ia

ia t− .  For each complex conjugate 

pair poles 1 1

i i i is j s jα β α
+

+ + + −

( ) 2cos( )i i ij t t
it e

β
, the corresponding time domain response is 

( )i ij te eα β α β αβ− − −+ =− + . The overall time domain response is the sum of all 

terms: 

2cos( )ia t t
i

i i
e it e αβ− + −∑ ∑     (3.8) 

In order for the system to have stable time domain response, each term in (3.8) has 

to converge as time goes to infinite.  Therefore, all the real poles ia−  and the real part of 

the complex poles iα−  should be negative.  That is, all the poles of the macromodel 

should be in the left half of the complex plane.     
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3.4 Real Coefficients 

3.4.1 The necessity for real coefficients  

The macromodel of a physical system needs to have real coefficients. Otherwise, it 

will not provide real time domain response and hence cannot be physically implemented. 

The transfer function of the system , represented by the macromodel, is the Laplace 

transform of h t , where . For any physical system, the time domain 

response  is real during the whole time period. Therefore, the corresponding 

frequency domain response  is a rational function with real coefficients[18], [19]. 

( )H s

( )h t e
∞

−∞
( )

)

( ) stH s dt−= ∫

( )H s

(h t

The sufficient and necessary condition for the system transfer function to have real 

coefficients is that the poles of the system are either real or in complex conjugate pair. 

The residues for real poles need to be real, and the residues for complex conjugate pair 

poles need to be in complex conjugate pair.  The direct and proportional term, they need 

to be real as well. 

3.4.2 Guaranteeing real coefficients 

Since complex frequency components are involved and the frequency response of 

the system is usually complex, it is hard to guarantee that the coefficients obtained by 

solving Equation (3.5) directly are real and that the resultant system is physical.  

In order to obtain purely real coefficients, the real part of the frequency response is 

used in the approximation. The reasons to use the real part are: the real part of the 

frequency response is the even function of the original transfer function; the poles of the 

original function are the left half plane poles of those of the even function. 
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The real part of the system response can be expressed in the even function form as 

in Equation (3.9).  The poles of the even function contain the poles of both ( )H jω  and 

(H j )ω− , with poles belonging to ( )H jω  lie in the left half-plane: 

� � �
2 4 2

0 1 2

2 4 2
1 2

Re{ ( )}
1

M
M

N
N

b b b bH j
a a a

ω ω ωω
ω ω ω

+ + + +
=

+ + + +

� � � �"
"

  (3.9) 

In order to understand the relationship between poles of the original system and its 

real part, Forster’s canonical model, which guarantees causality by the model itself, is 

used in showing the validity of the above statement.  Equation (3.7) can be written as 

*

0 1 *
1 1

( )
l m

i i

i ii i

r xH j k j k
j p j q j q

ω ω
ω ω ω= =


= + + + +− − 

∑ ∑ i

i

x 
−

  (3.10)  

For clear illustration, we separate the real and imaginary poles here.  Variable ip  is the 

real pole of the system and lies in the left-half plane, and r  is the corresponding real 

residue. Variable  is the complex pole and it appears in pair with its complex conjugate 

, and the corresponding residues are also in complex conjugate pairs.  

i

iq

*
iq

Let  and i iq u jv= + i ii ix a jb= + , where u , , , and b  are real and ui iv ia i 0i <  for 

the sake of stability. The real part of the transfer function is 

( ) ( )0 1
1 1

Re ( ) Re Re Re
l m

i i i i

i ii i i

r a jb aH j k jk i

i i

jb
j p j u jv j u

ω ω
ω ω ω= =

   + −
= + + + +  − − − −  

∑ ∑ jv

+ 

       (3.11) 

For the real pole, we have  

2 2

( )i i i

i i

r r p j
j p p

ω
ω ω

− −
=

− +
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so the real part is 2
i i

i

r p
p 2ω
−

+
.  The corresponding poles of the real part are ijp±  in terms of 

ω .  

For the complex conjugate pair poles,  

2 2 2

( ) (Re
( ) ( )

i i

i i i i i i i i i i i i

i i i i i i

a jb a jb a u b v a u b v
j u jv j u jv u v u v

ω ω
ω ω ω ω

 + − − − − − −
+ = + − − − + + − + + 

2

)+

i

 

the poles of the real part are iv ju± ±  in terms of ω .  

From the above observation, it is obvious that the poles of the real part of any 

transfer function are closely related to those of the transfer function itself. In the above 

discussion, poles of the real part are expressed in terms of the angular frequency ω  and 

poles of the original function are in terms of the complex frequency .  Therefore, there 

is a factor of imaginary unit 

s

j .  

The poles of the even function are multiplied by j  to transform the poles from  

domain to 

s

ω  domain.  In order for the original system to be asymptotic stable, only those 

poles that lie in the left half plane are the poles of the original system. 

Figure 3.2 shows the relationship between the poles of a system and those of its 

corresponding real part.     

From Figure 3.2, it is obvious that the poles of an even function are symmetric 

about the imaginary axis. The poles for the original stable system are the poles that are in 

the left half of the complex plane, as shown by the diamond points in the figure. 

3.4.3 Approximation with real coefficients guaranteed 

As discussed previously, the poles of the original system can be obtained from the 

poles of the real part of the frequency response. Therefore, the coefficients/poles of the 
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original system can be obtained by fitting the real part of the frequency response with the 

even rational polynomial function of the squared variable as shown in Equation (3.9).  
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Figure 3.2 Comparison of poles of a system with poles of its real part. 

 

The matrix associated with solving the denominator coefficients is a Vandermonde-

like matrix as shown in Equation (3.12): 

2 4 2 2 4 2
0 0 0 0 0 0 0 0 0
2 4 2 2 4 2
1 1 1 1 1 1 1 1 1

2 4 2 2 4 2
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(3.12) 

Once the coefficients are obtained by solving (3.12), the roots of the even function 

will be obtained from  
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2 4 2
1 2ˆ ˆ ˆ1 N

Na a aω ω ω 0+ + + + ="    (3.13) 

which gives the poles of the even function.  By multiplying the poles with j  and taking 

only the stable poles in the left half-plane, the poles of the original transfer function can 

be obtained.  

However, Equation (3.12) becomes ill-conditioned or even singular for a wide 

frequency range and high-order approximation since the entries of the matrix is the power 

series [11]. This is because the ordinary power series {  have a very 

large dynamic range [22]. We will solve this problem in Chapter 4. 

},,,, 3210 "ωωωω

3.5 Causality 

Any real system is causal. In time domain, causality means that the system output 

at time t  depends only on the inputs at t0t= 0t≤ . The causality criterion requires that the 

system impulse response  is null for time t( )h t 0<  [38].   

Since the system responses in frequency and time domain are related by the 

Laplace transform, the macromodel , which approximate the real system in the 

frequency domain, is also subject to the causality requirement. The Laplace transform 

 becomes  since 

( )H s

0
(h

∞

∫( ) ( ) stH s h t e dt
∞ −

−∞
= ∫ ( ) ) stH s t e dt−= ( ) 0h t =  for . As a result of 

the causality, the real and imaginary part of the frequency domain response satisfy the 

Hilbert transform [38].  

0t <

To illustrate the relationship between the real and imaginary part of the frequency 

response of a causal system, we write the time domain system response in terms of its 

even and odd components. Since the frequency response is in the form of sampling 

points, the discrete case will be studied.  
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Any time domain sequence  can be expressed as , where ( )h n ( ) ( ) ( )e oh n h n h n= +

[ ]1( ) ( ) ( )
2eh n h n h n= + −  and [( ) ( ) ( )oh n h n h n ]1

2
= − −  are the even and odd components 

of . And  ( )h n

( ) 2 ( ) ( ) (0) ( )e eh n h n u n h nδ= −  

( ) 2 ( ) ( ) (0) ( )oh n h n u n h nδ= +  

where  and ( )u n ( )nδ are the unit step and unit sample sequence.  For the stable system, 

its Fourier transform exists and is defined as 

( ) ( ) (R IH j H j jH j )ω ω ω= + , 

where ( )H jω  is the system response in the frequency domain, (RH j )ω  and (IH j )ω  are 

the corresponding real and imaginary parts of the frequency response. When the system 

response is real, (RH j )ω  is the Fourier transform of  and ( )eh n (IH j )ω  is the Fourier 

transform of [38].  (oh )n

For causal systems, ( )h n−  is zero, and the system  can be completely 

determined by . Similarly, 

( )h n

( )eh n (RH j )ω  will determine the frequency response ( )H jω . 

And obviously, the imaginary part of the frequency response ( )IH jω  can be obtained 

from (RH j )ω  as well. From [38], (H j )R ω  and (IH j )ω  are related by the Hilbert 

transform as described in  

1( ) (0) ( ) cot( )
2 2R IH j h P H j d

π

π

ω θω θ θ
π −

−
= + ∫  

1( ) ( ) cot( )
2 2I RH j P H j d

π

π

ω θω θ θ
π −

−
= − ∫  

where P denotes the Cauchy principal value of the following integrals. 
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When dealing with the discrete data, the discrete Hilbert transform is applied,  

( )2

( )
( )2

R n

n odd
I k

R n

n even

H j
k n

H j
H j

k n

ω
π

ω
ω

π

− −= 
−
 −

∑

∑
 

where ( )IH j kω  and ( )RH j nω  are the kth and nth samples of the corresponding 

frequency response. 

In order to guarantee causality of the system, the frequency domain data need to be 

modified if there are causality violations. That is, to ensure the real and imaginary parts 

of the data to satisfy the Hilbert transform as described in the above equations.  

Below is an example showing the causality violation and restoration of the 

measured data from transmission lines.  Figure 3.3(a) shows the imaginary part of the 

data from measurement and from calculation based on the Hilbert transform. Figure 

3.3(b) shows the measured and calculated magnitude.  In both figures, the solid and the 

dashed curve have the same corresponding real part.  The solid curve shows the original 

measured data, while the dashed curve shows the calculated data from the Hilbert 

transform. 

From the above discussion, the imaginary part can be obtained from the real part 

for causal systems. We can have both the magnitude and phase information from the real 

part of the frequency response only. Therefore, only the real part of the frequency 

response will be used in finding the poles of the system and the causality will be 

automatically satisfied. This way of dealing the data is also consistent with the 

requirements in guaranteeing the real coefficients. Similarly, the real part of the 

frequency response is used to find residues and keep the causality. In this work, both the 
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real and imaginary components of the frequency response are used in approximating the 

residues. In order to guarantee the time domain response of the system is causal (zero for 

time less than zero), the data represented by the dashed curve should be used when the 

imaginary information is needed.  
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Figure 3.3 (a) Comparison of the imaginary part of the measured and calculated data. (b) Comparison of the 
magnitude of the measured and calculated data. 

3.6 Passivity 

The macromodel for any passive system should be passive as well. A passive 

system means that the system will only absorb but not generate any energy [39]. 

Mathematically, it means that the system transfer matrix is positive real for the 

admittance (Y), impedance (Z), transmission (T), or the hybrid (H) matrix and bounded 

real for the scattering matrix [39]. 

Violation of passivity will lead to unstable transient response when the system is 

connected to the rest of the circuits [23], [40].  If the macromodel is stable but not 

passive, unstable poles may occur when the system characterized by the macromodel is 

connected with other part of the circuits.  However, a stable and passive macromodel will 

guarantee stability of the whole system it is in. 
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Assume  is the transfer matrix of a multiport system and represents the Y, Z, 

T, or H matrix. The system is passive [23], [41], if  

( )H s

1. , where ‘ * ’ is the complex conjugate operator; * *( ) ( )H s H s=

2. is positive real. For any vector z, ( )H s * *[ ( ) ( )]Tz H s H s z 0+ ≥  for all values of s 

with . Re( ) 0s >

If  represents the scattering parameter matrix S, the system is passive [43], if ( )H s

1.  ; * *( ) ( )H s H s=

2.  is bounded real. For any ( )H s s jω= ,  

*( ) ( )TI H j H jω ω 0− ≥  

which means that max( ( ( ))) 1H jσ ω ≤  for any ω , where ( ( )H jσ ω is the 

singular value of ( )H jω . 

The requirements for real coefficients, causality and stability are usually enforced 

as the model is constructed. Passivity, however, can be enforced either when the model is 

built or afterwards. Detailed discussion on passivity enforcement will be found in 

Chapter 5.   

3.7 Conclusion 

Several requirements for the macromodel are discussed based on the properties of 

the physical system. Real coefficients, causality, stability and passivity are all need to be 

satisfied by the macromodel. For each requirement, method has been proposed to 

guarantee that the macromodel satisfy the criterion and thus can be implemented in real 

system.  
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4 ORTHOGONAL POLYNOMIAL APPROACH 

4.1 Introduction 

In Chapter 3, the macromodel is discussed to represent systems characterized by 

frequency domain data.  The macromodel takes the form of the rational function and 

satisfies the requirements of having real coefficients, causal, stable and passive.  Instead 

of working on the rational function directly, the even function, which corresponds to the 

real part of the frequency response is applied.  By doing this, we can guarantee that the 

first three requirements of the macromodel are met.  The validation and implementation 

of the methods are discussed in Chapter 3. 

However, direct formulation by ordinary power series will result in an ill-

conditioned matrix equation. Both Equations (3.5) and (3.12) are the Vandermonde-like 

matrices, which become ill-conditioned or even singular for wide frequency range or 

high-order approximation.   

Different methods have been proposed to overcome this problem.  Frequency shift 

and normalization has been proposed in [18].  By the shift and normalization, frequency 

range is mapped from [ ]min max,ω ω  to [ ]1,1−  and leads to a much better matrix condition 

number.  Although there are improvements by using the frequency normaliztion, it still 

cannot completely solve the problem when the frequency range is wide and the problem 

size is huge.   

Partition over the frequency helps improve the matrix condition number by reducing 

the problem size [8], [44], [45].  The method approximates the system in different 
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frequency bands separately and repeats the process recursively until all frequencies are 

well approximated.  Since the approximation in each frequency band does not consider 

the influence of the approximation from other bands, the method may converge very slow 

and thus not efficient.   

There are also methods like Householder orthogonal triangularization [11] and 

singular value decomposition [46] that solve matrix equation more efficiently.  However, 

if the singular values of a matrix are not reasonably spread, which always occurs for large 

problem size with a wide frequency range, accurate solution will not be obtained.   

Chebyshev of the first kind, a special case of the orthogonal polynomials, is 

employed [15]-[17], [22] to solve the ill-conditioned problem.  Since it changes the 

matrix itself, accurate approximation can be obtained.       

In this chapter, we will investigate and implement the general orthogonal 

polynomials on the black-box modeling.  The properties of the orthogonal polynomials 

will be discussed.  Clenshaw’s recurrence algorithm is used to transform the coefficients 

of the orthogonal polynomials to those of the ordinary power series.  The model order 

estimation and effects of the sampling points are discussed as well.    

4.2 Orthogonal Polynomials 

To overcome the aforementioned problem, orthogonal polynomials are used in the 

approximation. Classical orthogonal polynomials defined over interval [-1,1] are 

considered in this work. The Legendre and Cheybshev of the first and second kind 

polynomials are suitable for this problem because they have remarkable properties in the 
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interval [-1,1]. These are special cases of the more general Jacobi or Gegenbauer 

polynomials. Jacobi polynomials are defined as  

n
( , ) n n k k

n
k 0

n n
P ( x ) 2 ( x 1) ( x 1)

k n k
α β α β−

=

+ +  
= −  −  

∑ − +

)

           (4.1) 

The Jacobi polynomials  are generated by applying the orthogonalization 

step of the Gram-Schmidt process to the standard basis {  of P[-1,1] with 

respect to the weight function given by the following continuous beta distribution on the 

interval [-1,1]: 

( , )
nP ( xα β

2 31,x,x ,x , }"

( , )w ( x ) (1 x ) (1 x )α β α= − + β 1, 1, for α β> − > −    (4.2) 

The Jacobi polynomials reduce to Gegenbauer polynomials, C (  when n x )λ

1
2 ,α β λ= = − in (4.1) and (4.2). The Jacobi also reduces to Chebyshev of the first and 

second kinds as well as Lengendre series when the parameters α and β are set to 1
2− , 

1
2 , and 0, respectively. The hierarchy of the common special orthogonal polynomials 

over a compact interval, min max[ , ]ω ω  , are summarized in Figure 4.1. 

For simplicity, we transform the interval [ ,min max ]ω ω  into the interval [-1,1] using 

the one-to-one continuous mapping given by  

min

max min

1ω ωϖ
ω ω

 −
= − − 

      (4.3) 

where minω , and maxω  are the lowest and highest frequencies, respectively, and thus ϖ  is 

the normalized frequency. 

 28



Jacobi
( , ) ( )nP α β ω

Gegenbauer
( )nCλ ω

Chebyshev 1st kind
( )nT ω

Chebyshev 2nd kind
( )nU ω

Legendre
( )nP ω

1
2

α β λ= = −

1
2

α β= = − 0
0

α
β

=
=

1
2

α β= =

 

Figure 4.1 Hierarchy of common orthogonal polynomials of the finite interval. 

Some of the important properties of the special orthogonal functions are shown in 

Table 4.1.  These properties include the following: 

• Simple generating expressions 

• Polynomial nature and orthogonality with respect to the weight functions 

• Three-term recurrence relations 

Table 4.1: Special orthogonal polynomials 

Function Expression Weight Recurrence Relation 
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For higher order terms, the power series become very similar or parallel over most 

of the interval as shown in Figure 4.2(a).  On the other hand, the terms of Legendre, 

Chebyshev of the first and second kinds show quite different shapes and are not parallel 

over the entire intervals.  They also have a small dynamic range of the entire interval as 

shown in Figure 4.2(b), (c), and (d).  Therefore, the orthogonal polynomials are well 

suited for higher-order interpolation problems [47]. 
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Figure 4.2 Power series and three special orthogonal polynomials. (a) Power series, (b) Legendre series, (c) 
Chebyshev of the first kind, and (d) Chebyshev of the second kind. 

To apply the orthogonal polynomials, the frequency must be normalized to the 

desired range by performing a change of variables using (4.3).  Instead of the power 
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series, the system transfer function described in (3.4) can be written using one of the 

orthogonal polynomials, , of Table 4.1.  )x(Fk

' ' ' 2 '
0 0 1 1 2 2

' ' 2 '
1 1 2 2

( ) ( ) ( ) ( )( )
1 ( ) ( ) ( )
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M M
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N N
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"

"
 

The corresponding even function associated with the real part of the system 

response is 

( ) � � �
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"

ϖ  

When the orthogonal polynomials are used, the interpolation matrix of (3.12) is modified 

into (4.4). Once the coefficients � 'a s  and  of the orthogonal polynomials are found, 

Clenshaw's recurrence algorithm is used to efficiently and accurately calculate the 

coefficients of the corresponding power series. 

'b s�

Ax b=       (4.4) 
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4.3 Clenshaw's Recurrence Formula 

In [18], [48], Clenshaw's formula is given for the general function that has a three-

term recursive relationship of the form 

1( ) ( , ) ( ) ( 1, ) ( )n nF x n x F x n x F x1nα β+ −= + −    (4.5) 

where ( , )n xα  and ( , )n xβ  are functions in the recurrence relation.  For Chebyshev 

polynomials, ( ,n x)α  is 2x  and ( , )n xβ  is –1.  For Legendre polynomials, ( , )n xα  is 

2
1

n
n

+
+

1 ( and , )n xβ  is
1

n
n
−
+

. 

For a 2Nth order system, it can be described as 

� �
2 2

0 0
( ) ( )

N N
i

i i
i i

if a F aϖ ϖ
= =

= =∑ ∑ ϖ     (4.6) 

The transformation between the � 'a s and s can be made by applying the following 

recurrence formulas.  

� 'a

Defining  and 2N 2 2N 1y y+ += 0= ( ) ( ) �
1, , kk k ky k y k yα ϖ β ϖ+ 2 a+= + + , we will 

have  
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#  

   ( ) ( ) � 22 32, 2,y y yα ϖ β ϖ 4 a= + +    (4.7) 

Solving the above equations for s on the right-hand side, Equation (4.6) becomes 'a�
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(4.8) 

Examining the terms containing  shows that 7y

( ) ( )7 7 6 5[ ( ) 6, ( ) 5, ( )] 0y F F Fϖ α ϖ ϖ β ϖ ϖ− − =   

as a consequence of the recurrence relation. Similar expressions can be obtained for other 

s down through .  The only remaining terms in (4.8) are ky ' 2y

( ) � 02 0 0 1 1( ) 0, ( ) ( ) ( )f y F a F F yϖ β ϖ ϖ ϖ ϖ= + +  

where  and  can be obtained from (4.7).  Then 1y 2y )(f ϖ  can be converted into a power 

series, which is an even function in terms of 2 .ϖ  

Following the conversion of the coefficients of the orthogonal polynomials to the 

coefficients of the ordinary power series, poles of the system can be obtained by finding 

the roots of the denominator polynomials. 

After the poles of the system are found, the residues can be obtained through the 

partial fraction expansion of the transfer function. In order to make sure that the residues 

are in complex conjugate pairs, we must rewrite the system transfer function in the 

manner described in [47] as 

**
m m m 1 m n1 1

0 1 * *
1 1 m m m 1
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ω ω
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− − − − − −
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 (4.9) 

This can be written as 

1r 1i 1r 1i mr mi mr mi m 1 m n
0 1 * *

1 1 m m m 1

r jr r jr r jr r jr r rH( j ) k k ( j )
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ω ω
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− − − − − −
" "   (4.10) 

By doing this, it is guaranteed that the two residues of a pair of complex conjugate 

poles are in a complex conjugate pair as well.  
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The matrix equation for solving the real and imaginary parts of the residues is 

                                                   i �Ax b= �                                        (4.11) 

where  is expressed as iA
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To guarantee that all the �
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x s are real, Equation (4.11) can be written as 
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where i
'

A  and i
"

A  are the real and imaginary parts of matrix iA , and b  and are the real 

and imaginary parts of vector .  Equation (4.12) solves the direct and proportional term, 

the real residues, and the real and imaginary part of the complex residues. 

'� "
b�

b�

The algorithm of rational function approximation through orthogonal polynomials 

and the Clenshaw’s recurrence formula is given in pseudocode in Algorithm 4.1. 

Algorithm 4.1: Rational function approximation 

1. Read in the frequency domain data.  Transform the data into real and 
imaginary format if necessary. 
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2. Normalize and shift the frequency: map [ ]min max,ω ω  into [ ]1,1−  using 
Equation (4.3). 

3. Construct the real matrix Equation (4.4), with the real part of the frequency 
response. 

( 1K M NA R )× + +∈ , 1M Nx R + +∈ , Kb  R∈
4. Solve Equation (4.4) for the coefficient vector x .  The least square solution is 

obtained. 
5. Transfer the coefficients of the orthogonal polynomials to coefficients of the 

power series for the normalized frequency. 
6. Find the coefficients in terms of the unnormalized frequency. 
7. Solve the roots of the even function from coefficients obtained in step 6).  The 

left half plane poles are poles for the original system. 
8. Solve residues of the system by Equation (4.12). 

 

4.4 Order Estimation 

 In the algorithm developed above, it is assumed that the order of the system is 

known, that is, M and are known.  However, it is not a trivial problem to determine the 

appropriate order from the simulated or measured data.  When an inappropriate order is 

used, there is no way to reduce the large error between the original and the approximated 

systems. 

N

There are several ways to estimate the order of the LTI (linear time invariant) 

system, such as Akaike information criterion (AIC) [49], minimum description length 

(MDL) [50], and minimum description complexity (MDC) [51].  However, these 

methods are all valid in the time domain and are not suitable for frequency domain 

analysis.  In [52], the order is estimated by the minimum eigenvalue tracking method, 

where the minimum eigenvalue of the matrix associated with solving the coefficients is 

plotted as a function of the system order, as shown in Figure 4.3 [16]. The optimum order 

is found when the eigenvalue stops its steepest decrease. The singular value 

decomposition (SVD) method is applied in [46] to estimate the order of the rational 
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function. The total least square (TLS) is used to solve for the coefficients and finds the 

nonzero eigenvalues. 

The above two methods work well for low order systems. However, when the 

system order becomes high, the Vandermonde-like matrix in Equation (3.5) for finding 

the eigenvalues becomes ill-conditioned and the effectiveness of the method is greatly 

impaired.  

 

Figure 4.3 Minimum eigenvalue vs. system order. 

However, orthogonal polynomials can be applied here to alleviate the problem. 

From the recurrence relation described in Table 4.1, it is shown that the Nth order of the 

orthogonal polynomials has the same order as the power series. Therefore, functions 

described in Equation (4.6) have the same order for ordinary power series and the 

orthogonal polynomials. And we can find the order of the system through the orthogonal 

system. 

The number of data points needed will be discussed more in later.  For now, we 

assume that we have enough data points , which means . Matrix  in 

Equation (4.4) is an overdetermined system, and the least square solution is used. By 

K 1K M N+ +� A
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minimizing 
2

Ax b− , where ( )1K M NA × + +∈\  and Kb∈\ , the solution of 1M Nx + +∈\  will 

be { }1
2

M NX x Ax b+ += ∈ −\

( )Tx X A b Ax∈ ⇔ −

min=

0=

 and has the following properties [16], [53]: 

X LSx

{ } ( )LSX x rank A= ⇔ 1M N= + +

N

A

R A

1+

R N

M< +

1= +

A

+

HA A

• . 

• has a unique element having minimal 2-norm. 

• . 

The order of the system can be determined through the rank of the matrix . When 

 has full rank, there is a unique least square solution. Otherwise, there will be infinite 

number of solutions. The algorithm of finding the system order with given data is as 

follows:  

A

1. Assume denominator order  and numerator order M . 

2. Construct matrix A  as in Equation (4.4) using the given data. 

3. Find the rank  of matrix .  

4. If R N , it means that the assumed order is higher than needed; 

reduce the order until M , then the minimum order required will 

be found. 

Since the rank of the matrix  is the same as its number of nonzero singular 

values, the rank can be obtained by finding the number of nonzero eigenvalue of . 

In numerical solution, the minimum eigenvalue is plotted as a function of the estimated 

order. When there is no tremendous decrease in the minimum eigenvalue of , the 

approximation order is obtained.  

HA A

Since matrix  does not have the ill-conditioned problem as those matrices used in 

[16] and [46], there is no problem in estimating the order for systems with high orders. 

A
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Below is an example showing how the above method differs from those described in [46] 

and how to choose the order.  Figure 4.4 compares the change of minimum eigenvalue of 

 with respect to the estimated order for both orthogonal polynomial and the ordinary 

power series.  

HA A
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Figure 4.4 Minimum eigenvalue vs. estimated order for both orthogonal and ordinary power series. 

In Figures 4.4, the dashed curve reflects the ill-conditioned problem associated with 

the ordinary power series. No information about the system order can be obtained from 

the eigenvalues of  as a result of the rank deficiency by the power series itself. 

However, the solid curve shows the case when orthogonal polynomials are involved. 

Figure 4.4 shows that the order is around 66 for the data given.  

HA A

Figure 4.5 shows the approximation of the  parameter under the order 66 using 

the Chebyshev of the first kind. The approximation agrees very well with the original 

data. 

11S

 38



0 1 2 3 4 5 6 7 8 9 10
-35

-30

-25

-20

-15

-10

-5

Frequency (GHz)

M
ag

ni
tu

de
 (d

B
)

original data
approximation data

 
0 1 2 3 4 5 6 7 8 9 10

-4

-3

-2

-1

0

1

2

3

4

Frequency (GHz)

P
ha

se
 (r

ad
ia

n)

original data
approximation data

 

Figure 4.5  approximation with order 66. 11S

4.5 Sampling Method 

The data that are used to estimate the system usually come either from EM solver 

or from measurement. The number and positions of sampling points are important factors 

for the accuracy and efficiency of the approximation. 

4.5.1 Number of sampling points 

As discussed in Section 4.4, the rank of matrix  is an important factor in deciding 

the system order and the coefficients of the system. The dimension of matrix  is 

A

A K  by 

, where  is the total sampling points. If  is less than or equal to 

, there is not enough information and no unique solution for the coefficients. 

Therefore, the least number of the sampling points is 

1++ NM

1M N+ +

K K

1M N+ + . 

4.5.2 Choosing the right sampling points 

In the previous discussion, we assumed that there were enough data points and the 

information was enough for approximation.  However, there are real situations when the 
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data points are limited. In this section, we will focus on how the sampling points 

influence the accuracy of the approximation and on ways to deal with insufficient data. 

Lagrangian interpolation formula is applied in [54] to find the best fitting points of 

an order  polynomial to minimize the approximation error. Based on the least square 

criterion, the selection of the sampling points depends on the weight function of the 

error function , where is the error square at frequency point 

n

( )w x

1
2

1

( ) ( )w x e x dx
−
∫ 2 ( )e x x . It 

shows in [54] that when =1, the best fitting points are selected to be the zeros of the 

 Legendre polynomial. When , the zeros of the  Chebyshev 

polynomial will be the best matching point. 

( )w x

1n + 2 1/ 21 )x −= −( ) (w x 1n +

Similar to the above, the approximation using rational function also has best fitting 

frequency points, which minimizes the least square error. Interpolation is used to provide 

the unavailable data. Since the Lagrangian interpolation needs to be recomputed every 

time when the data is changed, Newton’s interpolation formula is used to generate more 

data points. Define  

0 0[ ] ( )f x f x=  

1 0
0 1

1 0

[ ] [ ][ , ] f x f xf x x
x x

−
=

−
 

#  

1 0
0

0

[ , ] [ , ][ , ] k k
k

k

1f x x f x xf x x
x x

−−
=

−
" ""  

and the kth degree interpolation polynomial will be  

0 0 0 1 0 0 0( ) [ ] [ , ]( ) [ , ]( ) ( )
kx x k k 1f x f x f x x x x f x x x x x x −= + − + + − −" " " "  
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The linear and quadratic (forward) interpolation formulae correspond to first and second 

order truncation respectively. 

The example below shows how the sampling points affect the accuracy of the 

approximation. A total of 801 evenly spaced data points are given over a 5-Ghz 

frequency range. The magnitude and phase of the original system, as well as the 

approximated system based on different data sets are shown in Figure 4.6. The all-data 

curve use all the 801 data points for approximation. The four sampling sets sample data 

every four frequency points, with different starting points, respectively. Therefore, each 

set has 200 data points. The same order of 85 is applied to all approximations.  
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(b) 
Figure 4.6 Comparisons of different sampling sets. (a) Magnitude. (b) Phase of the original and 
approximated S22 under different sampling sets. 

Figure 4.7 shows the root mean square (RMS) error of the approximation for the 

different data sets with respond to frequency.  Figures 4.6 and 4.7 both show that the 

second sampling set gives better approximations than all other sampling sets, as well as 

the whole data set. Therefore, it is not the number of the data points but their location that 

is important. 
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The selection of the sampling points reduces the total number of data that can be 

used in the approximation. In order to have enough sampling points, satisfying 

, the second-order interpolation method described is applied.  1K M N+ +�
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Figure 4.7 Comparisons of RMS error of the S22 for different sampling sets. 

4.6 Numerical Results 

To demonstrate the efficiency of the orthogonal polynomials, different cases are 

investigated in this chapter. 

4.6.1 Case study I – Comparison of the power series with orthogonal 
polynomials 

 
The scattering parameters of an interconnect system with V-shaped cross section 

measured over 10 GHz are used as an example to demonstrate the accuracy and validity 

of the proposed method. The example has a very complex frequency-domain behavior 

that can be extremely difficult to approximate using the standard power series 

polynomial. The insertion loss of the interconnect is approximated using the power series, 

Legendre, and Chebyshev of the first and second kinds as shown in Figures 4.8(a) and 
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(b). All three orthogonal series show superior accuracy when compared to the standard 

power series approximation.  

Figure 4.9 shows that the approximation using standard power series has a larger 

deviation from the original data. The accuracy improvement of the orthogonal 

polynomial is attributed to the improved numerical stability of the interpolation matrix.  
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Figure 4.8 Comparisons of the power series and the classical orthogonal polynomials. (a) Magnitude. (b) 
Phase of the original and approximated S11. 
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Figure 4.9 Comparisons of the RMS error for the 40-order S11 approximation. 
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Figure 4.10 shows that the condition number of the power series polynomial 

increases superlinearly with the order of the approximation, until it approaches the 

floating-point relative accuracy.  However, the condition number of the orthogonal 

polynomials remains almost flat as the order of approximation increases. 
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Figure 4.10 Comparisons of the condition number of the polynomials as a function of approximation order. 

Once the frequency-domain approximation is obtained, recursive convolution can 

be applied to predict the time-domain response. 

4.6.2 Case study II – Four-port system by different orthogonal 
polynomials  

 
The example in Section 4.6.1 focuses on comparing the orthogonal polynomials 

with the ordinary power series. The result shows a much better approximation through 

the orthogonal polynomials. In this section, we will compare the three orthogonal 

polynomials to see the difference.  

This example shows a case when the scattering parameter of a four-port system is 

given in the real and imaginary form. The poles of the system can be approximated by 

 44



one of its parameters. Here we use the  data. After the poles are extracted from , 

we will obtain the residues for all other parameters, respectively. Three orthogonal 

polynomials are applied with the same order (order 22), and the simulation results are 

compared.  Figure 4.11 compares the root mean square error of the three kinds of 

orthogonal polynomials for the  parameters. Because of the symmetric property,  is 

the same as .  Therefore, only one of the two parameters is plotted. 
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(f) 

Figure 4.11 Comparison of RMS error for different polynomials with the same approximation order. 
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Figure 4.11 Continued. 

From the above figures, it is obvious that the Chebyshev polynomial of the first 

kind gives the worst approximation over the whole frequency range for all parameters. 

For parameters such as , iiS ( 1, , 4)i = " , the Chebyshev of the second kind and the 

Legendre polynomials have almost the same order of error except at the high frequency 

end. For all other parameters, the Legendre polynomials gives better approximation over 

the whole frequency range. As a result, the Legendre polynomial gives the best 

approximation for this case. 

Figure 4.12 is the plot and number of poles obtained from the three orthogonal 

polynomials.  Using the same approximation order of 22 and solve for the poles of the 

system by different polynomials, the Chebyshev polynomials of the first and second kind 

approximate the system with 18 and 21 poles, respectively.  The number of poles is less 

than the original assumed 22, which is because the poles on the imaginary axis are 
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removed for stability reason.  For Legendre polynomial, the 22 poles are all located in the 

left half plane and are kept.  

The above result shows that, for a given set of data, the accuracy of the 

approximation depends on the type of orthogonal polynomials applied. The result 

explains from the other view that the locations of the sampling points are important in 

determining the approximation accuracy. Instead of applying the same kind of 

polynomial and changing the sample points, the same sample points are fitted with 

different types of polynomials. The difference in the characteristic of each polynomial 

asks for different sampling data for the best accuracy. 
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Figure 4.12 Location and number of poles for different polynomials. 

4.7 Recursive Convolution 

From above discussions, we can successfully approximate a system characterized by 

tabulated frequency domain data by a ration function .  The output of the system for 

a given input 

( )H s

( )X s  is Y s( ) ( ) ( )H s X s=  in the frequency domain.  The time domain 

response of the system is the inverse Laplace transform of Y s .  However, since  ( ) ( )H s
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obtained above is in the form of rational function, the more efficient recursive 

convolution can be applied to find the time domain response of the system.   

Recursive convolution was first discussed in [55].  Later, the efficiency of the 

recursive convolution was further shown in [56], [57] for its application in transient 

analysis of transmission line. 

4.7.1 Recursive convolution algorithm 

For systems characterized by rational functions, system response in frequency 

domain is expressed as   

0
1

( )
N

i

i i

kH s k
s p=

= +
+∑                                                       (4.13) 

All the poles and residues of are obtained from the discussion above.  For the direct 

term, its corresponding time domain response is an impulse.  For each frequency- 

dependent term, the corresponding time domain response is an exponential term.  Since 

the system is stable, the exponential terms are decaying as time increases.  The time 

domain response is real due to the enforcement of poles are either real or in complex 

conjugate pair. 

( )H s

Recursive convolution for one term in the summation is derived.  The corresponding 

time domain response for i

i

k
s p+

 is .  Convolved with input ip t
ik e− ( )x t , we have,  

( ) * ( )ip t
i iy t k e x t−=                                                          (4.14) 

where 
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1 2

0 0

( ) ( ) ( ) ( )i i i

t h t
p p p

i i i i
h

I I

y t k e x t d k e x t d k e x t dτ τ ττ τ τ τ− − −= − = − + −∫ ∫ ∫ τ τ
����	���
 ����	���


             (4.15) 

and  is the time step.  In the second integral, set τ=τ’+h which implies τ’=τ-h h

( ' ) '
2

0 0

( ' ) ' ( ' )i i i

t h t h
p h p h p

i i 'I k e x t h d e k e x t h dτ ττ τ
− −

− + − −= − − = −∫ ∫ τ τ−

)

                  (4.16) 

Therefore 2 (ip h
iI e y t h−= −  and 

1

0

( ) ( ) ( )i i

h
p p h

i i i

I

y t k e x t d e y t hτ τ τ− −= − + −∫
����	���


                               (4.17) 

Evaluating I1 

1
0

( ) i

h
p

iI k x t h e dτ τ−= − ∫                                              (4.18) 

where we assume a step invariant (constant) behavior of the input function. This can be 

evaluated to yield 

(1
( ) 1 ip hi

i

k x t hI
p

− )e−
= −                                                 (4.19) 

So that 

( )( )( ) 1 ( )i ip h p hi
i

i

k x t hy t e e y t h
p

− −
i

−
= − + −                                 (4.20) 

Which is the recursive convolution formula for a step-invariant approximation for each 

time in the transfer function. 

Therefore, the complete solution for  at each time step is ( )y t
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0
1

( ) ( ) ( )
N

i
i

y t k x t h y t
=

= − + ∑                                            (4.21)  

where  is given in Equation (4.20). ( )iy t

4.7.2 Transient response for systems characterized by scattering 
parameter 

Figure 4.13 shows a black box system characterized by its scattering parameter 

matrix.  The excitation and termination are given as well.   

Blackbox
[S]:

: Ii

Vi

Zgi
Vgi

Vg1 Zg2

I1V1

 
Figure 4.13 Black box characterized by scattering matrix. 

Assume the scattering matrix is represented by , the input and output to the 

black box are 

( )H s

( )X s  and Y s , respectively.  In time domain, the N-Port S-parameter 

equation is  

( )

                                                            ( ) ( )* ( )y t h t x t=  

The termination condition is 

 ( ) ( ) ( ) ( ) ( )gy t t x t T t V t= Γ +  

where  is the reflection coefficient matrix, T t  is the voltage division matrix, and 

 is the source voltage vector.   

( )tΓ ( )

( )gV t

1 11
0 0( ) [ ] [ ]T Tt I Z Z I Z Z− −−Γ = − + −  
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1 1
0( ) [ ]TT t I Z Z − −= +  

TZ  is the termination impedance matrix and 0Z  is the reference impedance matrix.  

Voltage V t  is the summation of  and ( ) ( )y t ( )x t . 

4.7.3 Numerical results 

This example shows the simulation results for a two-port RLC network as in Figure 

4.14.  The value of the resistance, inductance, and capacitance are , 50 R = Ω 1L =  nH, 

and  pF.  The scattering parameter matrix of the network is calculated from DC to 

250 GHz. 

1C =

First, rational function approximation is performed to construct the system model.  

Poles and residues obtained from the approximation are list in Table 4.2. 

 
Figure 4.14 Two-port RLC network. 

Table 4.2: RLC network poles and residues from approximation 

Poles 11S  12S  21S  22S  

 0.9998 -0.0004 -0.0004 -1.0006 

-85.0417 -128.4076 -36.9569 -36.9569 -7.7681 

-33.6216 28.6102 37.4286 37.4286 48.4417 
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Figure 4.15 Magnitude and phase approximation for the RLC network. 

Figure 4.15 shows the approximation of magnitude and phase for parameters  and 

.  Good agreements are shown between the original and approximated data in the 

frequency domain. 

11S

22S

Once the poles and residues are obtained from approximation, time domain response 

of the system can be calculated through recursive convolution.   

The reference impedance matrix is 0

50 0
0 50

Z  
=  

 
, and the termination matrix is 

.  There is no excitation at port 2.  At port one, the excitation is a pulse 

with magnitude one, rise and fall time 0.0102 ns, and width 1.0230 ns.  The time domain 

50 0
0 50000TZ 

= 
 



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response of the system is shown in Figure 4.16.  The solid line is the response at port one, 

while the dash line is the response at port two. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

V
ol

ta
ge

(v
)

Time(ns)

Time domain response

port 1
port 2

 
Figure 4.16 Time domain response for the RLC network. 

4.8 Conclusion 

An efficient macromodeling method is presented to approximate frequency response 

of a black-box system. The utilization of orthogonal polynomials overcomes the ill-

conditioning problem and hence improves the modeling accuracy. The stability and 

causality of the macromodel is guaranteed inherently. The model order estimation and 

sampling scheme improves both efficiency and accuracy of modeling.  Recursive 

convolution is applied to find the time domain response once the approximation is done. 
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5 PASSIVE MACROMODELS 

5.1 Introduction 

In Chapter 4, rational function approximation via orthogonal polynomials is 

presented.  An accurate transfer function model can be obtained from measured data or 

computational results of full-wave simulations for multiport network.  The macromodel 

constructed satisfies all other requirements of a physically real system except the 

passivity criterion.  Unlike the case in MOR where provided that the original state-space 

model is passive, the resultant reduced order system can be guaranteed to be passive by 

some methods such as PRIMA [27] and the method proposed in [31], etc.  None of the 

existing curve fitting methods can assure passivity of the resultant macromodels even if 

the original frequency data is passive. 

If passivity of the real system is not preserved, the macromodel cannot be used in 

subsequent time domain simulations.  The reason is because nonpassive networks can 

produce unbounded outputs under certain termination conditions.  Therefore, preserving 

passivity in the resultant macromodels is an important issue for interconnect and package 

modeling. 

The conditions for passivity have different expressions depending on whether the 

transfer matrix represents an admittance, impedance, hybrid, or scattering matrix. For all 

these cases, the condition can be expressed in terms of either eigenvalues or singular 

values of the transfer matrix. Hence, theoretically, the passivity criterion can be explicitly 

expressed and incorporated in the curve fitting procedure as a constraint. Thus, the curve- 

fitting problem can be formulated as a constrained optimization problem, with the error 
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between the desired and constructed transfer functions being the target function to 

optimize with and the passivity condition being the constraint. However, most of the 

existing optimization algorithm cannot handle this kind of problem efficiently.  

Therefore, all existing passivity enforcement methods for curve fitting are a 

posteriori approaches based on perturbation theory.  That is, a transfer matrix is obtained 

first without taking the passivity into account.  Then the macromodel is adjusted by 

various compensation methods to enforce passivity, assuming only weak violation of 

passivity in the original macromodel. 

In this chapter various expressions of the passivity condition are first briefly 

discussed. Then different approaches to enforce passivity are described and compared.  

5.2 Passivity Definitions 

5.2.1 Admittance and impedance matrices 

When ( )H s jω=  is the admittance matrix of a multiport network, we have 

( )i H j vω=      (5.1) 

where  and  are the port current and port voltage vectors, respectively. The reference 

direction for i  is the direction flowing into the network. The power that the network 

consumes is 

i v

Re[ ( ) ( )]HP v j i jω ω= [61]. Hence, the network is passive if and only if the 

following inequality holds [41], [42]: 

Re[ ( ) ( )] 0, for anyHv j i jω ω ≥ ω    (5.2) 

where the superscript H is the complex conjugate transpose or Hermitian operator. 

Replacing ( )i jω  in Equation (5.2) by Equation (5.1), we will have,   
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( )

( )

( )

( )

Re[ ( ) ]
1 ( ) [ ( ) ]*
2
1 ( ) *( ) *
2
1 ( ) ( )
2
1 ( ) ( ) 0
2

H

H H

H T

H H H

H H

v H j v

v H j v v H j v

v H j v v H j v

v H j v v H j v

v H j H j v

ω

ω ω

ω

ω ω

ω ω

= +

= +

= +

= +

ω

≥

) 0

 

   (5.3) 

where the superscripts T and * are respectively the transpose and complex conjugate 

operators. Hence, the passivity condition for the admittance matrix is 

( ( ) ( )H Hv H j H j vω ω+ ≥      (5.4)  

for an arbitrary vector  and at any frequency v ω . For reciprocal networks, ( )H jω  is 

symmetric, and thus we have  

( ) ( ) ( ) *( ) 2 Re[ ( )HH j H j H j H j H j ]ω ω ω ω+ = + = ω

)

  (5.5) 

Therefore, the passivity condition for symmetric (H jω  is that Re[ ( )]H jω  is positive 

semidefinite [41], [42]. That is,  

( ) 0 ( ) (Re[ ( )])i ij j H jλ ω λ ω λ ω≥ ∀ ∈ ∀ω    (5.6) 

where ( )Zλ  is the set of eigenvalues of Z . It is easy to derive that the passivity 

condition for the impedance and hybrid matrices is the same as (5.6).  

5.2.2 Scattering matrix 

When ( )H s jω=  is the scattering matrix of a multiport network, we have 

( )b H j aω=      (5.7) 
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where  and b , respectively, are the incoming and outgoing signal vectors. The power 

that the network consumes is 

a

( ) ( ) ( ) ( )H HP a j a j b j b jω ω ω= − ω . Hence, the network is 

passive if and only if the following inequality holds [41], [42]. 

( ) ( ) ( ) ( ) 0, for anyH Ha j a j b j b jω ω ω ω− ≥ ω    (5.8) 

Using (5.7), (5.8) can be written as  

( ) 0

H H

H H H

H H

a a b b
a a a H Ha

a I H H a

−

= −

= − ≥

 

Hence, the passivity condition for the scattering matrix is 

( )( ) ( ) 0H Ha I H j H j aω ω− ≥    (5.9)  

for an arbitrary vector  and at any frequency a ω . ( )H jω  that satisfies this condition is 

unitary bounded, which is equivalent to 

    
,

max ( ) 1 ( ) ( ( ))i ii
j j H

ω
jσ ω σ ω σ ω≤ ∀ ∈                (5.10) 

where ( ( ))H jσ ω  is the set of singular values of ( )H jω  and )( ωσ ji  is the ith singular 

value, which is defined as 

20 ( ) ( H
i iH Hσ σ σ λ≥ ∈ ⇔ ∈ )H   

5.2.3 A sufficient condition 

A sufficient condition for constructing a passive network is based on the fact that the 

summation of passive subnetworks is also passive.  As given in [16], a rational transfer 

matrix ( )H s  of a multiport network can be expressed as 
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2 2
1 1 1

2 ( ) 2( )
( )

LPN BPN HPN
m n nr n ni k

m n kmr nr ni kr

s p p sH s s
s p s p p s p

γ α β ψ δ η
= = =

− −
= + + +

− − + −∑ ∑ ∑ +

p

  (5.11) 

where the first term corresponds to a low-pass filter, the second a band-pass filter, the 

third a high-pass filter, and the last two terms correspond to an all-pass filter. All the 

coefficients written in boldface are pN N×  matrices, where  is the number of ports 

of the network. All parameters in the above equation are real. 

pN

A sufficient condition for ( )H s

)

 to be passive is that each of the filter in (5.11) is 

passive [16].  Assuming (H s  is an admittance, impedance, or hybrid matrix, the 

passivity of all the filters in (5.11) are characterized by their real parts for ωjs = . The 

real part of (5.11) can be written as 

2

2 2 2 2 2 2
1 1

2 2 2

2 2 2 2 2 2 2
1 1

2 ( )Re[ ( )]
( ) (2

2( )( )
( ) (2 )

LPN BPN
m mr n nr n ni

m nmr nr ni nr

BPN HPN
nr ni n nr n ni k

n knr ni nr kr

p pH jw
p p p p

p p p p
p p p p

γ ω α β
2)

p
ω ω ω

α β ψ ω δ
ω ω ω

= =

= =

− − +
= +

+ + − +

+ − −
+ +

+ − + +

∑ ∑

∑ ∑ +

 

The condition for each of the filters to be passive is that matrices mγ , 

n nr n nip pα β− ± , kψ  are all positive semidefinite; that is, their eigenvalues are not less 

than zero.  

5.3 Passivity Enforcement 

5.3.1 Passive filter approach 

Based on the aforementioned sufficient condition, a simple approach to enforce 

passivity is to modify the coefficient matrices in (5.11) to assure that each individual 

filter term is passive [16].  First, the eigenvalues of the coefficient matrices are computed. 
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Then negative eigenvalues are picked out as target eigenvalues to modify.  Perturbation 

theory of the matrix spectrum is used to drive the target eigenvalues to nonnegative 

values, so that the macromodel becomes passive.  

The advantage of this approach is that the coefficient matrices are frequency 

independent.  Therefore, once the passivity requirement is achieved, the macromodel is 

guaranteed to be globally passive.  The disadvantage of this method is that the condition 

required is sufficient but necessary.  Each term in the macromodel being passive is not a 

necessary condition for the entire macromodel to be passive. Accuracy in transfer 

function approximation may be sacrificed for this overly conservative passivity 

enforcement condition.  

5.3.2 Quadratic programming approach 

A passivity enforcement approach using quadratic programming is presented in [24]. 

Same as in the passive filter approach, passivity is enforced by modifying the coefficients 

of an existing rational transfer function.  Meanwhile, the mean square error between the 

modified transfer function and the target curve is also minimized. This approach is 

described briefly below. 

Assume Y  is the rational approximation of a target transfer matrix Y s  and its 

(i, j)th element can be expressed as 

( )fit s ( )

 sed
as

c
sY

N

m m

m
jifit ++

−
= ∑

=1
),( )(     (5.12) 

Since  can be nonpassive, the goal is to modify coefficients , , d, and e to 

enforce the passivity, i.e., to insure that 

( )fitY s ma mc

( ) Re[ ( )]fit fitG s Y s=  is positive semidefinite. 
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The columns of Y  are stacked into a single vector ( )fit s fity  and all the coefficients 

that need to be modified are stacked into another single vector x . An incremental 

relationship between the changes in fity  and x  can be obtained by the linearization of the 

above equation: 

fity M x∆ = ∆      (5.13) 

Taking the real part of the above equation yields 

Re[ ]fitg M x P x∆ = ∆ = ∆     (5.14) 

where fitg

)s

 is a single vector that holds all the columns of . Using the perturbation 

theory of eigenvalues, the relationship between the change in the eigenvalues of 

and 

( )fitG s

(fitG fitg∆  can be obtained 

fitQ gλ∆ = ∆      (5.15) 

Therefore, we have 

fitQ g QP x R xλ∆ = ∆ = ∆ = ∆     (5.16) 

Thus, the problem to solve is to find x∆  such that 

0

0

( ) ( ( ) ) 0fity s y s M x

R xλ λ

− + ∆ →

∆ = ∆ ≥ −
    (5.17) 

To find the least mean square solution, this problem can be formulated as a constrained 

quadratic programming problem as follows: 

Minimize                                            
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1
2

T Tx H x f x∆ ∆ − ∆                             (5.18) 

with the constraint                                   

0R x λ∆ ≥ −  

where                                   

TH M M=  and 0(T )fitf M y y= −      (5.19) 

By solving the constrained equation in (5.18), the perturbations needed for each 

parameter will be obtained and the passivity of the macromodel is guaranteed.  

5.3.3 Hamiltonian matrix approach 

Another approach is presented in [25], [26] and based on the Hamiltonian matrix.  

The idea is to locate the frequency bands where passivity is violated by checking the 

imaginary eigenvalues of the Hamiltonian matrix.  Then an iterative perturbation scheme 

is developed to compensate the violations.  

A time-invariant multiport system expressed in state-space form is considered. 

( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +

�
      (5.20) 

The transfer matrix is  

1( ) ( )H s D C sI A B−= + −      (5.21) 

When  is the scattering matrix, the passivity violation detection is based on the 

following theorem. 

( )H s
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Assume that  has no imaginary eigenvalues, A 0>γ  is not a singular value of , 

and 

D

0ω  is a real number. Then, 0( ( ))H jγ σ ω∈  if and only if 0 ( )j Mγω λ∈ , where 

1 1

1

T T

T T T

A BR D C BR B
M

C S C A C DR Bγ
γ

γ

− −

−

 − −
=  

− + 
1 T−

    (5.22) 

 and 2TR D D Iγ= − , 2TS DD Iγ= −                  (5.23) 

Mγ  is a Hamiltonian matrix. This theorem allows one to compute the frequencies where 

the singular values cross or touch any given threshold.  

Similarly, another theorem for the hybrid matrix is given as follows: 

Assume that  has no imaginary eigenvalues, A 0>σ  is not an eigenvalue of 

, and ( )TD D+ / 2 0ω  is a real number. Then, 0 ))( (G jσ λ ω∈  if and only if 0 ( )j Nσω λ∈ , 

where 

               (5.24) 
1 1

1

T

T T T

A BQ C BQ B
N

C Q C A C Q Bσ

− −

−

 +
= 

− − − 
1 T− 

D

and  

2 TQ I Dσ= − −       (5.25) 

After the frequency bands with passivity violation are determined, an iterative 

procedure is applied to modify matrix C  to enforce passivity.  Modifying  is not the 

only choice but is the only case investigated in [25].  A relationship is developed between 

 and the change of eigenvalues of 

C

,dC Mγ  or Nσ .  is calculated to perturb the 

eigenvalues and meanwhile to minimize the change of . 

dC

( )y t

 62



5.4 Numerical Results 

The example below shows the passivity enforcement for the case described in 

Section 4.6.1.  After the poles of the system are extracted, the passivity-checking method 

described above is applied.  For this illustration, the admittance matrix of the interconnect 

is measured and approximated using the pole-residue model.  The result of the magnitude 

and phase before enforcing passivity are shown in Figure 5.1(a) and (b), respectively. 
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(b) 

Figure 5.1 The original and approximated Y11 before applying the passivity check. (a) Magnitude plot of 
Y11. (b) Phase plot of Y11. 

Then the method described in [16] is applied to check and enforce passivity to the 

resulting approximation.  The residues and the constants are calculated by considering 

passivity criteria.  The magnitude and phase of the passive rational model are shown in 

Figure 5.2(a) and (b), respectively. 

Since the method described in [16] is a sufficient but not necessary condition of 

passivity enforcement, we would expect less accuracy for the approximation with 

passivity check.  Comparing the plots in Figures 5.1 and 5.2, it is obvious that the 

passivity enforcement method sacrifices the accuracy of the approximation.   
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The quadratic programming approach will be the most accurate one.  However, it is 

computational expensive and cannot be applied to large problems.    
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(b) 

Figure 5.2 The original and approximated Y11 after applying the passivity check. (a) Magnitude plot of Y11. 
(b) Phase plot of Y11. 

5.5 Conclusion 

The existing passivity enforcement methods are generally efficient for weak 

violation of passivity.  The passive filter approach is easy to implement and can globally 

assure passivity, but the accuracy of the macromodel may be compromised.  The 

quadratic programming approach can handle relatively large passivity violations and the 

macromodel accuracy is optimized.  However, it is computationally expensive and cannot 

apply to systems with order higher than 12 at present.  The Hamiltonian approach is good 

in that the frequency bands where passivity is violated can be located.  Thus, intensive 

frequency sampling is avoided and the macromodel accuracy is optimized; however, as 

noted, the approach can only handle weak passivity violations. 
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6 DATA PREPROCESSING 

6.1 Introduction 

In previous chapters, we have discussed methods to construct an accurate 

macromodel that has the properties of a physically real system.  All the approximation is 

based on the frequency domain sampled data, which directly comes either from 

electromagnetic simulation or from microwave measurements.  For all previous 

discussion, we assume that there are no errors with the data and use the data without any 

process.  However, for those data obtained from electromagnetic simulations, there are 

numerical errors, and there is no guarantee that the data is causal and passive. For 

microwave measurements, noise is unavoidable; thus, the data may be neither causal nor 

passive.  

Since the approximation is based on the original frequency data, it is obvious that 

the approximated system will not be causal and passive if the starting data is not causal 

and passive.  Therefore, it is important to check and process the data for any causal and 

passivity violation. The noisy data also need to be processed before approximation to 

reduce the noise effect.      

6.2 Noise Filtering 

In cases where the data is very noisy, the approximation can be tedious and involve 

much higher orders than necessary.  Therefore, it is very important to preprocess the data 

to reduce the influence of the noise during the approximation.  
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 To facilitate discussions within this section, it should be noted that the terms noise 

frequency, white noise, and colored noise etc. all refer to the Fourier domain of the raw 

data under preprocessing instead of referring to the physical frequency domain.  

The noise from measurements can either be white or colored noise. The white noise 

is random noise that spreads the whole frequency band and has a homogeneously 

distributed power spectrum across all frequencies [38], i.e., 2( )jφ ω σ=  for all frequency 

ω , where ( )jφ ω  is the power spectrum and σ  is a constant. The white noise is 

uncorrelated and characterizes random variations during the measurements. 

Different from the white noise, the colored noise is correlated and does not have a 

uniform power spectrum.  Based on the noise characteristics, different types of filters can 

be applied to remove colored noise.  Kalman filters, when carefully designed, can 

significantly improve the signal-to-noise ratio (SNR) of colored noise.  

For white noise, filtering mainly deals with the random variations in the 

measurements.  The most straightforward approach consists of applying the moving 

average filter.  The goal is to cancel or reduce the random noise effect in the 

measurement data.  Assume the original data sequence is , an th order 

moving average filter calculates the nth data 

[ ]h n 1 2( 1M M+ + )

[ ]h n  as [38]: 

2

11 2

1[ ] [ ]
1

M

k M

h n h n k
M M =−

= −
+ + ∑  

With the application of the moving average filter, the measurement data can be 

improved.  Figure 6.1 shows the difference between the original noise measurement data 

and the data filtered with a ninth-order moving average filter.  Comparing the original 
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data in the solid curve and the filtered data in the dashed curve, it is obvious that the filter 

removes some of the random noise and will make the approximation much easier. 

In the above moving average filter, all the data around  are equally weighted in 

evaluating the filtered value of 

n

[ ]h n .  By considering the fact that the most recent data 

tend to have greater impact on the evaluation point, different weights can be applied to 

different data points.  Therefore, improvement can be made by using the exponentially 

weighted moving average filter.    
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                Figure 6.1 Improving noisy data with moving average filter. 

Besides the commonly used moving average filter, filters based on local fitting are 

also widely used. The locally weighted scatter plot smoothing (LOWESS) [58], and the 

local polynomial regression fitting (LOESS) [59]. The idea of the LOWESS and LOESS 

methods is to smooth the data based on the local polynomial fitting.     

6.3 Passivity Check and Enforcement 

Although random noise can be neglected for the simulated data, passivity violation 

is a big concern for the data obtained from electromagnetic simulation. It is primarily due 
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to discretization or round-off error [37]. When the original data does not meet the 

passivity requirement at certain frequency points, a slight perturbation can be applied. 

As passivity enforcement is always applied for the macromodel that approximates 

the system characterized by the sampled data, the need for passivity check of the original 

data may not seem necessary at first glance. However, passivity enforcement of the 

original data is important as well. The reasons to check and enforce the passivity of the 

original data are (a) to guarantee the convergence of the transient analysis when inverse 

Fourier transform is applied directly, and (b) to save time and effort in enforcing the 

passivity of the macromodel [60]. 

Despite inefficiency and time-consuming native of the inverse Fourier transform, it 

is still used sometimes because of its convenience, especially when the frequency bands 

are not too wide.  In this case, the frequency domain data needs to be passive so that the 

time domain response of the whole system can be guaranteed stable.    

In the case when macromodeling is applied to handle the tabulated frequency 

domain data, enforcing the passivity of the model is a big issue. The time and effort spent 

in the passivity enforcement depends on the level of violation.  Violation of the 

macromodel, in turn, is greatly influenced by the passivity violation of the original data. 

By correcting the passivity violation before the approximation, a lower level of passivity 

violation of the macromodel can be expected.  Therefore, it is necessary to enforce 

passivity of the original data before doing an inverse Fourier transform or before 

approximating the data by macromodel. 
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6.3.1 Passivity check 

The passivity criterion for the original frequency domain data is the same as that of 

the macromodel.  That is, the impedance and admittance matrix should be positive real 

and the scattering matrix should be bounded real at any frequency.   

For the transfer matrix ( )H jω  to be positive real, the corresponding Hermitian 

matrix ( )G jω , defined in the equation below, must be nonnegative definite for any 

frequency ω [60], i.e., 

1( ) ( ( ) ( ))
2

HG j H j H jω ω ω 0= + ≥  

where ( )HH jω  is the conjugate transpose of ( )H jω .  In order to meet the criterion 

described in the above equation, all eigenvalues of G j( )ω  must be nonnegative at any 

frequency 

( ( )) 0G jλ ω ≥  

For scattering matrix, bounded real means that [60], [61] 

( ) ( )HI H j H jω ω 0− ≥  

at any frequency.  The above requirement is equivalent to  

                                    max ( ( )) 1H jσ ω ≤                                                           (6.1) 

which means that the maximum singular value of ( )H jω  must be bounded by one at any 

frequency. 

Scattering parameters are used as an example to illustrate the passivity restoration 

algorithm. Given scattering parameters, passivity check is first implemented to determine 

whether there are any passivity violations.  The criterion described in Equation (6.1) is 

applied.  The two plots below show the maximum singular value of the scattering 
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matrices versus frequency for two different cases.  The horizontal axis is the frequency, 

and the vertical axis shows the maximum singular value of the scattering matrix.   

Figure 6.2(a) shows the case where there is no passivity violation.  The maximum 

singular value is less than one at all frequencies.  However, Figure 6.2(b) shows singular 

values greater than one at some frequency points.  Therefore, passivity violation exists 

and the data need to be corrected before applying the approximation or inverse fast 

Fourier transform (IFFT).  
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Figure 6.2 (a) Data without passivity violation. (b) Passivity violated data. 

6.3.2 Passivity enforcement 

For cases where there is passivity violation, passivity enforcement must be applied 

to correct the raw data.  In this work, the maximum singular value versus frequency plot, 

like the plots in Figure 6.2, is studied for passivity violations.  For Figure 6.2(b), at 

frequencies where the maximum singular value is greater than one, the first-order 

perturbation is applied to the scattering matrix to restore the passivity of the system [60], 

[62].     
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Lemma 6.1: If a matrix is Q  is perturbed by an amount Q∆ , then the resulting 

change in its eigenvalue ( λ∆ ) is given by [62] 

T

T

u Qv
u v

λ ∆
∆ =  

where u  and  are the left and right eigenvectors of , respectively.  v Q

For the scattering parameter case, passivity violation occurs when the eigenvalues 

of matrix HI H H−  are less than zero, which means the eigenvalues of  are greater 

than one.  Assume the eigenvalue of 

HH H

HI H H−  is  0λ∆ <

,H

 at some frequencies, the goal 

is to perturb the matrix  by an amount H ∆  so that the eigenvalue of matrix 

( ) (H )I H H H∆ H− + + ∆  is greater than or equal to zero [60].  In order to minimize the 

perturbation, the eigenvalue associated with the perturbed matrix is forced to zero.  

Therefore, by ignoring the second order term, we will have 

( )T H H

T

u H H H H v
u v

λ ∆ + ∆
∆ =  

where u  and  are the left and right eigenvectors of , respectively. v HH H

The perturbation matrix H∆  can be obtained by solving the matrix equation below: 

Wx y=      (6.2) 

where x  is a column vector containing the elements of the perturbation matrix ,H∆   is 

the product of 

y

λ∆  and u v , and W  is a matrix consisting elements of ,  and   The 

derivation of matrix W  can be found below. 

t u v .H

Define the perturbation matrix H∆  as 

11 1

1

n

n nn

x x
H

x x

 
 ∆ =  
  

"
#
#
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and vector x  is defined as . Matrix W  is 

composed of the scattering parameters of the system 

11 1 1[ ]T
n nx x x x x= " " " nn

n

11 1

1

n

n n

s s
H

s s

 
 =  
  

"
#
#

 

For , the first term ( )T H Hu H H H H v∆ + ∆ T Hu H Hv∆  can be expressed as the sum 

of the all the following terms 

* * * *
1 1 11 11 1 1 1 11 1 1

* * * *
1 1 11 1 1 1

( ) (

( ) (

n n n n n nn

n n nn n n n n n nn nn

v u s x s x v u s x s x

v u s x s x v u s x s x

+ + + +

+ + + +

" " "

" "

)

)

)

)

  (6.3) 

The second term  can be expressed as the sum of the all the following terms T Hu H Hv∆

* * * *
1 1 11 11 1 1 1 11 1 1

* * * *
1 1 11 1 1 1

( ) (

( ) (

n n n n n nn

n n nn n n n n n nn nn

v u x s x s v u x s x s

v u x s x s v u x s x s

+ + + +

+ + + +

" " "
#

" "
  (6.4) 

Separate the unknown variables from Equation (6.3), we will have  

T Hu H Hv Ax∆ =  

where  is a row vector and the element in  corresponding to A A pqx  is defined 

as .  Similarly, Equation (6.4) can be written as *

1

n

pq i pi
i

v s
=
∑qA u=

*T Hu H Hv Bx∆ =  

and the elements in B  corresponding to pqx  is defined as *

1

n

pq q i pi
i

B v u s
=

= ∑ .  Therefore, we 

have 

*

1 1

(
n n

pq pq pq pq
p q

Ax Bx A x B x y
= =

* )+ = +∑∑ =    (6.5) 
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Since the unknown variables contain both x  and its complex conjugate , it is 

much more convenient to solve the real and imaginary parts of the unknowns separately. 

Let 

*x

.pq pq pqx a jb= +  Equation (6.5) can be expressed as 

1 1

[( ) ( ) ]
n n

pq pq pq pq pq pq
p q

A B a j A B b
= =

y+ + − =∑∑    (6.6) 

Let  and pq pq pqE A B= + ( )pq pq pqF j A B= − .  We will have 

Wx y=      (6.7)  

where [ ]11 1 1 11 1 1
T

n n nn n nx a a a a b b b b= " " " " " " " nn  and 

[ ]11 1 1 11 1 1
T

n n nn n nW E E E E F F F F= " " " " " " " nn .   

Equation (6.7) is solved subject to the constraint of minimizing the norm of the 

perturbation matrix ∆ .  H

6.4 Numerical Verification 

This example shows the effect of the noise filtering to the macromodeling.  As 

described in Section 6.2, the accuracy of the approximation can be improved by filtering 

out the noise from the measurement data.   

For the data shown in Figure 6.1, approximation is done on both the original data 

and the noise filtered data.  Below are some simulation results using the Chebyshev of the 

first kind for both cases.  The same order of 65 is applied. 

Figure 6.3(a) and (b) show the magnitude and phase of the original data and those 

from the approximation.  The solid curve shows the original data, the dot-dashed curve is 

the approximation based on the original noisy data, and the dashed curve is the 
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approximation based on the noise filtered data.  It is obvious that the dashed curve gives 

better approximation than the blue one for both magnitude and phase.  
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(b) Phase 

Figure 6.3 Magnitude and phase of data. 
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Figure 6.4 Root Mean Square error of the approximation. 

Figure 6.4 shows the root mean square error of the approximation.  The solid curve 

shows the RMS error of the approximation based on the original data and the dashed 

curve shows the RMS error of the approximation based on the data after noise filtering.  
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The result shows consistency with those in Figure 6.3.  With the same approximation 

order, the approximation on the data with noise filtered gives more accuracy.   

The numerical example below shows the effect of passivity enforcement for the 

data.   

The data comes from a microstrip board.  A total of 801 sampling points are given 

from 2 GHz to 50 GHz.  The maximum singular value versus frequency of the data is 

shown in Figure 6.2(b), which has passivity violation at certain frequency points.  Figure 

6.5 shows the passivity restoration for parameters  and  using the first order 

perturbation described in Section 6.3.  Both the original and passivity restored magnitude 

and phase are plotted.  
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Figure 6.5 Passivity enforcement of the input data. 
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Figure 6.5(a) and (b) show the magnitude and phase of  respectively, while (c) 

and (d) show the magnitude and phase of .  In all plots, the solid curve shows the 

original data and the dashed curve shows the passivity restored data.  We can see from 

the plots that the data is modified at those frequencies where passivity is violated. 
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Figure 6.6. Maximum singular value of scatting matrix before and after passivity enforcement. 

Figure 6.6 compares the maximum singular value of the original data and that of 

passivity restored data.  The solid curve is the maximum singular value of the original 

data, while the dashed curve is the maximum singular value of the data with passivity 

enforced.  From the comparison in Figure 6.6, it is clear that the first order perturbation 

algorithm described in this chapter successfully enforces the passivity of the data.    
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7 DELAY EXTRACTION 

7.1 Introduction 

An arbitrary system without a delay (or frequency-domain phase shift) can be 

approximated by a rational function with a finite number of poles and zeros.  However, as 

the operating frequency of IC chips increases, time-domain delay becomes a significant 

characteristic of high-speed systems.  Traditional rational function models encounter 

inherent difficulties in modeling systems that present considerable delays.  The reason is 

because the time-domain delay takes the form of complex exponential shift, usually 

represented by ,dj Te ω−  in the frequency domain.  The exponential term, if represented by 

rational function, will need an infinite number of poles and therefore cannot be exactly 

modeled by any rational function with finite order.  Hence, when the rational function is 

used to model a system with embedded delay, a much higher order is often necessary to 

maintain the modeling accuracy within the frequency band of interest.  

The drawback of approximating systems with delay using only rational functions lies 

in several aspects.  First, the high-order model increases the computational cost of both 

the model generation procedure and the successive simulations where the resultant model 

is used.  Second, although the high-order model can maintain the accuracy within a 

certain frequency band, it might result in error outside the particular frequency range 

since the rational function does not capture the physical delay correctly. Therefore, it 

would be difficult to obtain a single rational function for a broad frequency band. 

Alternatively, the model order must increase as the frequency range becomes higher.  
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To reduce the order of approximation and sometimes guarantee causality, it is 

essential to first extract the delay of the system.  The approach of combining the rational 

function and complex exponential shift term to model systems with delay has been 

investigated in several papers such as [63].  

In this chapter, a new approach is presented to model a general network system by 

the product of a minimum phase rational function, an all-pass rational function and an 

exponential delay term.  Hence we call it the MAD model.  As will be discussed in the 

rest part of this chapter, this model will successfully describe most of the systems.  

Compared to the traditional rational function approach, the MAD model has the 

following merits:  

1. The physical time-domain delay can be explicitly extracted. 

2. Since the delay is extracted, the remaining part of the system can be modeled 

accurately with a relatively low-order rational function. 

3. A unified model can be obtained for a broad frequency range. 

The rest part of this chapter is organized as follows. After an overview of the MAD 

model, the general procedure to obtain the proposed model is presented sequentially in 

the order of each step being performed, including minimum phase extraction, delay 

extraction, and model construction. Finally, the advantages of the MAD model are 

demonstrated by numerical examples.   

7.2 MAD Model 

In this section, it is proposed that a general N-port network can be modeled in terms 

of a minimum phase system, an all-pass system, and a delay term.   
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Suppose the system is an N-port network, of which  is the S-parameter matrix.  

We propose that each element of the 

( )H s

N N×  matrix  be characterized in the form of 

a rational function and a complex phase shift term as written below, 

(H s)

( ) ( )           , 1, 2, ,ijs
ij ijH s N s e i j Nτ−= = …     (7.1) 

where  is a rational function of s , which approximates the system function without 

delay between port i  and .  The term 

( )ijN s

j ijτ  is a nonnegative real number, which represents 

the delay between port i  and .   j

The difference between this model and the traditional rational function model lies in 

the delay term.  For high-speed complex structures, delay is a very important factor and it 

cannot be exactly modeled with a rational function.  If merely a rational function is used 

to approximate the system with delay, the order of the resultant transfer function has to be 

unnecessarily high to maintain the same accuracy.  Furthermore, even if the physical 

system does not change, the model order still needs to keep increasing if the frequency 

range of interest increases. 

The proposed model overcomes the above problem by extracting the delay term 

explicitly.  As a result, a relatively low-order rational function, together with the delay 

term, can provide an accurate model.  Therefore, both model accuracy and efficiency are 

improved.  

Any stable and causal rational transfer function can be decomposed into a minimum 

phase system and an all-pass system [38].  Therefore, (7.1) can be written as 

( ) ( ) ( ) ijs
ij ij ijH s M s P s e τ−=     (7.2) 
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where ( ) ( ) ( )ij ij ijM s P s N s= , ( )ijM s  is a minimum phase system, and  is an all-pass 

system. 

( )ijP s

The minimum phase system is not only causal and stable, but also has causal and 

stable inverse. That is, all the poles and zeros of the minimum phase system are in the left 

half of the complex plane.  

The all-pass system has constant magnitude over the whole frequency range.  The 

poles and zeros of the all pass system are symmetric about the imaginary axis in the 

complex plane.  

For any stable and causal rational function , the poles are all in the left half of 

the complex plane due to the stability constraints.  However, the zeros can be anywhere 

in the complex plane except that they should be symmetric about the real axis so that real 

coefficients of the rational function are guaranteed.  For a rational function with zeros in 

the right half plane, the zeros can be reflected to the left half plane.  Therefore, the 

original system is decomposed into two systems: a minimum phase system with poles of 

the original system and the reflected zeros, and an all pass system with poles at where the 

reflected zeros are and zeros in the original right half plane. 

( )ijH s

This fact is best illustrated in Figure 7.1. The poles of the system are represented by 

crosses, and zeros are represented by circles. Any causal and stable system  is a 

multiplication of the minimum phase system 

( )ijN s

( )ijM s  and the all pass system . The 

right half plane zeros of  are reflected to those circled zeros of 

( )ijP s

( )ijN s ( )ijM s .  The circled 
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zeros of ( )ijM s

( )ij

 and poles of  cancel each other by multiplication. Thus, the rational 

function 

( )ijP s

H s  is successfully decomposed. 
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Figure 7.1 A stable and causal rational system can always be decomposed into a minimum phase system 
and an all-pass system. 

 

7.3 Minimum Phase Extraction 

From Equation (7.2), we have 

| ( ) || ( ) || |ijs
ij ijM s P s e τ−     (7.3) 

Let s = , and since | ( | 1ijj
ijP j ωτ = , we will have  

| | ( ) |ijH j M jω=       (7.4) 

For simpler expression, the functions in Equation (7.4) will be written in terms of ω  

instead of  in the discussions below.  The other expressions used below are [ ]arg , 

which represents the continuous phase, and [ ]grd , which is the corresponding group 

delay, a negative gradient of the continuous phase. 

The phase of a minimum phase system can be completely determined by its 

magnitude via the Hilbert transform [64], [65]: 
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0

2 ( ) ( )arg[ ( )]
( )( )ij
U UM dω ξ ωω ξ

π ξ ω ξ ω

∞ −
=

+ −∫     (7.5) 

where U M( ) ln | ( ) | ln | ( ) |ij ijHω ω= =

)

ω .  Therefore, from the measured or simulated data 

(ijH ω , the angle of the minimum phase part, arg[ ( )]ijM ω , can be obtained numerically 

from Equation (7.5).  After the magnitude and phase of ( )ijM ω  are determined in terms 

of the discrete data set, the orthogonal polynomial method can be used to construct the 

transfer function representation for ( )ijM ω .  According to the property of the minimum 

phase system that the energy in a minimum phase transient response occurs earlier in 

time than for a nonminimum phase waveform with the same spectral magnitude [38], 

(ijM )ω  should contain the least delay among all rational functions with the same spectral 

magnitude.  Therefore, ( )ijM ω  can be accurately constructed with a relatively low-order.  

7.4 Delay Extraction 

Once the minimum phase part of the system is separated, the rest of the system can 

be obtained from Equation (7.2).  Define 

                                    
( )

( ) ( )
( )

ijjij
ij ij

ij

H
X e

M
ωτ P

ω
ω ω

ω
−= = ×                                 (7.6) 

we have the following phase relationship,  

   arg[ ( )] arg[ ( )] arg[ ( )] arg[ ( )] arg[ ( )]ij ij ij ij ij ijX P H M Pωτ ω ω ω ω− = − = − − ω       (7.7) 

Taking the derivative of (7.7) with respect to ω  and the negative gradient gives the group 

delay, which yields, 

   
arg[ ( )] ( )ij ij ijgrd P grdτ ω φ  + =   ω      (7.8) 
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where ( ) arg ( ) arg[ ( )] arg[ ( )]ij ij ij ijX H Mφ ω ω ω = = −  ω .  Obviously, ( )ijφ ω  can be 

obtained numerically from the angle of the original system and that of the minimum 

phase system.  The phase of ( )ijH ω  can be obtained directly from the given frequency 

response.  The phase of the minimum phase system, arg ( )ijM ω   , can be calculated 

from Equation (7.5) given the magnitude of the frequency response.  Once we have 

( )ijφ ω , we can calculate the summation of the system delay ijτ  and the negative phase 

gradient of the all pass system ( )ijP ω  from Equation (7.8).  By definition, ijτ  is a 

constant independent from the frequency ω .  To estimate ijτ , we need to analyze the 

characteristics of arg[ ( )]ijgrd P ω   . 

Since ( )ijP ω  is an all-pass system, its poles and zeros exist in pairs located 

symmetrically with respect to the imaginary axis; that is, each pole corresponds to a zero 

located at its mirror point with respect to the imaginary axis and vice versa.  Additionally, 

since (ijH )ω  is a physical system, both ( )ijM ω  and ( )ijP ω  are supposed to be rational 

functions with only real coefficients and hence their poles and zeros are symmetric with 

respect to the real axis.  All the poles are located in the left half of the complex plane. 

Therefore, ( )ijP ω  can be expressed in the following form 

/ 2

1

( ) (( )
( ) (

pN
k k k k

ij
k k k k k

j a jb j a jbP
j a jb j a jb

ω ωω
ω ω=

− + − −
=

− − + − − −Π
)
)

    (7.9) 

where  is the number of poles or zeros of pN ( )ijP ω , ’s and b ’s are positive real 

numbers. 

ka k
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To simplify the discussion in this section, the symmetry of poles and zeros with 

respect to the real axis is not considered, so we write Equation (7.9) in a more general 

form as: 

1

(( )
( )

pN
k k

ij
k k k

j a jcP
j a jc

ωω
ω=

− +
=

− − +Π
)      (7.10) 

where c ’s are nonzero real numbers. Obviously, k

1

arg ( )
pN

ij k
k

P ω α
=

  =  ∑       (7.11) 

where 

( )arg arg[ ( )] arg[ ( )]
( )

k k
k k k

k k

j a jc j a jc j a jc
j a jc

ωα ω
ω

 − +
= = − + − − − − + 

k kω − +  (7.12) 

Equation (7.11) illustrates that the phase of ( )ijP ω  is the sum of phase contributions from 

each pole-zero pair.  

Next we discuss the phase contribution from a single pole-zero pair. 

As shown in Figure 7.2, 1k kα α=  when 1s jω=  and 2k kα α=  when 2s jω= .  As ω  

varies from  to , −∞ kjc kα  decreases monotonically from 0 to π− .  As ω  varies from 

 to , kjc ∞ kα  decreases monotonically from π−  to 2π− .  Here we choose the range of 

kα  such that kα  is a continuous function of ω  for ( , )ω ∈ −∞ ∞ .   

Under this condition, kα  is monotonically decreasing for ( , )ω ∈ −∞ ∞ .    Therefore,  

[ ] 0,    for ( , )kgrd α ω≥ ∈ −∞ ∞     (7.13) 

Assuming c  is finite, it is straightforward to prove from Equation (7.12) that  k

| |
lim [ ] 0kgrd
ω

α
→∞

=       (7.14) 
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Figure 7.2 Phase contribution of a pole-zero pair of the all-pass system.  

Hence, from Equation (7.11), we have 

[arg[ ( )]] 0,    for ( , )ijgrd P ω ω≥ ∈ −∞ ∞    (7.15) 

and  

| |
lim [arg[ ( )]] 0ijgrd P
ω

ω
→∞

=     (7.16) 

Considering (7.8) and (7.15), and the fact that ijτ  is a constant independent from ω , 

we propose a simple approach to estimating ijτ  as follows. 

min max[ , ]
min [ ( )]ij ijgrd

ω ω ω
τ φ ω

∈
=     (7.17) 

where minω  and maxω  are respectively the lower and upper limits of the frequency range, 

in which the data for [ ( )]ijgrd φ ω  is available.  Equation (7.17) is accurate if [ ,min max ]ω ω  

is broad enough to satisfy 

 85



min max[ , ]
min [arg[ ( )]] 0ijgrd P

ω ω ω
ω

∈
=     (7.18) 

Equation (7.18) might not be satisfied, that is, 

min max[ , ]
min [arg[ ( )]] 0ijgrd P

ω ω ω
ω δ

∈
= >     (7.19) 

In this case, the estimate of ijτ  using Equation (7.17) is not the actual delay of the system 

as it would be if [ (ijgrd )]φ ω

j

 were available in a broader frequency range.  However, this 

does not compromise the accuracy of the entire model, because Equation (7.19) means 

nothing but that the effect of the all-pass system is partially taken care of by the delay 

term.  Although we call e ijωτ−  as the delay term because it does characterize the physical 

delay, more generally speaking, it is just one term that captures the system characteristics 

in addition to the rational function.     

The algorithm of capturing the delay of the system and construct the MAD model is 

given in pseudocode in Algorithm 7.1. 

Algorithm 7.1: Delay extraction 

1. Read the frequency domain data and find the magnitude of the frequency 
response. 

2. Calculate the phase of the minimum phase system, arg[ ( )]ijM ω , using 
Equation (7.5).  U ( ) ln | ( ) |ijMω ω= .  The magnitude of the minimum 
phase system is the same as that of the original system. 

3. Remove the response of the minimum phase system from the original 
frequency response as per Equation  (7.6). The resulted system is defined 
as ( )ijX ω .   

4. Group delay of ( )ijX ω  from step 3 is the summation of the delay term and 
the negative phase gradient of the all pass system. 

5. Separate the delay from step 4.  The delay is found within the valid 
frequency range. 

6. Approximate the system without delay using the orthogonal polynomial 
approximation described in Chapter 4. 
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7.5 Numerical Results 

7.5.1 Numerical validation 

To validate the proposed method, we generate the frequency domain data from a 

known system, which is a rational function with a certain amount of delay inserted.  Here, 

we consider two cases, (1) the rational function is a minimum phase system, and (2) it is 

a nonminimum phase system.  Most realistic systems are in the category (2).  Then the 

delay is extracted by the proposed method and compared with the original inserted 

amount, which is 0.3 ns for both cases.  

The group delay after minimum phase extraction is illustrated in Figure 7.3 for both 

cases.   

Ideally, the group delay in Figure 7.3(a) should be constant over the whole frequency 

range, since it only contains the contribution from the delay term.  It is actually not 

constant due to numerical error in minimum phase extraction process. The original data is 

only available in a finite frequency range. However, the Hilbert transform described in 

Equation (7.5), which relates the magnitude and phase of the minimum phase subsystem, 

is calculated over the frequency from zero to infinity. Hence, the minimum phase 

extraction becomes inaccurate when frequency approaches the band limit of the original 

data. The minimum phase system should ideally have the same magnitude as the original 

data. Hence, we can determine the valid frequency range for delay extraction by 

comparing the extracted minimum phase magnitude with the original magnitude.  In 

Figure 7.3(b), the group delay contains both the delay term and the all-pass term.   
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Figure 7.3 Group delay after minimum phase extraction. (a) Group delay for case 1 and (b) group delay for 
case 2. 

From Figure 7.3(a), the delay is found to be 0.301 ns, which gives an error of 0.33% 

percent. From Figure 7.3(b), the peak in the low frequency reflects the group delay of the 

all pass term. Since the all pass term has positive group delay, the delay in the system 

should be the minimum group delay in the valid frequency range. The delay in this case 

is found to be 0.3019 ns, which gives an error of 0.63%. In both cases, we will have the 

percentage error under 1%, which demonstrates the accuracy of the proposed method. 

7.5.2 Coupled via delay extraction 

Figure 7.4 shows the delay extraction for four-port data of coupled via.  The data is 

calculated from CST field solver.  The delay is extracted for different ports.  Below are 

plots showing the delay for data: S , , , , , , , ,  and .   11 12S 13S 14S 22S 23S 24S 33S 34S 44S

From the group delay versus frequency plots, it is obvious that the delay in each port 

can be effectively extracted.  The vertical value of the point in each plot shows the delay 

between the corresponding ports. 
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  Figure 7.4 Delay extraction for coupled via. 
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7.5.3 A transmission line with discontinuities 

Figure 7.5 shows a transmission line with discontinuities. The length of the line is 

7 in. The scattering parameter is measured from 0.3 MHz to 6 GHz. A total of 1601 

frequency samplings are provided at a spacing of 3.75 MHz. 

 
Figure 7.5 Transmission line with discontinuities. 

Since the delay is different between different ports, the delay extraction is 

implemented on all four scattering parameters.  Figure 7.6 shows the group delay after 

the minimum phase subsystem has been removed from the frequency response. 
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Figure 7.6 Group delay after minimum phase extraction. 
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To eliminate the effect of numerical noise amplified by the gradient operation, 

moving average filtering is performed after taking the gradient. The amount of delay is 

determined by finding the minimum group delay within the valid frequency range. The 

delays extracted are approximately 0.9721 ns for , 1.192 ns for , 1.224 ns for , 

and 0.6912 ns for S .  

11S 12S 21S

22

Once the delay is extracted from the frequency response of the system, we only 

need to approximate the rest of the system using the approach discussed in Chapter 4.  

From Figure 7.6, it is apparent that, with the minimum phase subsystem removed, 

the phase gradient is not flat over the whole frequency.  This shows the presence of the 

all-pass term in this case.  The results below will distinguish the advantage of the MAD 

method from other methods.   
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Figure 7.7 The  parameter obtained respectively by the traditional rational function method, the MAD 
method, and the minimum-phase-plus-delay method. 

12S

The system is modeled respectively by traditional rational function method, the 

MAD method and the minimum-phase-plus-delay method. Figure 7.7 shows the 

magnitudes and phases for  obtained respectively by the three methods, which all use 12S
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the same order of 40. It is clear that the MAD method provides much better accuracy than 

the other two methods. The minimum-phase-plus-delay model provides slightly worse 

accuracy than the MAD method in magnitude but significantly larger error in phase. The 

MAD method shows excellent accuracy in both magnitude and phase.  

7.6 Conclusion 

A new black box modeling approach called MAD method is presented by 

decomposing a realistic system into a minimum phase system, an all-pass system and a 

delay term. This method correctly captures the major physical characteristics of high-

speed networks.  Hence, it significantly improves the modeling accuracy and efficiency 

compared to earlier methods.  
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8 CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

In this work, the black box modeling of passive systems characterized by simulated 

or measured frequency domain data is discussed.  Rational function approximation using 

orthogonal polynomials was shown to be an efficient method. Based on the results 

obtained, the following conclusions can be drawn. 

• Rational function approximation using orthogonal polynomials is shown to be an 

efficient and accurate method for black box modeling. The properties of a 

physical linear system are incorporated in the approximation and thus stability 

and causality are inherently ensured. Passivity is enforced by a systematic 

approach based on perturbation theory.  

• The necessity and effect of data preprocessing including noise filtering and 

passivity check are demonstrated. Noise filtering of the input data reduces the 

required order of the resultant macromodel and hence improves the modeling 

efficiency. The passivity enforcement to the input data releases the difficulty of 

the later passivity enforcement to the macromodel.  

• A new method called MAD method is presented to model a system by a minimum 

phase term, an all pass term, and a delay term. A systematic procedure is 

developed to implement this method. As demonstrated by numerical results, this 

new method improves both the accuracy and efficiency of the modeling process. 

The fundamental reason is that the MAD model precise captured the physical 

characteristics of the system. 
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8.2 Future Work 

Possible future work includes research on more efficient model order estimation 

and passivity enforcement methods for the macromodel. The current model order 

estimation involves finding matrix eigenvalues, which is computationally expensive, 

especially for high order systems. The current passivity enforcement method is limited by 

the nature of perturbation theory and therefore requires the passivity violation be 

relatively small. A better approach should be incorporated into the initial construction of 

the macromodel. 
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