
A FAST MULTI-PURPOSE CIRCUIT SIMULATOR USING THE LATENCY
INSERTION METHOD

BY

PATRICK KUANLYE GOH

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor José E. Schutt-Ainé, Chair
Professor Jennifer T. Bernhard
Professor Andreas C. Cangellaris
Professor Martin D. F. Wong

ABSTRACT

With the increase in the density of interconnects and the complexity of high-speed

packages, signal integrity becomes an important aspect in the design of modern de-

vices. Circuit designers are constantly in need of robust circuit simulation methods

that are able to capture the complicated electromagnetic behaviors of complex cir-

cuits, and do it in a fraction of the time taken by conventional circuit simulators.

As a result, there is a constant need for and push toward faster and more accurate

circuit simulation techniques.

The latency insertion method (LIM) has recently emerged as an efficient approach

for performing fast simulations of very large circuits. By exploiting latencies in the

circuit, LIM is able to solve the voltages and the currents in the circuit explicitly

at each time step. This results in a computationally efficient algorithm that is able

to simulate large circuits significantly faster than traditional matrix inversion-based

methods such as SPICE.

In this work, we propose the use of LIM as a multi-purpose circuit simulator.

While LIM originated mainly as a means for performing fast transient simulations of

high-speed interconnects characterized by RLGC elements, we aim to provide addi-

tional derivations of and modifications to LIM in order to formulate a robust circuit

simulator that is both fast and accurate.

ii

To all graduate students
striving to make a difference,

no matter how small

iii

ACKNOWLEDGMENTS

“If I have seen a little further it is by standing on the shoulders of giants.”

Sir Isaac Newton

It is said that we are like kites in the sky, soaring high not because we can fly, but

because we are lifted by the wind, and held at an angle by the string. I have always

believed that everything that I have accomplished, and all that I have earned to bring

me to where I am today, is earned not by virtue of any distinction on my part, but

because I have been blessed to be surrounded by such kind people, who have made

me a better person than I really am. In this short page, I would like to express my

sincere gratitude, for all the support that I have acquired from everyone around me.

Following is a short list of all the individuals that I can remember. Apologies for any

that I missed.

My advisor, Prof. José Schutt-Ainé; committee members—Prof. Jennifer Bern-

hard, Prof. Andreas Cangellaris and Prof. Martin Wong; group members—Dmitri

Klokotov, Pavle Milosevic, Si Win, Tom Comberiate and Daniel Chang; and the

people at Cadence—Jilin Tan, Ping Liu and Feras Al-Hawari.

Last and certainly not least, I will always be grateful to my parents and my sister

for their love, support and understanding as I pursued my dream. I might be a long

way from where I started, but I certainly have not forgotten my way home.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER 1 INTRODUCTION . 1
1.1 Overview . 1
1.2 Objective . 2
1.3 Organization . 4

CHAPTER 2 BACKGROUND . 6
2.1 Basic LIM Formulation . 6
2.2 Advancement in LIM . 11

2.2.1 Block-LIM . 11
2.2.2 Stability Analysis . 13
2.2.3 Dependent Sources . 14
2.2.4 Example . 18

CHAPTER 3 PARTITIONED LATENCY INSERTION METHOD (PLIM) . 21
3.1 Introduction . 21
3.2 Motivation and Method . 22
3.3 Example . 24

CHAPTER 4 BLACKBOX MACROMODELING IN LIM 28
4.1 Introduction . 28
4.2 MOR via Vector Fitting . 29

4.2.1 Vector Fitting for System Identification 29
4.2.1.1 Modification for Complex Poles 34
4.2.1.2 Modification for Fitting Vector Functions 38
4.2.1.3 Modification for Fast Fitting Vector Functions 39
4.2.1.4 Stability and Starting Poles Selections 40
4.2.1.5 Summary . 41

4.2.2 Passivity Enforcement . 41
4.2.2.1 Passivity Assessment 43
4.2.2.2 Passivity Enforcement 45
4.2.2.3 Summary . 51

v

4.2.3 Recursive Convolution . 51
4.2.4 Example . 55

4.3 S-Parameter Fast Convolution . 57
4.3.1 Fast Convolution Using δ-Function Convolution 59
4.3.2 DC Extraction and Causality Enforcement 61
4.3.3 Example . 64

4.4 A Comparative Study of MOR via Vector Fitting and Fast
Convolution . 65

4.5 Integrating Blackbox in LIM . 69

CHAPTER 5 CMOS CIRCUIT SIMULATION IN LIM 73
5.1 Introduction . 73
5.2 CMOS Circuit Simulation Using the Shichman-Hodges Model 73
5.3 Multi-Rate Simulation for CMOS Circuit 75
5.4 Examples . 77

5.4.1 RAM Circuit . 78
5.4.2 Ripple-Carry Adder . 80

5.5 Summary . 81

CHAPTER 6 PLL SIMULATIONS . 82
6.1 Introduction . 82
6.2 Behavioral Simulations of PLLs Based on a Leapfrog Voltage-Phase

Formulation . 83
6.3 Transistor Level Simulations of PLLs Using LIM 88
6.4 Additional Simulations and Discussions 95
6.5 Summary . 99

CHAPTER 7 CONCLUSION AND FUTURE WORK 100
7.1 Conclusion . 100
7.2 Future Work . 101

REFERENCES . 104

vi

LIST OF TABLES

2.1 Comparison of runtime for LIM and SPECTRE. 10

3.1 Comparison of runtime for LIM and PLIM. 27

4.1 RMS error of the model before and after passivity enforcement. . . . 55
4.2 Data file descriptions. 67
4.3 Benchmark for MOR and fast convolution techniques. 68

6.1 PLL parameters. 86

vii

LIST OF FIGURES

2.1 Node topology. 7
2.2 Branch topology. 7
2.3 RLGC grid. 8
2.4 Outputs at nodes 4 and 16 of Fig 2.3 for both methods. 9
2.5 Comparison of runtime for LIM and SPECTRE. 10
2.6 Node with dependent sources. 16
2.7 Branch with dependent sources. 16
2.8 Example circuit with dependent sources. 19
2.9 Sweep of eigenvalues of the amplification matrix A′. Left: Broad

view. Right: Expanded view. 19
2.10 Simulation of circuit in Fig. 2.8 with ∆t = 6.8 × 10−11 s. Left:

Voltage at node 1. Right: Voltage at node 4. 20
2.11 Simulation of circuit in Fig. 2.8 with ∆t = 6.9× 10−11 s 20

3.1 Transmission line connected to an external network. 23
3.2 LIM enabled circuit of Fig. 3.1. 23
3.3 Simulation algorithm for partitioned LIM. 25
3.4 Example circuit with partitions of different latencies. 26
3.5 Simulation of circuit in Fig. 3.4. Left: Voltage at node 1a. Right:

Voltage at node 4c. 26

4.1 Flowchart of the vector fitting process. 42
4.2 Determination of the band of passivity violation. 44
4.3 Flowchart of the passivity enforcement process. 52
4.4 Comparison of S11 of the measured data and the model. 56
4.5 Comparison of S12 of the measured data and the model. 56
4.6 Comparison of S21 of the measured data and the model. 56
4.7 Comparison of S22 of the measured data and the model. 57
4.8 Eigenvalues of the dissipation matrix. Negative values indicate pas-

sivity violation. 57
4.9 Time-domain response. 58
4.10 Time-domain scattering parameter responses for a microstrip show-

ing the rapid decay of the function. Only the first 200 points from
the IFFT are shown. 60

4.11 Example of DC extraction on the Smith chart. 62

viii

4.12 Example of DC extraction process on S11. 65
4.13 Impulse response of S11 showing the rapid decay of the function. . . . 65
4.14 Time-domain response using the fast δ-function convolution. 66
4.15 Time-domain response using the fast δ-function convolution with-

out DC extraction. 66
4.16 Simulation comparisons for MOR and fast convolution for Bbx-1.

Left: Passive MOR. Right: Fast convolution. 69
4.17 Simulation comparisons for MOR and fast convolution for Bbx-2.

Left: Passive MOR. Right: Fast convolution. 69
4.18 Example circuit containing a blackbox model. 72
4.19 Simulated voltage waveforms for nodes 1 and 4 of the circuit in Fig. 4.18. 72

5.1 CMOS NAND. 76
5.2 Simulation result of a CMOS NAND. 76
5.3 Partitioned CMOS NAND. 77
5.4 Simulation result of the partitioned CMOS NAND showing a LIM

simulation with a time step of 0.1 ns (Vo-0.1ns), a LIM simulation
with a time step of 10 ns (Vo-10ns) and a multi-rate LIM simulation
(Vo-MR). 78

5.5 LIM simulation of RAM circuit. 79
5.6 SPECTRE simulation of RAM circuit. 79
5.7 Chain of eight ripple-carry adders. 80
5.8 Simulation of ripple-carry adders in LIM (solid lines) and multi-rate

LIM (dotted lines). 81

6.1 Block diagram of a PLL. 84
6.2 Output frequency of PLL during lock-in. 87
6.3 Phase error of PLL during lock-in. 87
6.4 Output frequency of PLL during acquisition. 88
6.5 Output frequency of PLL for a large step change in input frequency

illustrating a pull-out process. 89
6.6 XOR phase detector. 90
6.7 Low pass filter. 90
6.8 VCO. 91
6.9 PLL tuning voltage during acquisition. 92
6.10 PLL tuning voltage during acquisition from behavioral model. 93
6.11 Response of XOR phase detector. 94
6.12 Response of VCO. 95
6.13 PLL tuning voltage for a 39 MHz input signal. 96
6.14 PLL tuning voltage for a 39 MHz input signal from behavioral model. 96
6.15 PLL tuning voltage for a long simulation. 97
6.16 PLL tuning voltage for a long simulation from behavioral model. . . . 98
6.17 PLL tuning voltage for different fictitious latency values. 98

ix

CHAPTER 1

INTRODUCTION

1.1 Overview

With the advancement of recent technology and the ongoing effort to achieve faster

and smaller electronic systems, developers continue to push the envelope in terms

of operating frequencies and design densities. Circuits operating in the gigahertz

range, with dense and complex three-dimensional interconnect schemes, are common

in the industry today. This trend, however, has led to a number of issues in the

design and operation of modern circuits. The increase in signal speed leads to an

increase in the significance of signal integrity issues such as crosstalk, dispersion,

attenuation, reflection, delay and distortion. In addition, the increase in density of

interconnects leads to very large circuits which render their analysis more challenging

from a runtime perspective. As a result, the simulation of very large networks for

signal integrity analysis has become a prominent subject of research in the past few

decades [1, 2].

In the field of interconnect simulations, current research includes the work on

macromodeling and model-order reduction, which deals with approximating the net-

work transfer functions by a smaller and simplified representation that captures the

main behavior of the network over the frequency range of interest, and the research on

fast time-domain circuit simulators which deals with either special types of circuits

such as transmission lines or power distribution networks or more general circuits

provided by an extractor. Some examples of past research on macromodeling and

1

model-order reduction can be found in [3–17]. In [3–5], the method of characteris-

tics is used to transform the partial differential equations of transmission lines into

ordinary differential equations. The method can be applied in both the time and fre-

quency domain and can be extended to handle lossy [5] and multiconductor lines [6].

In [7–11], a least square approximation is used to derive a transfer function repre-

sentation of the system in the form of a rational function. The resulting poles and

residues are then easily converted into a set of ordinary differential equations in the

time domain. More recent work in this area has focused on ensuring the passivity of

the resulting approximation [12–16]. In addition, model-order reduction techniques

such as the moment matching technique have been applied to reduce the number

of poles by capturing only the dominant poles of the system [17]. Research efforts

on fast time-domain circuit simulators are typically derived from the finite-difference

time-domain (FDTD) algorithm which is then applied to transmission lines [18, 19].

The latency insertion method (LIM) [20], which is the subject of this research, ini-

tially arose as a fast time-domain simulation method for the transient simulations of

interconnects.

1.2 Objective

The simulation of very large networks is a common and prevailing problem in the

design of integrated circuits. In the field of computer-aided design, large networks

are characterized by a netlist which contains a large number of nodes and circuit

elements. Simulations of such circuits are typically very time-consuming and suffer

from large memory requirements which can be impractical in certain scenarios. For

this reason, there has been a constant push towards faster circuit simulation methods

that are able to handle large circuits in a fraction of the time of conventional circuit

simulators.

2

The Simulation Program with Integrated Circuit Emphasis (SPICE) [21] is the

current industry standard for general-purpose circuit simulators. SPICE utilizes the

modified nodal analysis (MNA) method which solves a set of linear equations con-

structed from the circuit. The main reasons for the popularity of SPICE are: (1)

its general-purpose nature, in that it is able to simulate almost all types of circuit

elements, (2) its accuracy, and (3) its open source nature and long standing in the

industry. However, SPICE is not without its weaknesses. Its reliance on forming large

matrix systems results in large memory requirements and the subsequent matrix in-

version process is inefficient in terms of runtime. Also, when nonlinear devices are

present, SPICE relies on the Newton-Raphson iterative process which suffers from

convergent problems and further speed issues due to the expensive LU decompo-

sition process. As a result, there have been many commercial tools which aim at

improving the many facets of SPICE for faster circuit simulations; these tools include

SPECTRE [22], ELDO [23] and Analog FastSPICE [24].

In this work, we propose the use of the latency insertion method as a multi-purpose

circuit simulator. The aim is to provide LIM with the necessary derivation and

modifications in order to achieve a circuit simulator that is:

1. Able to handle various circuit elements such as resistors, inductors, capacitors,

sources, dependent sources, transistors and even blackbox models.

2. As accurate as SPICE.

3. Faster than SPICE (ideally a linear runtime with respect to the number of

nodes).

4. Able to perform advanced speed-up methods such as circuit partitioning and

multi-rate simulations.

3

1.3 Organization

The remainder of the dissertation is organized as follows. Chapter 2 presents some

background information on the latency insertion method. This includes the basic LIM

derivation and recent advancements in LIM such as Block-LIM, its stability analysis

and the recently developed formulation for dependent sources. The chapter concludes

with some examples and comparison with existing methods.

Chapter 3 presents the newly developed partitioned latency insertion method which

utilizes a generalized stability criterion. By partitioning circuits with multiple laten-

cies and utilizing a different time step for each partition, further speed-up is obtained

in the LIM. The time step for each partition is selected based on its maximum stable

time step using the stability criterion. A numerical example is presented to demon-

strate the method and its improvement over the traditional LIM.

Chapter 4 illustrates how blackbox macromodeling techniques can be used in con-

junction with the LIM. The chapter starts with an overview of two different blackbox

macromodeling techniques, which are model-order reduction via vector fitting and

a fast convolution method. Related issues with each method such as passivity and

causality enforcements are discussed in detail. Next, the integration process of per-

forming LIM simulations with blackbox macromodels is illustrated and examples

presented. The chapter concludes with a comparative study of the two methods.

In Chapter 5, the recently developed CMOS simulation technique using the LIM is

presented. The method is extended to perform multi-rate simulations, and numerical

examples, which show the accuracy and computational efficiency of the new method,

are given.

Chapter 6 explores the subject of analog circuit simulations using the LIM. Specif-

ically, LIM is applied to the simulations of phase-locked loops (PLLs). Two different

approaches are shown, first on a behavioral level by using the PLL governing equa-

4

tions, and next, on a full transistor level. Comparisons between the two methods and

with existing commercial circuit simulators are depicted.

Finally, Chapter 7 presents a short conclusion and proffers some future work on

the subject.

5

CHAPTER 2

BACKGROUND

2.1 Basic LIM Formulation

In this section, the formulation of the basic LIM is presented. LIM can be applied

to any arbitrary network, where it is assumed that through the use of Thévenin and

Norton transformations, the branches and nodes of the circuit can be described by

a general topology. Each node is represented by a parallel combination of a current

source, a conductance, and a capacitor to ground. The connection between two

different nodes forms a branch and it is represented by a series combination of a

voltage source, a resistor and an inductor. Fig. 2.1 shows a node i with k branches

connected to it, while Fig. 2.2 shows a branch connecting nodes i and j. The voltage

at node i is defined as Vi while the current flowing from node i to j is defined as

Iij. In order to solve for the voltages and currents in the circuit, LIM discretizes

the time variable whereby the voltages and currents are collated in half time steps.

Specifically, the voltages are solved at half time steps while the currents are solved at

full time steps. From Fig. 2.1, writing Kirchhoff’s current law (KCL) at node i yields

Ci

(
V
n+1/2
i − V n−1/2

i

∆t

)
+GiV

n−1/2
i −Hn

i = −
Mi∑
k=1

Inik (2.1)

where the superscript n is the index of the current time step, ∆t is the time step and

Mi is the number of branches connected to node i. Solving for the unknown voltage

6

CiGiHi

Vi

Ii1

Ii2Ii3

Iik

Figure 2.1: Node topology.

Lij Rij
-+

Eij

Vi Vj
Iij

Figure 2.2: Branch topology.

yields

V
n+1/2
i = V

n−1/2
i +

∆t

Ci

(
−

Mi∑
k=1

Inik −GiV
n−1/2
i +Hn

i

)
(2.2)

for i = 1, 2, ..., Nn, where Nn is the number of nodes in the circuit.

From Fig. 2.2, writing Kirchhoff’s voltage law (KVL) at branch ij yields

V
n+1/2
i − V n+1/2

j = Lij

(
In+1
ij − Inij

∆t

)
+RijI

n
ij − E

n+1/2
ij . (2.3)

Solving for the unknown current yields

In+1
ij = Inij +

∆t

Lij

(
V
n+1/2
i − V n+1/2

j −RijI
n
ij + E

n+1/2
ij

)
. (2.4)

The computation of the node voltages and the branch currents are alternated as time

progresses in a leapfrog manner. In this aspect, LIM is similar to Yee’s algorithm

for the solution of Maxwell’s equations in the finite-difference time-domain (FDTD)

method [25]. It is clear that the LIM algorithm relies on the latencies in the network

to perform the leapfrog time stepping formulation. Thus, at every node, a capacitor

to ground has to be present. If it is not, a small fictitious capacitor is inserted.

7

1 nH 1 Ω

1
pF

1 Ω
1

pF
1Ω

1
pF

1 Ω
1

pF
1 Ω

1 nH 1 Ω 1 nH 1 Ω

 1 nH

 1 Ω

 1 nH

 1 Ω

 1 nH

 1 Ω

1 nH 1 Ω 1 nH 1 Ω 1 nH 1 Ω

1
pF

1 Ω
1

pF
1 Ω

1
pF

1 Ω
1

pF
1 Ω 1 nH

 1 Ω

 1 nH

 1 Ω

 1 nH

 1 Ω

1 nH 1 Ω 1 nH 1 Ω 1 nH 1 Ω

1
pF

1 Ω
1

pF
1 Ω

1
pF

1 Ω
1

pF
1 Ω 1 nH

 1 Ω

 1 nH

 1 Ω

 1 nH

 1 Ω

1 nH 1 Ω 1 nH 1 Ω 1 nH 1 Ω

1 pF1 Ω 1 pF1 Ω 1 pF1 Ω 1 pF1 Ω

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

 1 nH

 1 Ω

 1 nH

 1 Ω

 1 nH

 1 Ω

Figure 2.3: RLGC grid.

Similarly, small fictitious inductors are inserted into branches without latencies. As

with the traditional FDTD method [25], LIM is only conditionally stable. In other

words, there is an upper bound on the time step that will result in a numerically

stable solution to (2.2) and (2.4). This will be studied in the following section.

Before we proceed, we present a simple example to illustrate the benefit of LIM over

conventional SPICE-like circuit simulators. Consider the 4×4 RLGC grid-type circuit

shown in Fig. 2.3, which represents a general interconnect topology. The circuit is

8

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
-9

-2

0

2

4

6

8

10

12
x 10

-3

Time(s)

V
o
lt
a
g
e
(V
)

V(4)-LIM

V(4)-SPECTRE

V(16)-LIM

V(16)-SPECTRE

Figure 2.4: Outputs at nodes 4 and 16 of Fig 2.3 for both methods.

driven at node 1 by a current source with a trapezoidal pulse with rise and fall times

of 10 ps, a pulse width of 100 ps and a magnitude of 6 A. LIM is used to simulate

the circuit with a time step equal to (risetime)/10 = 1 ps in order to accurately

capture behaviors at the rising and falling edges of the input. The simulation time

is 4 ns. For comparison, the same circuit is also simulated in SPECTRE [22], a

commercial simulation tool from Cadence Design Systems Inc., which utilizes the

SPICE-like modified nodal analysis (MNA) method. In both cases, the simulations

are performed on a Linux server with Intel Xeon 3.16 GHz processors and 32 GB of

RAM. The output at nodes 4 and 16 are compared and shown in Fig. 2.4. Comparable

accuracy is observed between the two methods. Next, larger grids are constructed

and simulated and the runtime for each method is recorded in Table 2.1 and shown

in Fig. 2.5. We see that LIM exhibits a linear numerical complexity with respect to

the number of nodes and clearly outperforms SPECTRE in this example.

Before concluding this section, we present two alternate formulations for the LIM

algorithm. In (2.1) and (2.3), the terms GiV
n−1/2
i and RijI

n
ij are used for the con-

9

Table 2.1: Comparison of runtime for LIM and SPECTRE.

Circuit Size
nodes
(LIM)

nodes
(SPECTRE)†

SPECTRE (s) LIM (s)

20 × 20 400 1160 0.15 1.53
40 × 40 1600 4720 2.14 6.25
60 × 60 3600 10680 25.73 14.23
80 × 80 6400 19040 140.59 25.71

100 × 100 10000 29800 445.77 40.64
120 × 120 14400 42960 945.00 62.89

† In SPECTRE and other SPICE-like simulators, the connection between the
resistor and inductor in the branch is treated as an extra node.

0 15000 30000 45000
0

200

400

600

800

1000

nodes (SPECTRE)

R
u
n
ti
m
e
 (
s
)

SPECTRE

LIM

Figure 2.5: Comparison of runtime for LIM and SPECTRE.

ductance and resistance terms respectively. This is the fully explicit formulation.

An alternate formulation is possible by substituting the terms GiV
n+1/2
i and RijI

n+1
ij

in place of the aforementioned conductance and resistance terms. This is the fully

implicit formulation where the updating equations of (2.2) and (2.4) are now given

by the following two equations:

V
n+1/2
i =

(
Ci
∆t

+Gi

)−1

·

(
Ci
∆t
V
n−1/2
i −

Mi∑
k=1

Inik +Hn
i

)
(2.5)

10

In+1
ij =

(
Lij
∆t

+Rij

)−1

·
(
Lij
∆t

Inij + V
n+1/2
i − V n+1/2

j + E
n+1/2
ij

)
. (2.6)

A third alternate formulation is possible by substituting the conductance and resis-

tance terms as Gi

(
V
n+1/2
i + V

n−1/2
i

)
/2 and Rij

(
In+1
ij + Inij

)
/2 respectively. This is

the semi-implicit formulation which will be utilized in the Block-LIM formulation in

the next section.

2.2 Advancement in LIM

In this section, the recent advancements in LIM are presented. First the vector-

matrix LIM or Block-LIM is presented. Next a stability analysis to determine the

maximum stable time step for a LIM simulation is performed using the newly in-

troduced Block-LIM formulation. This leads to the definition of the amplification

matrix. Finally, the modifications to include dependent sources are described, along

with the resulting modifications to the amplification matrix.

2.2.1 Block-LIM

In this section, the formulation of the vector-matrix version of LIM or Block-

LIM [26] is presented. From (2.1), we may write the semi-implicit formulation as

Ci

(
V
n+1/2
i − V n−1/2

i

∆t

)
+Gi

(
V
n+1/2
i + V

n−1/2
i

2

)
−Hn

i = −
Mi∑
k=1

Inik. (2.7)

Equation (2.7) can then be written in a vector-matrix formulation as

C

(
vn+1/2 − vn−1/2

∆t

)
+

1

2
G
(
vn+1/2 + vn−1/2

)
− hn = −Min (2.8)

where v is the node voltage vector of dimension Nn, i is the branch current vector of

dimension Nb, C and G are diagonal matrices respectively of dimensions Nn × Nn,

11

with the values of the capacitors and conductances at each node on the main diagonal,

h is a vector of dimension Nn containing all the current sources at the nodes and M

is the Nn ×Nb incidence matrix defined as follows:

Mqp = 1 if branch p is incident at node q and the

current flows away from node q

Mqp = −1 if branch p is incident at node q and the

current flows into node q

Mqp = 0 if branch p is not incident at node q

Solving (2.8) for vn+1/2 yields

vn+1/2 =

(
C

∆t
+

G

2

)−1 [(
C

∆t
− G

2

)
vn−1/2 + hn −Min

]
. (2.9)

Similarly, we may write the semi-implicit formulation of (2.3) in vector-matrix form

as

MTvn+1/2 =
L

∆t

(
in+1 − in

)
+

R

2

(
in+1 + in

)
− en+1/2 (2.10)

where L and R are diagonal matrices respectively of dimensions Nb × Nb, with the

values of the inductances and resistances at each branch on the main diagonal, and e

is a vector of dimension Nb containing all the voltage sources at the branches. Solving

(2.10) for in+1 yields

in+1 =

(
L

∆t
+

R

2

)−1 [(
L

∆t
− R

2

)
in + en+1/2 + MTvn+1/2

]
. (2.11)

Equations (2.9) and (2.11) can then be used in place of (2.2) and (2.4) as the update

equations to calculate the voltage and currents at each time step.

12

2.2.2 Stability Analysis

The advantage of the vector-matrix formulation lies in its ability to accurately

predict if a time step will be stable. To see this, we return to (2.9) and (2.11) and

expand them to get

vn+1/2 = P+P−vn−1/2 −P+Min + P+hn (2.12)

in+1 = Q+Q−in + Q+MTvn+1/2 + Q+en+1/2 (2.13)

where we have made the definitions

P+ =

(
C

∆t
+

G

2

)−1

P− =

(
C

∆t
− G

2

)
(2.14)

Q+ =

(
L

∆t
+

R

2

)−1

Q− =

(
L

∆t
− R

2

)
. (2.15)

Substituting (2.12) into (2.13) and rearranging the terms, we obtain

in+1 = Q+MTP+P−vn−1/2 +
(
Q+Q− −Q+MTP+M

)
in

+Q+en+1/2 + Q+MTP+hn.
(2.16)

Equations (2.12) and (2.16) can then be grouped together to obtain

 vn+1/2

in+1

 =

 P+P− −P+M

Q+MTP+P− Q+Q− −Q+MTP+M


 vn−1/2

in


+

 0 P+

Q+ Q+MTP+


 en+1/2

hn

 .
(2.17)

13

Equation (2.17) defines a discrete linear time-invariant system (DLTI) in the form of

x(t+ 1) = Ax(t) + Bu(t). (2.18)

Theorem 1 : The DLTI given in (2.18) is asymptotically stable if and only if all the

eigenvalues of A have magnitude strictly smaller than 1. The reader is referred to [27]

for a proof of this theorem.

Comparing (2.17) and (2.18), we define the matrix A as

A =

 P+P− −P+M

Q+MTP+P− Q+Q− −Q+MTP+M

 (2.19)

and call it the amplification matrix since in the absence of input, the voltages and

the currents in the circuit will be amplified by the matrix A at each time step. From

Theorem 1, we see that all the eigenvalues of the amplification matrix defined in

(2.19) must have magnitude strictly smaller than 1 for the simulation to be stable.

Thus, we can use the amplification matrix to predict the stability of a time step ∆t.

2.2.3 Dependent Sources

In this section, we develop the voltage and current update equations in the presence

of dependent sources, and the resulting modification to the amplification matrix [28–

31].

Fig. 2.6 shows the node topology with a voltage-controlled current source (VCCS)

and a current-controlled current source (CCCS) connected to it. Writing the KCL at

14

the node, in semi-implicit form, gives

Ci

(
V
n+1/2
i − V n−1/2

i

∆t

)
+Gi

(
V
n+1/2
i + V

n−1/2
i

2

)
−Hn

i

−Bik

(
V
n+1/2
k + V

n−1/2
k

2

)
− SipInp = −

Mi∑
k=1

Inik

(2.20)

where Bik is the coefficient of the VCCS at node i due to node k and Sip is the

coefficient of the CCCS at node i due to branch p. Equation (2.20) can then be

written in vector-matrix form as

C

(
vn+1/2 − vn−1/2

∆t

)
+

1

2
G
(
vn+1/2 + vn−1/2

)
− hn

−1

2
B
(
vn+1/2 + vn−1/2

)
− Sin = −Min

(2.21)

which can be rearranged to read

C

(
vn+1/2 − vn−1/2

∆t

)
+

1

2
G′
(
vn+1/2 + vn−1/2

)
− hn = −M′in (2.22)

where

G′ = G−B and M′ = M− S. (2.23)

Solving (2.22) for vn+1/2 yields

vn+1/2 =

(
C

∆t
+

G′

2

)−1 [(
C

∆t
− G′

2

)
vn−1/2 + hn −M′in

]
(2.24)

which is the voltage update equation in the presence of dependent sources.

Fig. 2.7 shows the branch topology with a voltage-controlled voltage source (VCVS)

and a current-controlled voltage source (CCVS) connected to it. KVL at the branch,

15

CiGiHi

Vi

Ii1

Ii2Ii3

Iik

SipIpBikVk

Figure 2.6: Node with dependent
sources.

Lij Rij
-+

Eij

Vi Vj
Iij

-+- +

TijkVk ZijpqIpq

Figure 2.7: Branch with dependent
sources.

in semi-implicit form, gives

V
n+1/2
i − V n+1/2

j = Lij

(
In+1
ij −Inij

∆t

)
+Rij

(
In+1
ij +Inij

2

)
− En+1/2

ij

−TijkV n+1/2
k − Zijpq

(
In+1
pq + Inpq

2

) (2.25)

where Tijk is the coefficient of the VCVS at branch ij due to node k and Zijpq is the

coefficient of the CCVS at branch ij due to branch pq. Writing (2.25) in vector-matrix

form and rearranging the terms, we obtain

MT ′vn+1/2 =
L

∆t

(
in+1 − in

)
+

R′

2

(
in+1 + in

)
− en+1/2 (2.26)

where

MT ′ = MT + T and R′ = R− Z. (2.27)

Solving (2.26) for in+1 yields

in+1 =

(
L

∆t
+

R′

2

)−1 [(
L

∆t
− R′

2

)
in + en+1/2 + MT ′vn+1/2

]
. (2.28)

16

Equations (2.24) and (2.28) then give the new update equations for circuits with

dependent sources. Note that in the absence of dependent sources, all the G′, M′,

MT ′ and R′ will converge to G, M, MT and R, and (2.24) and (2.28) will converge

to (2.9) and (2.11) as expected.

In order to analyze the stability of a time step in the presence of dependent sources,

we proceed as in the previous section, to obtain the new amplification matrix A′,

where we now have

A′ =

 P+
′P−

′ −P+
′M′

Q+
′MT ′P+

′P−
′ Q+

′Q−
′ −Q+

′MT ′P+
′M′

 (2.29)

where

P+
′ =

(
C

∆t
+

G′

2

)−1

P−
′ =

(
C

∆t
− G′

2

)
(2.30)

Q+
′ =

(
L

∆t
+

R′

2

)−1

Q−
′ =

(
L

∆t
− R′

2

)
. (2.31)

From Theorem 1, we see that all the eigenvalues of the amplification matrix A′ de-

fined in (2.29) must have magnitude strictly smaller than 1 for the simulation with

dependent sources to be stable. This is written compactly as follows:

|λi (A′(∆t))| < 1 i = 1, 2, . . . , Nn +Nb. (2.32)

Thus, we can use the new amplification matrix A′ to predict the stability of a time

step ∆t in the presence of dependent sources.

17

2.2.4 Example

In this section, the methods presented in the previous sections are applied to per-

form a LIM simulation in the presence of dependent sources. The developed stability

criteria will also be verified.

Consider the circuit shown in Fig. 2.8, which contains four dependent sources

(VCCS, CCCS, VCVS and CCVS). It is assumed that all the branches and the nodes

in the circuit have inherent latencies as shown in the figure such that no fictitious

elements have to be inserted. The input is a current source with a single trapezoidal

pulse of rise and fall times equal to 1 ns and a pulse width of 4 ns. The maximum

amplitude is 0.02 A. In order to validate Theorem 1 and the subsequent result in

(2.32), a sweep of the eigenvalues of the amplification matrix A′ is performed and

the maximum time step for stability is determined from where the magnitude of the

maximum eigenvalue equals 1. This is shown in Fig. 2.9. Note that in practice, this

process can be time-consuming, especially when the circuit under consideration is

large. In that case, the circuit can be partitioned into multiple segments and the

different partitions can be simulated with different time steps. This will be explained

in the next chapter. Also, a more effective search algorithm can be employed to

determine the maximum time step.

From Fig. 2.9, the maximum time step is determined to be ∆tmax < 6.864× 10−11

s. We then perform two LIM transient simulations, first using a time step slightly

smaller than the maximum time step and then using a time step slightly larger than

the maximum time step. In order to validate the method, the same circuit is also

simulated in SPECTRE [22], a commercial simulation tool from Cadence Design

Systems Inc., which utilizes the SPICE-like modified nodal analysis (MNA) method.

Plots of the resulting waveforms at the input (node 1) and output (node 4) are

shown in Fig. 2.10. We see that the simulation using the properly chosen time step

18

5pF10MΩ

22nH 4.53Ω

32.2nH 5.3Ω

21.2nH 21.2Ω

32.4nH

14.53Ω

1.2nH

2.3Ω

43.2nH 47.3Ω

10
pF

50Ω

10pF50Ω

5pF
10MΩ

3

4

-+
-

+

0.02
V2

1.8
I1-3

1

0.5I1-3

3V2

2

Figure 2.8: Example circuit with dependent sources.

0 0.2 0.4 0.6 0.8 1

x 10
-10

0

1

2

3

4

5

6

X: 6.864e-011
Y: 1

m
a
x
 (
e
ig
(A
))

Time step (s)

0 0.2 0.4 0.6 0.8 1

x 10
-10

0.985

0.99

0.995

1

1.005

1.01

1.015

X: 6.864e-011
Y: 1

m
a
x
 (
e
ig
(A
))

Time step (s)

Figure 2.9: Sweep of eigenvalues of the amplification matrix A′. Left: Broad view.
Right: Expanded view.

results in a stable and accurate solution, which can be seen from the comparison with

SPECTRE shown in Fig. 2.10. On the other hand, the simulation using the time

step slightly larger than ∆tmax results in an unstable simulation as can be seen in

Fig. 2.11. Note that selecting a time step to ensure stability does not necessarily

19

0 10 20 30 40
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (ns)

V
1
 (
V
o
lt
s
)

LIM

SPECTRE

0 10 20 30 40
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (ns)

V
4
 (
V
o
lt
s
)

LIM

SPECTRE

Figure 2.10: Simulation of circuit in Fig. 2.8 with ∆t = 6.8× 10−11 s. Left: Voltage
at node 1. Right: Voltage at node 4.

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

9

Time (ns)

V
o
lt
a
g
e
 (
V
)

V
1

V
4

Figure 2.11: Simulation of circuit in Fig. 2.8 with ∆t = 6.9× 10−11 s

ensure accuracy. In general, the time step must also be small enough for sufficient

accuracy. However, typically for a LIM simulation, the time step to ensure stability

is small enough such that the accuracy is also preserved.

20

CHAPTER 3

PARTITIONED LATENCY INSERTION
METHOD (PLIM)

3.1 Introduction

As we have seen in the previous chapter, the LIM algorithm is only conditionally

stable, with an upper bound on the maximum time step which depends mainly on

the smallest inductance and capacitance in the circuit. When the circuit contains

very small latency elements, the time step required for a stable simulation could

be equally small, which would result in a large number of time steps in a transient

simulation. In order to alleviate this problem, a block processing technique has been

proposed [32–34] which utilizes different time steps for different parts of the circuit.

However, selecting the maximum time step for each part of the circuit is still a

challenging task, and the basic method used in [32–34] to select the time step can

only be applied under very restrictive assumptions [35]. Specifically, each node in the

circuit has to be connected to only two branches, and the values of the circuit elements

have to be the same everywhere in each sub-circuit. In this dissertation, we propose

a more robust method to select the maximum time step of the LIM simulation, which

is independent of the circuit topology. We apply the amplification matrix, developed

in the previous chapter, along with the block processing technique to the simulation

of circuits with partitions of different latencies and demonstrate the accuracy and

speed improvements of the proposed method over the basic LIM [28,29].

21

3.2 Motivation and Method

We first illustrate the motivation of the method via an example. Consider a case

where LIM is used to simulate a circuit consisting of a transmission line TLINE 1

connected to a purely resistive external network as shown in Fig. 3.1. The transmis-

sion line has RLGC values shown in Fig. 3.1 where for simplicity we have assumed

that G = 0 such that the method presented in [36] for selecting the time step for

an RLC circuit can be applied. In order to simulate this circuit in LIM, we model

the transmission line with 10 segments of RLC lumped elements, and insert fictitious

latency elements into the external network as shown in Fig. 3.2, where the fictitious

elements have been made small so as to not affect the accuracy of the solution.

The time step required for a stable simulation of this RLC circuit can then be

shown to be [36]

∆t <
√

2
Nn

min
i=1

(√
Ci
Mi

Mi

min
p=1

(Li,p)

)

<
√

2

(√
0.01p

3
0.025n

)
= 4.08× 10−13s

(3.1)

where Li,p denotes the value of the pth inductor connected to node i. Notice that in

this case, the L and C of the external network completely determine the maximum

time step. In other words, the maximum time step to ensure stability is dictated

by the section with the smallest latency. However, note that if we had considered a

circuit with only the transmission line TLINE 1, the maximum time step would have

been

∆t <
√

2.5n · 1p = 5× 10−11s. (3.2)

This suggests that the section with higher latency can be simulated with a larger

time step without violating the stability criterion.

22

TLINE 1

L1 = 250 nH/m
C1 = 100 pF/m

R1 = 1 Ω/m

50 Ω

50 Ω

50 Ω

External network

Length = 10 cm

Figure 3.1: Transmission line connected to an external network.

0.01 Ω

2.5 nH

1 pF
0.01 Ω

2.5 nH

1 pF

TLINE 1

50 Ω

50 Ω

50 Ω

External network

0.025 nH

0.025 nH

0.025 nH

0.01 pF

1 cm

0.01 pF

0.01 pF

Figure 3.2: LIM enabled circuit of Fig. 3.1.

Consider then the following method for simulating circuits with partitions of dif-

ferent latencies. First, a stable time step is determined for each partition. In the

case of an RLC or a GLC circuit, the method in [36, 37] is employed as shown in

(3.1). However, for a general circuit (or in the presence of dependent sources), (3.1)

cannot be applied and the more general numerical method presented in Theorem 1

must be used. Once all the time steps have been determined, the smallest time step

is used in LIM to simulate the circuit, but each partition is only updated as needed,

depending on its maximum stable time step. This results in a computationally ef-

23

ficient algorithm, with large speed-ups in the simulation time, especially when the

partition with the smallest latency is small compared to the rest of the circuit. The

method is summarized in Fig. 3.3.

3.3 Example

We present an example to depict the usage of multiple time steps on a circuit

with partitions of different latencies. Speed improvements over the conventional LIM

will be illustrated. Consider the circuit in Fig. 3.4 which consists of three partitions

detailed as follows:

1. Partition 1: High latency partition.

2. Partition 2: Low latency partition. (In practice, this could be a partition with

no latency, whereby small fictitious elements have been inserted to enable LIM.)

3. Partition 3: Dependent sources.

The input is a current source with a single trapezoidal pulse of rise and fall times

equal to 1 ns and a pulse width of 4 ns. The maximum amplitude is 0.02 A. Using

the method in the previous section, the maximum time step of each partition is

determined to be ∆t1 = 1.0486×10−10 s, ∆t2 = 1.07×10−12 s and ∆t3 = 6.741×10−11

s corresponding to partitions one, two and three respectively. Note that we have

chosen the time steps to be integer multiples of the smallest time step (in this case

∆t2) as mentioned in the previous section.

The circuit is then simulated using the algorithm in Fig. 3.3 for performing LIM

with partitions of different latencies (PLIM) and the results at the input (node 1a)

and output (node 4c) are shown in Fig. 3.5. Next, the same circuit is simulated using

the traditional LIM with time step ∆t = ∆t2 = 1.07 × 10−12 s and the results are

also plotted in Fig. 3.5. No loss in accuracy is observed when using PLIM compared

to the regular LIM.

24

Start

For partitions 1, 2, … Npart, determine maximum time steps ∆t1,
∆t2, … ∆tNpart.

Select smallest time step as the main simulation time step, ∆t.

Start transient simulation. t=0.

Update all partitions in first run.

t = t+Δt

t ≥ tstop

End

End transient simulation.

Yes

* For simplicity, it is assumed that all the time steps are integer
multiples of the smallest time step. If not, they are rounded down to
the nearest integer multiple of the smallest time step.

For n=1, 2, … Npart : if (t/∆t mod ∆tn/∆t == 0),
update partition n.* No

Figure 3.3: Simulation algorithm for partitioned LIM.

25

5pF
10MΩ

22nH 4.53Ω

32.2nH 5.3Ω

21.2nH 21.2Ω

32.4nH

14.53Ω

1.2nH

2.3Ω

43.2nH 47.3Ω

10pF50Ω

5pF
10
MΩ 4c

-+
-

+

0.02
V2c

1.8
I4b-3c

0.5 I4b-3c

3V2c

0.05pF
10MΩ

0.22nH 4.53Ω

0.322nH 5.3Ω

0.212nH 21.2Ω

0.324nH

14.53Ω

0.012
nH

2.3Ω

43.2nH 47.3Ω

0.1pF
50Ω

0.05pF
10
MΩ

5pF10MΩ

22nH 4.53Ω

32.2nH 5.3Ω

21.2nH 21.2Ω

32.4nH

14.53Ω

1.2nH

2.3Ω

43.2nH 47.3Ω

10
pF

50Ω

10pF
50Ω

5pF
10
MΩ

1a

Partition 1 Partition 2 Partition 3

Figure 3.4: Example circuit with partitions of different latencies.

0 10 20 30 40
-0.1

0

0.1

0.2

0.3

0.4

Time (ns)

V
1
a
 (
V
o
lt
s
)

LIM

PLIM

0 10 20 30 40
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (ns)

V
4
c
 (
V
o
lt
s
)

LIM

PLIM

Figure 3.5: Simulation of circuit in Fig. 3.4. Left: Voltage at node 1a. Right: Voltage
at node 4c.

Next, PLIM is used to simulate a large circuit where the partition with the smallest

latency is small compared to the rest of the circuit. To construct this circuit, partition

1 is cascaded N times and the simulation time is recorded for PLIM and LIM. The

results are summarized in Table 3.1. All simulations were performed on a Linux

server with Intel Xeon 3.16 GHz processors and 32 GB of RAM. We observe that

when the sizes of the partitions are comparable, a small speed-up is obtained when

using PLIM. On the other hand, when the partition with the smallest latency is small

26

Table 3.1: Comparison of runtime for LIM and PLIM.

N LIM (s) PLIM (s) Speed-up

1 0.11 0.01 11.0
10 0.23 0.02 11.5
100 1.40 0.03 46.7
500 7.15 0.08 89.4
1000 13.52 0.15 90.1
2000 26.21 0.28 93.6
5000 64.52 0.68 94.9

compared to the rest of the circuit, a large speed-up is obtained which approaches

the limit of ∆tlarge/∆tmin, where ∆tlarge is the time step of the largest partition and

∆tmin is the smallest time step in the circuit, which also dictates the maximum time

step of the regular LIM.

27

CHAPTER 4

BLACKBOX MACROMODELING IN LIM

4.1 Introduction

In the past few years, multiport networks characterized by sampled data or black-

box networks have become more frequent in the analysis and design of high-frequency

or high-speed circuits. Blackbox macromodeling techniques improve the efficiency of

the simulations by representing complex networks in terms of their terminal transfer

functions in the frequency domain, where frequency dependent effects are most effec-

tively characterized; this representation is then converted into a form compatible for

incorporation into circuit simulators. Common approaches utilize either model-order

reduction (MOR) techniques that use curve fitting methods to approximate the black-

box data in a rational function in terms of poles and residues, which is then converted

into a SPICE compatible netlist, or IFFT to convert the frequency-domain data into

a time-domain impulse response, which can then be convoluted with the input ter-

minal response. A variation of the MOR technique is to use the poles and residues

in a recursive convolution algorithm where the terminal responses are obtained via

convolution with decaying exponential functions, which can be done substantially

faster than the direct convolution manner.

In this work, we demonstrate the use of two approaches for the modeling of blackbox

networks characterized by scattering parameters, and their incorporation into LIM

simulations; and we compare the two approaches in terms of computational speed

28

and efficiency. The two approaches are MOR via vector fitting [8] with passivity

enforcement, and a fast convolution approach using S-parameters [38].

4.2 MOR via Vector Fitting

In the MOR method, we seek to express the given frequency response of the black-

box, f(s), where s = jω and ω is the angular frequency, in the form of a rational

function

f(s) ≈
N∑
n=1

cn
s− an

+ d+ sh (4.1)

where N is the order, cn are the residues, an are the poles, d is the constant term and

h is the linear term. In order to solve for these unknowns, we apply the vector fitting

process, which decomposes this nonlinear problem into a set of two linear problems

as follows.

4.2.1 Vector Fitting for System Identification

In the first stage, the poles an of the system are solved for by introducing an

unknown function σ(s) where σ(s) is defined in its rational form as

σ(s) =
N∑
n=1

c̃n
s− ãn

+ 1. (4.2)

Notice that the ambiguity in the solution for σ(s) is removed by forcing it to approach

unity at very high frequencies. Now if we assume that both σ(s) and the product

of σ(s) and f(s) (i.e. σ(s)f(s)) can be approximated by rational functions using the

29

same set of poles (in this case ãn), we have the augmented problem

 σ(s)f(s)

σ(s)

 ≈


N∑
n=1

cn
s− ãn

+ d+ sh

N∑
n=1

c̃n
s− ãn

+ 1

 . (4.3)

Multiplying the second row in (4.3) with f(s) and equating it to the first row gives

(
N∑
n=1

cn
s− ãn

+ d+ sh

)
≈

(
N∑
n=1

c̃n
s− ãn

+ 1

)
f(s) (4.4)

which can be rearranged to read

(
N∑
n=1

cn
s− ãn

+ d+ sh

)
−

(
N∑
n=1

c̃n
s− ãn

)
f(s) ≈ f(s). (4.5)

Examining (4.5) reveals that if the poles ãn are fixed beforehand, then (4.5) is linear in

terms of the unknowns. Since f(s) is often obtained from a set of tabulated data, and

the amount of data points collected normally well exceeds the order of approximation,

N , writing (4.5) for each frequency sample point results in an overdetermined set of

equations



1
s1−ã1 · · · 1

s1−ãN
s1

−f(s1)
s1−ã1 · · · −f(s1)

s1−ãN

...
. . .

...
...

...
...

. . .
...

1
sk−ã1

· · · 1
sk−ãN

sk
−f(sk)
sk−ã1

· · · −f(sk)
sk−ãN





c1

...

cN

d

h

c̃1

...

c̃N



=



f(s1)

...

...

f(sk)



(4.6)

30

where k is the number of frequency sample points. This overdetermined set of equa-

tions is in the form of

Ax = b (4.7)

which can be solved using any standard least squares method for the unknown solution

vector x that contains the residues.

Now returning to (4.4) and solving for f(s) gives

f(s) ≈

N∑
n=1

cn
s− ãn

+ d+ sh

N∑
n=1

c̃n
s− ãn

+ 1

(4.8)

which can be written as a fraction to obtain

f(s) ≈

N+1∏
n=1

(s− zn)

N∏
n=1

(s− ãn)

N∏
n=1

(s− z̃n)

N∏
n=1

(s− ãn)

=

N+1∏
n=1

(s− zn)

N∏
n=1

(s− z̃n)

(4.9)

where we see that the poles of f(s) become equal to z̃n which are the zeros of σ(s),

and the initial poles ãn are cancelled out in the process.

In order to solve for the zeros of σ(s) (which are the poles of f(s)), we define a

state space system for σ(s) in the form of

ẋ = Ax+Bu

y = Cx+Du
(4.10)

31

where x is the state vector with ẋ = dx/dt, u is the input vector and y is the output

vector.

For the function σ(s), A is a diagonal matrix holding the poles ãn, B is a column

vector of ones, C is a row vector holding its residues c̃n, and D is unity. In order to

solve for the zeros of σ(s), we return to (4.2) and rewrite it in the form of a fraction:

σ(s) =
N∑
n=1

c̃n
s− ãn

+ 1 =

N∏
n=1

(s− z̃n)

N∏
n=1

(s− ãn)

=
y(s)

u(s)
. (4.11)

Notice that the zeros of σ(s) are equal to the poles of 1/σ(s). With (4.11) as the

representation for σ(s), we can obtain the expression for 1/σ(s) by interchanging the

input and the output. Solving for u in the second equation in (4.11) and plugging it

into the first, we obtain

u = D−1(y − Cx) (4.12)

ẋ = Ax+BD−1(y − Cx) = Ax+BD−1y −BD−1Cx

= (A−BD−1C)x+BD−1y.
(4.13)

Thus the poles of 1/σ(s) can be calculated as

eig(A−BD−1C) (4.14)

which simplifies to

eig(A−BC) (4.15)

since D is unity.

32

In summary, the poles of f(s) can be calculated as the eigenvalues of the matrix

(A−BC) where

A =


ã1 0

. . .

0 ãN

 , B =


1

...

1

 , C =

[
c̃1 · · · c̃N

]
. (4.16)

Once the poles of the system are solved for, the residues can be easily solved by

returning to (4.1) which is now linear in terms of the unknowns cn, d and h. We

proceed as before by writing (4.1) for each frequency sample point to obtain:



1

s1 − a1

· · · 1

s1 − aN
1 s1

...
. . .

...
...

...

1

sk − a1

· · · 1

sk − aN
1 sk





c1

...

cN

d

h


=



f(s1)

...

...

f(sk)


. (4.17)

This again results in an overdetermined set of equations which can be solved as before

for the residues cn, constant d, and linear term h.

This completes the vector fitting process to find a rational function approximation

for the blackbox in the form of (4.1). We see that the solution is not guaranteed to

be exact but instead depends on minimizing the error of a set of two least squares

problems. Thus at this point, one would normally compare the approximation to the

original data and determine if they are within acceptable range. If necessary, a more

accurate solution can be obtained if the vector fitting algorithm is repeated on the

data by using the newly calculated poles as starting poles. Therefore, vector fitting is

often seen as an iterative scheme whereby the poles are relocated until they converge

33

with the actual poles of the system. Normally this is achieved rather quickly and it

takes on average 2 – 4 iterations to obtain an accurate result.

4.2.1.1 Modification for Complex Poles

An important modification to the vector fitting algorithm which is often made

when solving for real systems with complex poles will now be presented. For real

systems, the poles must either be real or in complex-conjugate pairs. In addition,

the residues corresponding to the real poles must be real and, similarly, the residues

corresponding to the complex-conjugate pair poles must also be in complex-conjugate

pairs. In order to make the necessary adjustment to (4.6) to ensure this condition,

we return to (4.5) and rewrite it for systems with both real and complex poles.

Assume a system with Q real poles and L complex-conjugate pole pairs where an

asterisk “*” is used as a notation to indicate complex-conjugacy. Thus for a complex

pair, we would have

an = arn + jain , a∗n = arn − jain (4.18)

cn = crn + jcin , c∗n = crn − jcin (4.19)

with the superscript r representing the real part and the superscript i representing

the imaginary part. Equation (4.5) now becomes

[
Q∑
q=1

cq
s− ãq

+
L∑
l=1

(
cl

s− ãl
+

c∗l
s− ã∗l

)
+ d+ sh

]

−

[
Q∑
q=1

c̃q
s− ãq

+
L∑
l=1

(
c̃l

s− ãl
+

c̃∗l
s− ã∗l

)]
· f(s) ≈ f(s).

(4.20)

Since each complex pair consists of two poles, we have that the order of approximation

N = Q+ 2L.

34

The elements of the matrix A in (4.7) then become

Ak,q =
1

sk − ãq
(4.21)

for each of the real poles and

Ak,l =
1

sk − ãl
+

1

sk − ã∗l
, Ak,l+1 =

j

sk − ãl
− j

sk − ã∗l
(4.22)

for each of the complex pole pairs.

Writing (4.20) for each frequency sample point with the help of (4.21) and (4.22),

gives 

1 s1

[R] [C]
...

... [G] [H]

1 sk


[x] =



f(s1)

...

f(sk)


(4.23)

where the matrices [R], [C], [G] and [H] are as follows:

R =



1
s1−ã1 · · · 1

s1−ãQ

...
. . .

...

1
sk−ã1

· · · 1
sk−ãQ


(4.24)

C =



1
s1−ã1 + 1

s1−ã∗1
j

s1−ã1 −
j

s1−ã∗1
. . . 1

s1−ãL
+ 1

s1−ã∗L
j

s1−ãL
− j

s1−ã∗L

...
...

. . .
...

...

1
sk−ã1

+ 1
sk−ã∗1

j
sk−ã1

− j
sk−ã∗1

. . . 1
sk−ãL

+ 1
sk−ã∗L

j
sk−ãL

− j
sk−ã∗L


(4.25)

35

G =



−f(s1)
s1−ã1 · · · −f(s1)

s1−ãQ

...
. . .

...

−f(sk)
sk−ã1

· · · −f(sk)
sk−ãQ


(4.26)

H =



−f(s1)
s1−ã1 + −f(s1)

s1−ã∗1
−jf(s1)
s1−ã1 −

−jf(s1)
s1−ã∗1

. . . −f(s1)
s1−ãL

+ −f(s1)
s1−ã∗L

−jf(s1)
s1−ãL

− −jf(s1)
s1−ã∗L

...
...

. . .
...

...

−f(sk)
sk−ã1

+ −f(sk)
sk−ã∗1

−jf(sk)
sk−ã1

− −jf(sk)
sk−ã∗1

. . . −f(sk)
sk−ãL

+ −f(sk)
sk−ã∗L

−jf(sk)
sk−ãL

− −jf(sk)
sk−ã∗L


.

(4.27)

Notice that when there are no complex poles (i.e., L = 0), the matrices [C] and [H]

become the empty matrix and (4.23) reduces to (4.6) with N = Q.

Finally, we formulate (4.23) in terms of real quantities as

 Re(A)

Im(A)

 · [x] =

 Re(b)

Im(b)

 (4.28)

and solve for the solution vector x to yield

x =

[
c1 · · · cQ cr1 ci1 · · · crL ciL d h c̃1 · · · c̃Q c̃r1 c̃i1 · · · c̃rL c̃iL

] T

(4.29)

where all the elements are purely real. The complex residues are then formed from

(4.19), where we would have

cl = crl + jcil , cl+1 = c∗l = crl − jcil (4.30)

c̃l = c̃rl + jc̃il , c̃l+1 = c̃∗l = c̃rl − jc̃il. (4.31)

36

The poles of the system can then be solved as before from (4.15). For each of the com-

plex poles, we modify the corresponding submatrices via a similarity transformation

to obtain

Â =

 Re(ã) Im(ã)

−Im(ã) Re(ã)

 , B̂ =

 2

0

 , Ĉ =

[
Re(c̃) Im(c̃)

]
. (4.32)

As a result, the matrices now have real coefficients and any complex eigenvalue will

come along with its complex-conjugate pair, thus preserving the properties of a real

system.

Once the poles of the system are solved for, the residues can then be calculated as

before. With the modification for complex poles, (4.17) now becomes



1 s1

[R] [C]
...

...

1 sk


[x] =



f(s1)

...

f(sk)


(4.33)

where the matrices [R] and [C] are the same as in (4.24) and (4.25), respectively.

Solving (4.33) yields the unknown vector x in the form of

x =

[
c1 · · · cQ cr1 ci1 · · · crL ciL d h

] T

(4.34)

and the complex residues can be formed as

cl = crl + jcil , cl+1 = c∗l = crl − jcil. (4.35)

37

4.2.1.2 Modification for Fitting Vector Functions

So far we have considered the case for fitting a scalar or a single function. However,

it is sometimes desirable to fit a vector or multiple functions using the same set of poles

since this would result in an increase in efficiency in the time-domain convolutions.

The modification for fitting vectors is rather straightforward and is presented below.

Consider a vector of Nc functions:

f =



f1

f2

...

fNc


. (4.36)

For this function, (4.5) now becomes



N∑
n=1

c1
n

s− ãn
+ d1 + sh1

N∑
n=1

c2
n

s− ãn
+ d2 + sh2

...
N∑
n=1

cNcn
s− ãn

+ dNc + shNc


−



f1

N∑
n=1

c̃n
s− ãn

f2

N∑
n=1

c̃n
s− ãn
...

fNc

N∑
n=1

c̃n
s− ãn


=



f1

f2

...

fNc


(4.37)

and (4.6) becomes



[Xσf] 0 0 0 −f1 [Xσ]

0 [Xσf] 0 0 −f2 [Xσ]

0 0
. . . 0

...

0 0 0 [Xσf] −fNc [Xσ]





[Y1]

[Y2]

...

[YNc][
Ỹ
]


=



f1

f2

...

fNc


(4.38)

38

where

Xσf =


1

s1 − ã1

· · · 1

s1 − ãN
1 s1

...
. . .

...
...

...

1

sk − ã1

· · · 1

sk − ãN
1 sk

 (4.39)

Xσ =


1

s1 − ã1

· · · 1

s1 − ãN
...

. . .
...

1

sk − ã1

· · · 1

sk − ãN

 (4.40)

Ync =

[
cnc1 · · · cncN dnc hnc

]T
, nc ∈ 1, 2 . . . Nc (4.41)

Ỹ =

[
c̃1 · · · c̃N

]T
. (4.42)

We can then solve (4.38) for Ỹ and solve for the poles using (4.15) where the

matrix elements are given in (4.16). This has the effect that a single set of poles that

minimizes the least squares error in all elements of (4.36) is obtained. The residues of

the individual functions can then be solved for by carrying out (4.17) independently

for each element in (4.36). It should also be noted that if complex poles are used, the

modifications presented in the previous section should also be carried out for each

element of the vector.

4.2.1.3 Modification for Fast Fitting Vector Functions

In this section, we review a recent modification to the vector fitting process for the

fast fitting of vector functions [11]. As presented in the previous section, the first step

of the vector fitting method is to solve for the residues of σ(s) from an overdetermined

set of equations. When fitting multiple functions using the same set of poles, the size

of this overdetermined set of equations may get prohibitively large. However, note

that only part of the solution vector was needed. For example, in (4.38), only the

39

solution vector Ỹ was needed while the others (Y1 − YNc) were discarded. A more

efficient formulation is possibly by first applying a QR decomposition to the least

squares equations of each of the elements

[[Xσf]− f [Xσ]] = [Q]

 R11 R12

R21 R22

 . (4.43)

Once all the Q and R submatrices have been extracted, an overall overdetermined

set of equations is formed to solve for the residues of σ(s) as



R22
1

R22
2

...

R22
Nc


[
Ỹ
]

=



QT
1 f1

QT
2 f2

...

QT
NcfNc


. (4.44)

This has the effect that the new overdetermined set of equations is now significantly

smaller than before and the solution vector is only the residues of σ(s). Although it

requires solving the QR decomposition of each individual element to be fitted, that

process is often less time-consuming since the matrices are much smaller. When the

number of elements to be fitted increases, for example in multiport devices with a

large number of ports, the computational savings could be enormous.

4.2.1.4 Stability and Starting Poles Selections

In this section, we present a brief discussion regarding stability and starting pole

selection. For a causal system to be stable, its poles must lie in the left half-plane of

the s-domain. In the vector fitting process, however, it is possible to obtain unstable

poles when solving (4.15). This can easily be corrected either by discarding any

40

unstable poles that were obtained from (4.15) or by flipping unstable poles into the

left half-plane by reflecting it on the imaginary axis of the s-domain.

The vector fitting method requires that an initial set of starting poles be specified

for use as a preliminary guess of the actual poles. Although these starting poles

cancel out in the subsequent formulation, a poor choice of these values can result in

a large variation between the original function and the fitted function as the vector

fitting method relies on solving (4.7) in a least squares sense. Starting pole selection

methods are heuristic at best, and a good rule of thumb is to select the starting poles

to be in complex conjugate pairs situated along a line close to the imaginary axis [8].

4.2.1.5 Summary

An overall flowchart showing the whole vector fitting process is shown in Fig. 4.1.

4.2.2 Passivity Enforcement

Passivity is defined as the inability of the system to generate energy in any termi-

nation condition [39]. If the system being modeled is passive, then the macromodel

generated must be passive as well, since stable but nonpassive models can result in

unstable systems when connected to other passive components [40]. Thus, ensuring

passivity of the model is a crucial step in the macromodel generation process.

A precise mathematical definition of passivity depends on the adopted representa-

tion. For a system characterized by the scattering parameters S(s), the condition for

passivity is [14]

1. S(s∗) = S∗(s) where “*” denotes the complex conjugate operator.

2. S(s) is bounded real.

I.e., ‖S(jω)‖ 6 1 or eig
(
I − S(jω)HS(jω)

)
> 0, ω ∈ R

41

Pole identification

Start

Choose order and
starting poles

Stability
enforcement

Check error

To passivity
enforcement

Within acceptable
range.

Not within
acceptable range.

Reiterate with
new poles as

starting poles.

Solve for the poles

Residue
identification

Solve for residues
of σ(s)

Figure 4.1: Flowchart of the vector fitting process.

42

Condition 1 is always satisfied in our macromodel since, in the vector fitting process,

the complex poles and residues are always considered along with their conjugates,

thus leading to only real coefficients in S(s). Consequently, enforcing passivity of the

macromodel then amounts to enforcing condition 2.

4.2.2.1 Passivity Assessment

Different methods exist to assess passivity. Recently the method based on the

Hamiltonian matrix has gained popularity as a passivity assessment tool since it is

independent of frequency and provides the exact bands of violations when passivity

violations are detected. For a system described in state-space form as given in (4.10),

the system is passive if and only if the Hamiltonian matrix M has no imaginary

eigenvalues [41], where the Hamiltonian is given by

M =

 A + BKDTC BKBT

−CTLC −AT −CTDKBT

 (4.45)

where

K =
(
I−DTD

)−1

L =
(
I−DDT

)−1
(4.46)

where the superscript T is used for the transpose and I is the identity matrix of ap-

propriate dimensions. In addition, imaginary eigenvalues correspond to points where

eigenvalues of the dissipation matrix I − S(jω)HS(jω) are equal to zero, therefore

defining potential crossover frequencies at which the system switches from being pas-

sive to nonpassive (or vice versa). Thus they can be used to define the bands of

passivity violations, as will be illustrated next.

Consider a plot of the eigenvalues of the dissipation matrix I − S(jω)HS(jω) of

a general m-port scattering matrix shown in Fig. 4.2 (note that only plots of two

43

ω
ω1 ω2 ω3 ω4

#1 #2 #3 #4

λmax

eig (I-S(jω)HS(jω))

0

Figure 4.2: Determination of the band of passivity violation.

eigenvalues are shown). From Fig. 4.2, we see that there are four points (marked #1

to #4) where the eigenvalues of the dissipation matrix are equal to zero, thus defin-

ing potential points where the system crosses from being passive to nonpassive. As

mentioned before, these points are obtained from the eigenvalues of the Hamiltonian

matrix that are purely imaginary. In order to obtain the bands of passivity violations,

we return to condition 2 above and check whether or not the system is passive at a

short distance right before and after the potential crossover frequency. If the system

is found to be passive right before the point of consideration but not passive after, the

point is defined as a crossover frequency where the system crosses from being passive

to nonpassive (i.e., point #1 in Fig. 4.2). If the system is not passive right before

the point of consideration but is passive after, the point is defined as a crossover fre-

quency where the system crosses from being nonpassive to passive (i.e., point #4 in

Fig. 4.2). On the other hand, if the system is both nonpassive right before and after

the point of consideration, then it is concluded that the point is contained within a

larger passivity violation band due to the other eigenvalues (i.e., points #2 and #3

in Fig. 4.2). Thus we are able to determine the exact band of passivity violation by

44

arranging the points in order and determining all the crossover frequencies. In the

example given in Fig. 4.2, the band would be from ω1 to ω4.

So far we have seen how the bands of passivity violations are determined with

the use of the Hamiltonian matrix. Before we proceed to the passivity enforcement

section, let us see how two other important quantities which are needed for passivity

enforcement are determined. These two quantities are the frequency of maximum

violation and the magnitude of maximum violation in each violation band. These

locations can be found by solving

λ = max
∣∣∣eig (I − S(jω)HS(jω)

)∣∣∣ , ω ∈ ωl, ωh (4.47)

where λ is the magnitude of maximum violation and ωl and ωh are the boundaries

of the passivity violation band. This is easily solved by doing a fine sweep of each

frequency violation band that was found and recording the maximum value and the

corresponding frequency point as given in (4.47). With this information, we are now

able to proceed to enforce passivity for nonpassive systems.

4.2.2.2 Passivity Enforcement

Passivity enforcement can be performed by a number of methods. For example,

in [42] passivity enforcement is performed by perturbing the residues of the system

while in [13] passivity is restored by perturbing the Hamiltonian matrix. We adopt a

residue perturbation scheme similar to that in [42]. This is presented next.

Consider again a system in state space form as given in (4.10). The scattering

matrix of this system can be obtained from

S(jω) = C(jωI−A)−1B + D. (4.48)

45

For this system to be passive, it must obey condition 2 presented in the previous

section

eig(Q(jω)) ≥ 0 (4.49)

at all frequency points, where Q(jω) denotes the dissipation matrix given by

Q(jω) = I− SH(jω)S(jω) (4.50)

where the superscript H is used to denote the complex conjugate transpose.

If the system is nonpassive, we can attempt to restore passivity by perturbing the

representation of the system given in (4.48) by a small amount such that the new

system satisfies (4.49) at the frequency points of violation.

Consider a small perturbation ∆C to the residue matrix C which results in a

change in the scattering matrix:

Ŝ(jω) = (C + ∆C) (jωI−A)−1B + D (4.51)

which can be written as

Ŝ(jω) = S(jω) + ∆S(jω) (4.52)

where

∆S(jω) = ∆C(jωI−A)−1B = ∆CV (4.53)

with

V = (jωI−A)−1B. (4.54)

In order to ensure passivity, this perturbed scattering matrix must obey

eig
(
Q̂(jω)

)
≥ 0 (4.55)

46

where Q̂(jω) is the perturbed dissipation matrix

Q̂(jω) = I− ŜH(jω)Ŝ(jω). (4.56)

Substituting (4.52) into (4.56) gives (dropping jω for simplicity)

Q̂ = I− ŜHŜ = I− SHS− SH∆S−∆SHS−∆SH∆S. (4.57)

Neglecting the second-order term in (4.57), we get

Q̂ ' I− SHS− SH∆S−∆SHS. (4.58)

Comparing (4.58) to (4.50) reveals that the perturbation results in a change of

∆Q = −SH∆S−∆SHS (4.59)

from the unperturbed system. Thus, if the unperturbed nonpassive system violates

(4.49) at a particular frequency by an amount λ, we can restore passivity at that

point by perturbing the system such that the change in the dissipation matrix given

by (4.59) results in a change of its eigenvalue by an amount equal and opposite to

λ. To do this, we invoke the first-order eigenvalue perturbation formula [43] which

states that a matrix K perturbed by an amount ∆K will result in a change of ∆λ in

its eigenvalue given by

∆λ =
yT∆Kx

yTx
(4.60)

where y and x are the left and right eigenvectors of K, respectively. Therefore, a

matrix Q given in (4.50) perturbed by an amount ∆Q given by (4.59) would result

47

in a change in its eigenvalue by an amount

∆λ =
vT
(
−SH∆S−∆SHS

)
u

vTu
(4.61)

where v and u are the left and right eigenvectors of Q, respectively. Since for a matrix

A, the eigenvalues and eigenvectors can be solved such that A = VDV−1 where V

is a modal matrix (its columns are the eigenvectors of A) and D is the canonical

form of A (a diagonal matrix with the eigenvalues of A on the main diagonal), the

eigenvectors can be scaled such that vTu would result in unity for a given eigenvalue.

Thus, dropping the term vTu and substituting (4.53) in (4.61) gives

∆λ = vT
(
−SH∆CV − (∆CV)HS

)
u (4.62)

which can be written as

∆λ = vT
(
−SH∆CV −VH∆CHS

)
u. (4.63)

Since ∆C is a real matrix, ∆CH = ∆CT

∆λ = vT
(
−SH∆CV −VH∆CTS

)
u

= −vTSH∆CVu− vTVH∆CTSu.
(4.64)

Next we invoke an identity of the Kronecker product ⊗ which states that for a given

matrix Y, A, X, and B [44]

Y = AXB ⇔ vec(Y) = (BT ⊗A)vec(X) (4.65)

Y = AXB ⇔ wec(Y) = (A⊗BT)wec(X) (4.66)

48

where vec(.) denotes the vectorization of the matrix (.) formed by column-ordering

the matrix (.) into a single column vector and wec(.) denotes the vectorization of

the matrix (.) formed by row-ordering the matrix (.) into a single column vector.

Applying (4.65) and (4.66), along with the fact that ∆λ is a scalar on (4.64), results

in

∆λ = −
(

(Vu)T ⊗ vTSH
)
vec(∆C)−

(
vTVH ⊗ (Su)T

)
wec(∆CT). (4.67)

Since

wec(∆CT) = vec(∆C) (4.68)

we have

∆λ = −
(

(Vu)T ⊗ vTSH
)
vec(∆C)−

(
vTVH ⊗ (Su)T

)
vec(∆C)

= −
[(

(Vu)T ⊗ vTSH
)

+
(
vTVH ⊗ (Su)T

)]
vec(∆C)

(4.69)

which has the form

∆λ = g · vec(∆C) (4.70)

with

g = −
[(

(Vu)T ⊗ vTSH
)

+
(
vTVH ⊗ (Su)T

)]
(4.71)

which can be shown to be a row vector. Thus, for a passivity violation at a particular

frequency, (4.70) provides the means for restoring passivity at that point.

When a passivity violation band is detected, (4.70) is applied to the point of max-

imum violation which was obtained from (4.47). For cases where there are more

than one violation band, passivity compensation can be done simultaneously for all

violation bands by setting up (4.70) for each band, resulting in a set of least-squares

equations in the form of

∆λ = G · vec(∆C) (4.72)

49

where ∆λ is a vector formed by the magnitudes of maximum violations in each band

and G is a matrix consisting of several rows of g’s.

In order to retain the accuracy of the model, we minimize the change in the scat-

tering matrix as passivity enforcement is carried out. To do this, we return to (4.52)

which defines the change in the scattering matrix after passivity compensation and

relate that to the perturbation of the residues ∆C. It can be shown that [45]

‖∆S‖2 = trace(∆CP∆CT) = vec(∆C)THvec(∆C) (4.73)

where P is the controllability Grammian obtained by solving the Lyapunov equation

AP + PAH + BBH = 0 (4.74)

and H is a matrix formed by stacking P on the diagonal

H =



P 0 · · · 0

0 P · · · 0

...
...

. . .
...

0 0 · · · P


. (4.75)

Equations (4.72) and (4.73) together result in an optimization problem which can be

solved iteratively to satisfy passivity while minimizing the change in the response.

Since the objective function given in (4.73) is quadratic in nature, the problem is

solved by utilizing a quadratic programming routine where the overall problem is

min
(
vec(∆C)THvec(∆C)

)
subject to ∆λ = G · vec(∆C). (4.76)

50

4.2.2.3 Summary

The overall process of passivity enforcement is summarized in the flowchart given

in Fig. 4.3.

4.2.3 Recursive Convolution

In this section, the recursive convolution algorithm which is used to obtain the

time-domain response of the system will be introduced. Assume that the methods in

the previous section have been applied to the system to generate a stable, passive and

proper rational function approximation, where the transfer function H(s) is given by

H(s) =
N∑
n=1

cn
s+ an

+ d. (4.77)

Note that for the discussions in this section, the negative sign in the denominator of

(4.1) has been absorbed into an in (4.77). For this transfer function, its input-output

relationship is given by

Y (s) = H(s) ·X(s) (4.78)

where X(s) is the input function and Y (s) is the output function. For each term in

the summation of (4.77), we have

Yn(s) = Hn(s) ·X(s) =

[
cn

s+ an

]
·X(s). (4.79)

In the time domain this corresponds to

yn(t) = cne
−ant ∗ x(t) (4.80)

where ∗ denotes convolution. Equation (4.80) can be evaluated most effectively using

the recursive convolution [46] method which will be presented next.

51

From vector
fitting

Passive? Done
Yes

No

Passivity check via
Hamiltonian matrix

Obtain bands of passivity
violations from imaginary

eigenvalues of the Hamiltonian
matrix

Obtain maximum violation
point and magnitude in each

band

Perform passivity compensation
via residue perturbation

Update the state-space model

Figure 4.3: Flowchart of the passivity enforcement process.

52

The goal is to evaluate the function

y(t) = Ae−αt ∗ x(t). (4.81)

This is equivalent to

y(t) =

t∫
0

Ae−ατx(t− τ)dτ =

h∫
0

Ae−ατx(t− τ)dτ +

t∫
h

Ae−ατx(t− τ)dτ . (4.82)

Assuming a step invariant (constant) behavior of the input function, the first integral

can be written as

h∫
0

Ae−ατx(t− τ)dτ = Ax(t− h)

h∫
0

e−ατdτ (4.83)

which can be evaluated to yield

h∫
0

Ae−ατx(t− τ)dτ =
Ax(t− h)

α

(
1− e−αh

)
. (4.84)

Setting τ = τ ′ + h in the second integral yields

t∫
h

Ae−ατx(t− τ)dτ =

t−h∫
0

Ae−α(τ ′+h)x(t− τ ′ − h)dτ ′

= e−αh
t−h∫
0

Ae−ατ
′
x(t− τ ′ − h)dτ ′

= e−αhy(t− h).

(4.85)

Thus the overall result is then

y(t) =
Ax(t− h)

α

(
1− e−αh

)
+ e−αhy(t− h) (4.86)

53

which is the general recursive convolution formula for a step-invariant approximation.

Returning to (4.80) and applying the result obtained in (4.86) with a time step

T = h gives

yn(t) = e−anTyn(t− T) +
cn
an
x(t− T)

(
1− e−anT

)
. (4.87)

Therefore the complete solution at each time step is given by

y(t) = d · x(t− T) +
N∑
n=1

yn(t) (4.88)

where yn(t) is as given in (4.87).

Before concluding this section, let us examine a special case when the poles and

residues appear in complex conjugate pairs. In that instance, (4.87) would yield

yn(t) = e−anTyn(t− T) +
cn
an
x(t− T)

(
1− e−anT

)
(4.89)

yn+1(t) = e−a
∗
nTyn+1(t− T) +

c∗n
a∗n
x(t− T)

(
1− e−a∗nT

)
(4.90)

where the asterisk “*” indicates complex conjugacy. It can be shown that yn+1(t) =

y∗n(t). Therefore, this leads to

yn(t) = e−anTyn(t− T) +
cn
an
x(t− T)

(
1− e−anT

)
(4.91)

yn+1(t) = e−a
∗
nTy∗n(t− T) +

c∗n
a∗n
x(t− T)

(
1− e−a∗nT

)
(4.92)

Examining (4.91) and (4.92) reveals that yn(t) + yn+1(t) results in a real quantity.

Thus the properties of a real system are preserved by ensuring that each complex

pole appears along with its complex conjugate and that the residues corresponding

to those poles also come in complex conjugate pairs.

54

Table 4.1: RMS error of the model before and after passivity enforcement.

S11 S12 S21 S22

From VFIT 0.00727 0.0112 0.0139 0.00720
After passivity enforcement 0.00449 0.00435 0.00432 0.00423

4.2.4 Example

In this section, we present an example to illustrate the vector fitting, passivity

enforcement and recursive convolution processes. The scattering parameters of a

two-port interconnect structure are obtained in the frequency range of 50 MHz – 5

GHz. The vector fitting method is used to obtain a model for the system, fitting all

the elements of the two-port system using the same set of poles with an order of 40.

Two vector fitting iterations are used, which take a total of 1.16 s as measured on a

desktop computer with an AMD 2.3 GHz Dual Core processor and 1 GB of RAM.

The passivity of the system was analyzed and the Hamiltonian matrix revealed two

passivity violation regions. Passivity enforcement was carried out which converged

after four iterations, lasting an additional 0.83 s. Plots of all the S-parameters are

shown in Figs. 4.4 – 4.7. Table 4.1 shows the root-mean-square (RMS) error of the

model compared to the original signal before and after passivity enforcement. We see

that the overall accuracy of the model is retained throughout the process. A plot of

the eigenvalues of the dissipation matrix is shown in Fig. 4.8, verifying the passivity

compensation process. A time-domain simulation is done by utilizing the recursive

convolution process with the model developed. A single pulse with rise and fall time

of 1 ns and with a pulse width of 8 ns is sent at port 1 and the responses at both

ports were evaluated. Owing to the numerical superiority of the recursive convolution

process, this took only 0.062 s. The result is shown in Fig. 4.9.

55

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency (GHz)

S
1

1
 (

m
a

g
n

it
u

d
e

)

Original signal

From VFIT

Passive

0 1 2 3 4 5
-4

-2

0

2

4

Frequency (GHz)

S
1

1
 (

p
h

a
s

e
),

 r
a

d
ia

n
s

Original signal

From VFIT

Passive

Figure 4.4: Comparison of S11 of the measured data and the model.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Frequency (GHz)

S
1

2
 (

m
a

g
n

it
u

d
e

)

Original signal

From VFIT

Passive

0 1 2 3 4 5
-4

-2

0

2

4

Frequency (GHz)

S
1

2
 (

p
h

a
s

e
),

 r
a

d
ia

n
s

Original signal

From VFIT

Passive

Figure 4.5: Comparison of S12 of the measured data and the model.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Frequency (GHz)

S
2

1
 (

m
a

g
n

it
u

d
e

)

Original signal

From VFIT

Passive

0 1 2 3 4 5
-4

-2

0

2

4

Frequency (GHz)

S
2

1
 (

p
h

a
s

e
),

 r
a

d
ia

n
s

Original signal

From VFIT

Passive

Figure 4.6: Comparison of S21 of the measured data and the model.

56

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Frequency (GHz)

S
2
2
 (
m
a
g
n
it
u
d
e
)

Original signal

From VFIT

Passive

0 1 2 3 4 5
-4

-2

0

2

4

Frequency (GHz)

S
2

2
 (

p
h

a
s

e
),

 r
a

d
ia

n
s

Original signal

From VFIT

Passive

Figure 4.7: Comparison of S22 of the measured data and the model.

0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency (GHz)

m
in

 [
e
ig

(I
-S

*S
)]

Original signal

Passive

 Passivity violations

Figure 4.8: Eigenvalues of the dissipation matrix. Negative values indicate passivity
violation.

4.3 S-Parameter Fast Convolution

In this section, we will describe a fast convolution based approach for the incor-

poration of blackbox macromodels in circuit simulators. We begin with an overview

of the general convolution process. Consider a blackbox respresented by its n-port

scattering parameters, S(ω). The response at the terminals of the blackbox is given

57

0 10 20 30 40 50 60
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (ns)

V
o
lt
a
g
e
 (
V
)

Port 1 - Passive VFIT

Port 2 - Passive VFIT

Figure 4.9: Time-domain response.

by

B(ω) = S(ω)A(ω) (4.93)

where B(ω) and A(ω) are the reflected and incident waves respectively. In the time

domain, this becomes

b(t) = s(t) ∗ a(t) (4.94)

where ∗ indicates the convolution operator given by

s(t) ∗ a(t) =

∞∫
−∞

s(t− τ)a(τ)dτ . (4.95)

When the time variable is discretized, this convolution becomes

s(t) ∗ a(t) = s(0)a(M)∆t+
M∑
k=1

s(k)a(M − k)∆t (4.96)

58

where ∆t is the time step and M is the index associated with the current time. With

this formulation, (4.94) can be written as

b(t) = soa(t) + h(t) (4.97)

where so = s(0)∆t and h(t) is the history of the scattered voltage wave given by

h(t) =
M∑
k=1

s(k)a(M − k)∆t. (4.98)

4.3.1 Fast Convolution Using δ-Function Convolution

Most of the computational burden in the time-domain simulation rests on the

calculation of h(t) in (4.98) which involves an expensive convolution operation, where

the computational complexity is known to be O(n2) where n is the number of sample

points. Our approach to alleviate this problem takes advantage of the fact that

scattering parameter impulse responses have relatively short durations and consist

of pulses that decay very rapidly with time. A close observation of the time-domain

scattering parameter data generated by the IFFT shows that the vast majority of

points have small magnitude and consequently can be neglected. For instance, the

insertion loss scattering parameter of a microstrip line was measured on a network

analyzer up to 40 GHz. When the data is processed through a 801-point IFFT, only

25 points of the resulting time-domain sequence are larger than 1% of the maximum

(absolute) value. This can also be easily observed by looking at the plots of the

impulse responses shown in Fig. 4.10.

Consequently, most of the s(k) terms in the summation in (4.98) will be zeros and

the calculation of h(t) can be accelerated dramatically. As a reformulation, we can

assume that the discrete frequency-domain scattering parameter transfer functions

59

0 50 100 150 200
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Points

M
a
g
n
it
u
d
e

S
11

S
21

Figure 4.10: Time-domain scattering parameter responses for a microstrip showing
the rapid decay of the function. Only the first 200 points from the IFFT are shown.

can be described in the form

Sd(q) =
L∑
k=1

cke
j2πqk (4.99)

in which the ck’s and k’s are parameters to be determined. L is the order of the

approximation that satisfies L << N where N is the total number of simulation

points. With this representation, the associated time-domain function takes the form

of a train of impulses whose weights are given by the ck’s:

sd(p) =
L∑
k=1

ckδ(p− k). (4.100)

Convolution with an excitation function ad(p) then gives

hd(p) =

[
L∑
k=1

ckδ(p− k)

]
∗ ad(p) =

L∑
k=1

ckad(p− k). (4.101)

60

In a typical approach, the ck’s are obtained by taking the inverse discrete Fourier

transform or IFFT of the frequency-domain transfer function. If the transfer functions

are scattering parameters, most of these ck’s will be negligibly small and thus only

a few (L) will need to be retained for the representation described in (4.100). In

addition, when the reference system is optimally chosen, the time-domain scattering

parameters die out quickly, leading to even fewer points in the delta-function sequence.

In general, the choice of L is directly predicated by the desired accuracy and is also

a strong function of the frequency-domain data.

4.3.2 DC Extraction and Causality Enforcement

The IFFT process used in the fast convolution method requires input data down

to DC in the frequency domain in order to generate a reliable result. However,

most data used for blackbox macromodels are obtained either from network analyzer

measurements or full-wave electromagnetic solvers, neither of which operates well at

low frequencies. Consequently, most frequency-domain data are often missing the low

frequency and DC values, and they must be extracted from the available data. We

present two methods that can be used to extrapolate the given data down to DC.

In the first method, the Smith chart is used to extrapolate the data. On the Smith

chart, S-parameters follow the general pattern of growing or decaying clockwise-

moving spirals with increasing frequency. Moreover, at DC, the S-parameters of

a physical circuit value must be real and must lie on the horizontal axis of the Smith

chart. With these considerations, we can assume a mathematical behavior described

by

S(f) = r0e
jθ + re±fαe−j2πfτ (4.102)

for the low-frequency behavior of an S-parameter on the Smith chart. An algorithm

can be devised to extract the values of r0, r and τ using data points from the lowest

61

0
.2

0
.5

1
.0

2
.0

5
.0

+j0.2

-j0.2

+j0.5

-j0.5

+j1.0

-j1.0

+j2.0

-j2.0

+j5.0

-j5.0

0.0 ∞

Available data

Extrapolated data

Figure 4.11: Example of DC extraction on the Smith chart.

frequencies [47]. Extrapolation of values for frequencies down to DC can then be

achieved. This method is illustrated in Fig. 4.11.

A second possible method is to use the vector fitting process described in Section

4.2.1 on the low frequency values of the available data. The model is then used to

generate missing data down to DC. Note that in this process, the computational time

is relatively small compared to the generation of a full model over the entire frequency

range as the process is only applied to the low frequency values (typically the first

10-30 points) of the data and the order is very small (typically 1-3). Furthermore,

since the model is then used to generate discrete data, passivity enforcement can be

done relatively easily by checking condition (4.49) at the extrapolated points.

Regardless of which method is used for the DC extraction process, when data points

are artificially added into actual data, one must ensure that the physical properties

of the system are not altered. In particular, time-domain signals associated with

physical systems must be causal [48]. This means that the response to an excitation

62

starting at t = 0 must be null for t < 0:

h(t) = 0, t < 0 (4.103)

where h(t) is the response of a system due to an excitation starting at t = 0. The

response h(t) can be considered as the superposition of an even and an odd function

defined as

he(t) =
1

2
[h(t) + h(−t)] even function (4.104)

ho(t) =
1

2
[h(t)− h(−t)] odd function. (4.105)

If h(t) is a causal function, then

ho(t) =

 he(t), t > 0

−he(t), t < 0
(4.106)

or

ho(t) = sgn(t)he(t). (4.107)

Therefore, h(t) can be rewritten as:

h(t) = he(t) + sgn(t)he(t). (4.108)

Causality in the time-domain data is then enforced by carrying out the following

steps. First the real part of the frequency-domain data is inverted into the time

domain via IFFT which yields the even part of the time-domain response. Next,

the full time-domain response is generated from the even part using (4.108). This

illustrates that the time-domain response can be generated entirely from the real part

of the frequency-domain data [48].

63

4.3.3 Example

In this section, we present an example to illustrate the fast convolution approach.

The scattering parameters of a two-port interconnect structure are obtained in the

frequency range of 50 MHz – 5 GHz. Note that this is the same example used in

Section 4.2.4. Since the original data is only specified down to 50 MHz, the DC

extraction process explained in the previous section is used to generate the missing

data. The result for S11 is shown in Fig. 4.12. Next, a causal IFFT routine is used

to generate the impulse response. The result for S11 is again shown in Fig. 4.13. As

expected, most of the points have small magnitudes and can be neglected. Specifically,

for S11, out of the 801 points, only 123 points have magnitudes larger than 0.001 of

the maximum (absolute) value. Next, the fast δ-function convolution explained in

Section 4.3.1 is used to generate the time-domain response. A single pulse with rise

and fall time of 1 ns and with a pulse width of 8 ns is sent at port 1, and the

responses at both ports are evaluated. The result is shown in Fig. 4.14. Comparing

this to Fig. 4.9 in Section 4.2.4, we see that both methods, the passive MOR via vector

fitting and fast convolution, generate similar results. However, the overall process for

the fast convolution approach takes a mere 0.125 s compared to 2.052 s for the MOR

approach. Both simulations were performed on a desktop computer with an AMD

2.3 GHz Dual Core processor and 1 GB of RAM. A detailed comparative study of

the two methods will be performed in Section 4.4.

Before concluding this section, we illustrate the importance of the DC extraction

process using this example. Fig. 4.15 shows the time-domain responses that were

generated from the same data but without DC extraction. A substantial loss in

accuracy is observed.

64

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
1
1
 (
m
a
g
n
it
u
d
e
)

Frequency (GHz)

 DC extraction

0 1 2 3 4 5
-4

-2

0

2

4

S
1
1
 (
p
h
a
s
e
),
 r
a
d
ia
n
s

Frequency (GHz)

 DC extraction

Figure 4.12: Example of DC extraction process on S11.

0 200 400 600 800 1000
-1.5

-1

-0.5

0

0.5

1

1.5

M
a
g
n
it
u
d
e

Points

Figure 4.13: Impulse response of S11 showing the rapid decay of the function.

4.4 A Comparative Study of MOR via Vector Fitting and

Fast Convolution

In this section, we present a comparative study [49] of the two techniques for

macromodel generation presented in the previous sections. MOR via vector fitting

and fast convolution will be compared in terms of computational speed and accuracy.

Two computer programs were written in C++ using the Visual Studio environment.

65

0 10 20 30 40 50 60
-0.2

0

0.2

0.4

0.6

0.8

1

Time (ns)

V
o
lt
a
g
e
 (
V
)

Port 1 - Fast Conv.

Port 2 - Fast Conv.

Figure 4.14: Time-domain response using the fast δ-function convolution.

0 10 20 30 40 50 60
-0.2

0

0.2

0.4

0.6

0.8

1

Time (ns)

V
o
lt
a
g
e
 (
V
)

Port 1 - No DC

Port 2 - No DC

Figure 4.15: Time-domain response using the fast δ-function convolution without DC
extraction.

66

Table 4.2: Data file descriptions.

Name Ports Description

Bbx-1 2 2-port I/O network: 1 MHz – 5 GHz
Bbx-2 2 Microstrip line: 50 MHz – 7 GHz
Bbx-3 2 Microstrip coupler: 50 MHz – 5 GHz
Bbx-4 2 Microstrip on FR4: 2 GHz – 50 GHz
Bbx-5 2 Lossy microstrip line: 0 – 20 GHz
Bbx-6 2 18-inch meander: 300 KHz – 6 GHz
Bbx-7 4 4-port data A: 50 MHz – 20.05 GHz
Bbx-8 4 4-port data B: 0 – 50 GHz
Bbx-9 4 4-port data C: 50 MHz – 20.05 GHz

For the program utilizing MOR via vector fitting, the speed of the pole identification

process was further enhanced using the method described in [11]. Various two-port

and four-port networks were used as the benchmarks. A description of these data

files is given in Table 4.2. The files were obtained either from network analyzer

measurements or from full-wave electromagnetic field solvers.

The excitation used was a trapezoidal pulse with an amplitude of 1 V, rise and

fall times of 1 ns and a pulse width of 8 ns. The simulation time was 50 ns. In all

cases, the excitation was provided at port 1, using a generator with a 50 Ω internal

impedance. All the other ports were left open.

Table 4.3 shows a comparison of the runtime between the two methods. In the

MOR case, the simulation times for vector fitting, passivity enforcement and recursive

convolution are shown separately. In some cases, fittings with different orders are

shown to illustrate the effects on speed. All of the simulations were performed on a

desktop computer with an AMD 2.3 GHz Dual Core processor and 1 GB of RAM.

For the MOR based method, the order of the approximation, N , in the partial

fraction expansion is critical in determining the speed and accuracy of the simulation

results. The computational advantage gained through the use of recursive convolution

may be lost if the order is high. In addition, it was observed that for the most part,

passivity enforcement contributed to the largest computational time and represented

67

Table 4.3: Benchmark for MOR and fast convolution techniques.

Data
file

No. of
points

MOR with Vector Fitting Fast Conv.

Order
Time (s)

Time (s)
VFIT†

Passivity
Enforc.

Recursive
Conv‡.

TOTAL

Bbx-1 501 10* 0.14 0.01nv 0.02 0.17 0.078

Bbx-2 801 20* 0.41 5.47 0.03 5.91 0.110

Bbx-3 801 40* 1.08 0.08nv 0.06 1.22 0.125

Bbx-4 801
60* 2.25 1.89 0.09 4.23

0.125
100 3.17 5.34 0.16 8.67

Bbx-5 2001 50* 4.97 0.09nv 0.28 5.34 0.328

Bbx-6 801 100* 3.17 0.56nv 0.16 3.89 0.109

Bbx-7 1601
100* 24.59 28.33 1.31 53.23

0.438
120 31.16 27.64 1.58 60.38

Bbx-8 5096 220 250.08 25.77nv 10.05 285.90 2.687

Bbx-9 1601
200* 58.47 91.63 2.59 152.69

0.469250 80.64 122.83 3.22 206.69
300 106.53 61.58nv 3.86 171.97

* Lowest order for a visually good fit, rounded up to the nearest 10.
† 2 iterations of VFIT done.
‡ Time for one simulation up to Num time = 2×Num freq. Time step was chosen such that the

total simulation time is 50 ns.
nv No passivity violation. No passivity enforcement necessary. Time needed was to check passivity.

an important fraction of the total time. This is due to the process of iteratively

determining the eigenvalues of the Hamiltonian and perturbing the residue matrix

for passivity enforcement.

The results summarized in Table 4.3 as well as numerous additional simulations per-

mit us to conclude that an MOR-based technique for blackbox macromodeling does

not offer a significant advantage over convolution-based methods. In fact, if scatter-

ing parameters are used, fast convolution can be used to accelerate the simulation.

All simulations indicate that reliable and comparable accuracy can be obtained by

68

0 10 20 30 40 50
-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (ns)

V
o
lt
a
g
e
 (
V
)

Port 1 - MOR

Port 2 - MOR

0 10 20 30 40 50
-0.1

0

0.1

0.2

0.3

0.4

0.5

V
o
lt
a
g
e
 (
V
)

Time (ns)

Port 1 - FC

Port 2 - FC

Figure 4.16: Simulation comparisons for MOR and fast convolution for Bbx-1. Left:
Passive MOR. Right: Fast convolution.

0 10 20 30 40 50
-0.2

0

0.2

0.4

0.6

0.8

1

V
o
lt
a
g
e
 (
V
)

Time (ns)

Port 1 - MOR

Port 2 - MOR

0 10 20 30 40 50
-0.2

0

0.2

0.4

0.6

0.8

1

Time (ns)

V
o
lt
a
g
e
 (
V
)

Port 1 - FC

Port 2 - FC

Figure 4.17: Simulation comparisons for MOR and fast convolution for Bbx-2. Left:
Passive MOR. Right: Fast convolution.

both convolution and MOR techniques. Plots of the voltage waveforms at the inputs

and outputs for Bbx-1 and Bbx-2 are shown in Figs. 4.16 – 4.17 for comparison.

4.5 Integrating Blackbox in LIM

We conclude this chapter by showing how blackbox macromodels developed in the

previous sections can be incorporated into a LIM simulation [50]. From the definition

of scattering parameters, the incident and reflected waves can then be related to the

69

voltage and currents at the terminals using

a(t) =
1

2
[v(t) + Zoi(t)] (4.109)

b(t) =
1

2
[v(t)− Zoi(t)] (4.110)

where a(t) and b(t) are the incident and reflected waves respectively, v(t) and i(t)

are the terminal voltage and current vectors respectively and Zo is the reference

impedance matrix. Substituting (4.109) and (4.110) into (4.88) for blackboxes repre-

sented by MOR via vector fitting and (4.97) for blackboxes represented by the fast

convolution method yields

1

2
[v(t)− Zoi(t)] =

1

2
so [v(t) + Zoi(t)] + h(t) (4.111)

from which i(t) can be solved as

i(t) = Z−1o [1+so]−1 [1−so] v(t)− 2Z−1o [1+so]−1h(t). (4.112)

In most circuit simulators, the voltage-current relationship is expressed in the form

of stamp parameters that represent subnetwork components. In this form, (4.112)

can be simplified to read

i(t) = Ystampv(t)− istamp (4.113)

where

Ystamp = Z−1
o [1 + so]−1 [1− so] (4.114)

and

istamp = 2Z−1
o [1 + so]−1h(t). (4.115)

70

The definitions of so and h(t) differ depending on the representation of the blackbox.

With this formulation, the blackbox can then be incorporated into a LIM simulation

where the blackbox is represented by the currents through its terminals. At each time

step, the currents into these branches are calculated using (4.113); next the currents

at all the external branches are evaluated using the LIM updating equation given

in (2.4). Finally, all the nodes voltages are updated using (2.2). The algorithm is

summarized as follows:

Algorithm 1 LIM simulation with blackbox models

for time = 1 to Ntime do
for blackbox = 1 to Nb−box do

Calculate macromodel branch currents using (4.113)
end for
for branch = 1 to Nbranch do

Update current as per (2.4)
end for
for node = 1 to Nnode do

Update voltage as per (2.2)
end for

end for

We present an example to verify the method. Consider the circuit shown in

Fig. 4.18. The two-port blackbox consists of scattering parameter data of an in-

terconnect network measured from 2 GHz – 5 GHz with 801 frequency points. The

MOR method via vector fitting is used to generate a pole-residue approximation of

the system with an order of 60. The entire circuit is then simulated using LIM. The

excitation is provided by a current source pulse connected at node 1. The magnitude

of the pulse is 20 mA with rise and fall times of 0.1 ns and pulse width of 2 ns. The

resulting transient response waveforms are shown in Fig. 4.19 for the voltage at nodes

1 and 4. Comparison with simulations using Agilent’s Advanced Designed Systems

(ADS) [51] shows small differences between the two methods which are attributed

mainly to the inaccuracies in the model.

71

20pF10MΩ

22nH 4.53Ω 21.2nH

21.2Ω
32.4nH

14.53Ω

32.2nH

25.3Ω

43.2nH 47.3Ω

10pF

50Ω

0.2pF50Ω

20pF
10MΩ

2

3

4

1

Two-Port
Blackbox

Figure 4.18: Example circuit containing a blackbox model.

Figure 4.19: Simulated voltage waveforms for nodes 1 and 4 of the circuit in Fig. 4.18.

72

CHAPTER 5

CMOS CIRCUIT SIMULATION IN LIM

5.1 Introduction

For signal integrity analysis, a majority of the circuits being analyzed consist of

linear, passive interconnects and nonlinear drivers at the terminals. In the preceding

chapters, we have seen how linear devices such as resistors, capacitors, inductors

and even blackbox macromodels which are characterized in the frequency domain

can be handled and included in a LIM simulation. In this chapter, we present the

formulation for nonlinear devices. Due to the dominance of CMOS devices in the

integrated circuit industry today, we focus our attention mainly on the inclusions of

MOSFETs into LIM simulations.

5.2 CMOS Circuit Simulation Using the Shichman-Hodges

Model

LIM can be easily applied to CMOS circuits. When a CMOS device is present,

the drain current of the CMOS is used as the branch current in place of (2.4). The

CMOS drain current can be calculated using the appropriate model for the device.

In this work, we adopt the Shichman-Hodges model as used in [52, 53] to model the

73

CMOS devices where the drain current for an NMOS, IDn, is given by

IDn = 0, VG − VS < VTn; VD − VS ≥ 0 (cutoff)

IDn =
KnWn

Ln
(VG − VS − VTn − 0.5(VD − VS)) (VD − VS) ,

VG − VS > VTn; 0 < VD − VS < VG − VS − VTn (ohmic)

IDn =
KnWn

2Ln
(VG − VS − VTn)2,

VG − VS > VTn; VD − VS > VG − VS − VTn (saturation)

(5.1)

where Kn, Wn, Ln, and VTn are the transconductance, channel width, channel length,

and threshold voltage for the NMOS device respectively, VG is the gate voltage, VS

is the source voltage and VD is the drain voltage. Similarly, the drain current of a

PMOS, IDp, is given by

IDp = 0, VG − VS > VTp; VD − VS ≤ 0 (cutoff)

IDp =
−KpWp

Lp
(VG − VS − VTp − 0.5(VD − VS)) (VD − VS) ,

VG − VS < VTp; 0 > VD − VS > VG − VS − VTp (ohmic)

IDp =
−KpWp

2Lp
(VG − VS − VTp)2,

VG − VS < VTp; VD − VS < VG − VS − VTp (saturation)

(5.2)

where Kp, Wp, Lp, and VTp are the transconductance, channel width, channel length,

and threshold voltage for the PMOS device respectively. Note that in SPICE, this

model is selected by using the option “LEVEL=1” in the .MODEL statement.

74

It has been shown that (5.1) and (5.2) can be most easily solved, without much loss

of accuracy, if we adopt an explicit formulation, where the voltages at the previous

time step are used in solving for the drain currents [53].

We present an example to verify the method. Consider the circuit of a CMOS

NAND shown in Fig. 5.1 where we have assumed an output capacitance of 1 pF and

a small fictitious capacitance of 0.01 pF at the inner node. For simplicity, the MOS

parameters are given as follows: Kn = Kp = 10µA/V 2, Wn = Wp = Ln = Lp = 5µm,

VTn = −VTp = 0.75V and V dd = 6V . Initial conditions are assumed to be available

through the .IC statement. If needed, they can be computed using the method in [54].

Fig. 5.2 shows the simulation result of the circuit using both LIM and SPECTRE.

Comparable accuracy is observed in both methods.

5.3 Multi-Rate Simulation for CMOS Circuit

It is well known that the choice of a stable time step for a LIM simulation depends

on the capacitances at each node [35, 37]. Specifically, circuits that contain smaller

capacitances require smaller time steps for a stable simulation. In Chapter 3, we

have seen how the multi-rate technique has been applied to speed up LIM simulations

without violating the stability criterion, whereby the circuit is first partitioned into

smaller subcircuits and different time steps are used for different partitions depending

on the maximum stable time step. In this work, we apply the multi-rate simulation

technique on a node-by-node basis [55]. Instead of partitioning the entire circuit

into smaller partitions, we evaluate each node with its own maximum stable time

step depending on the value of the capacitance at that node. Since we are dealing

with CMOS circuits, the problem is simplified as we are not dealing with branch

inductances. We will illustrate this idea by means of an example.

75

Vdd

Vin1

Vin1

Vin2

Vin2

Cout = 1 pF

Vo

Cfict = 0.01 pF

Figure 5.1: CMOS NAND.

0 0.2 0.4 0.6 0.8 1

x 10
-6

-1

0

1

2

3

4

5

6

7

Time (s)

V
o
lt
a
g
e
 (
V
)

Vin1

Vin2

Vo-LIM

Vo-SPECTRE

Figure 5.2: Simulation result of a CMOS NAND.

Consider again the CMOS NAND circuit shown in Fig. 5.1. The maximum stable

time step for this circuit has been determined to be 0.1 ns. Note that this time step is

due to the small fictitious capacitor, and if we split the circuit into two partitions as

shown in Fig. 5.3, the upper node can be simulated using a time step of 10 ns without

76

Vdd

Vin1

Vin1

Vin2

Vin2

Cout = 1 pF

Vo

Cfict = 0.01 pF

Partition 2

Partition 1

Figure 5.3: Partitioned CMOS NAND.

violating the stability criterion. Thus the idea is to simulate the circuit using the two

time steps, one of each node. By doing so, we are able to speed up the simulation as

the upper partition is only evaluated once for every 100 times of the lower partition.

Fig. 5.4 shows the simulation of the circuit in Fig. 5.3 using the traditional LIM

with time steps of 0.1 ns, 10 ns, and a multi-rate simulation with time steps of 0.1

ns and 10 ns. We see that the multi-rate simulation retains the accuracy of the 0.1

ns simulation while the simulation with time step of 10 ns results in an erroneous

solution as expected.

5.4 Examples

In this section, two numerical examples will be presented. First a CMOS RAM

circuit will be simulated in LIM and SPECTRE [22], a commercial circuit solver

from Cadence Design Systems, in order to illustrate the speed improvement of LIM

compared to SPICE based methods. Then a chain of ripple-carry adders will be

77

0 0.2 0.4 0.6 0.8 1

x 10
-6

-1

0

1

2

3

4

5

6

7

Time (s)

V
o
lt
a
g
e
 (
V
)

Vin1

Vin2

Vo-0.1ns

Vo-10ns

Vo-MR

 Unstable

Figure 5.4: Simulation result of the partitioned CMOS NAND showing a LIM simu-
lation with a time step of 0.1 ns (Vo-0.1ns), a LIM simulation with a time step of 10
ns (Vo-10ns) and a multi-rate LIM simulation (Vo-MR).

used to illustrate the application of the multi-rate simulation technique with CMOS

devices.

5.4.1 RAM Circuit

In this example, a RAM circuit is simulated in LIM and in SPECTRE. The circuit

contains 4850 nodes and 13,880 MOSFETs. A 1 pF capacitor is assumed to be present

at each node to enable LIM. A time step of 0.5 ns is used in LIM in order to obtain a

stable and accurate result while SPECTRE is allowed to determine its own suitable

time step. The simulation length in both cases is 600 ns. Figs. 5.5 and 5.6 show the

results at select nodes in both the LIM and SPECTRE simulation, respectively. We

see that both methods produce comparable results. In terms of runtime, the LIM

simulation requires 1.59 s for 1200 time steps while SPECTRE requires 22.24 s for

1146 time steps. Both simulations were performed on a Linux server with Intel Xeon

3.16 GHz processors and 32 GB of RAM. We see that LIM is about 14× faster in

78

0 1 2 3 4 5 6

x 10
-7

-1

0

1

2

3

4

5

6

7

Time (s)

V
o
lt
a
g
e
 (
V
)

V(140)

V(142)

V(153)

V(156)

V(196)

V(213)

V(620)

V(4730)

V(4732)

V(4734)

V(4740)

Figure 5.5: LIM simulation of RAM circuit.

0 1 2 3 4 5 6

x 10
-7

-1

0

1

2

3

4

5

6

7

V
o
lt
a
g
e
 (
V
)

Time (s)

V(140)

V(142)

V(153)

V(156)

V(196)

V(213)

V(620)

V(4730)

V(4732)

V(4734)

V(4740)

Figure 5.6: SPECTRE simulation of RAM circuit.

79

A-1

B-1

Cin-1

Cout-1

Sum-1
Cin-2

A-2

B-2

Cout-2

Sum-2

Cout-7

Cin-8

A-8

B-8

Cout-8

Sum-8

Figure 5.7: Chain of eight ripple-carry adders.

this example. The advantage of LIM in terms of runtime is expected to increase as

the circuit size increases, as LIM exhibits a linear numerical complexity with respect

to the number of nodes [36].

5.4.2 Ripple-Carry Adder

In this example, a chain of eight ripple-carry adders is simulated in order to illus-

trate an application of the multi-rate simulation technique. The circuit is shown in

Fig. 5.7 where each NAND is as shown in Fig. 5.1. The regular LIM requires the use

of a 0.1 ns time step in order to obtain a stable result, while the multi-rate LIM oper-

ates at time steps of 0.1 ns and 10 ns as explained in the previous section. The total

simulation time is 2 µs, which results in 20,000 time steps. In the LIM simulation,

the CMOS model is evaluated 5,759,712 times while the nodes are evaluated a total

of 2,899,855 times. On the other hand, in the multi-rate LIM, the CMOS model is

evaluated 2,908,800 times while the nodes are evaluated a total of 1,474,399 times.

We see that by using the multi-rate technique, we are able to reduce the number of

node and branch evaluations by almost a factor of two for this circuit. Fig. 5.8 shows

the simulation result at the output of the first and last ripple-carry adders for both

the regular LIM and the multi-rate LIM. Comparable accuracy is observed between

the two.

80

0 0.5 1 1.5 2

x 10
-6

-1

0

1

2

3

4

5

6

7

Time (s)

V
o
lt
a
g
e
 (
V
)

Sum-1

Cout-1

Sum-8

Cout-8

Figure 5.8: Simulation of ripple-carry adders in LIM (solid lines) and multi-rate LIM
(dotted lines).

5.5 Summary

In this chapter, we have presented the formulation for the simulations of CMOS

circuits in the LIM environment. Examples that illustrate the strength of the method

in terms of speed and accuracy were presented. Finally, we note that the simulations

of other nonlinear devices can be done in a similar fashion. For example, for the

simulations of BJTs, large signal equations such as the Ebers-Moll equations can be

used in place of (5.1) and (5.2).

81

CHAPTER 6

PLL SIMULATIONS

6.1 Introduction

This chapter presents an extension of the latency insertion method (LIM) to the

simulations of analog devices, particularly to phase-locked loops (PLLs). PLLs are

extensively used in modern wireless communication and high-speed devices. They

can be employed to perform an array of functions, ranging from frequency synthesiz-

ers to clock recovery and data synchronizers. However, despite their prominence in

applications, simulations of PLLs still constitute a significant challenge to the indus-

try today. Traditional simulations of PLLs at the transistor level, albeit accurate, are

often prohibitively slow due to the dual time scale problem. The high frequency of the

embedded voltage-controlled oscillator necessitates the use of very small simulation

time steps, while the overall loop bandwidth is typically orders of magnitude lower

which results in very long simulation time in order to observe the dynamic behavior

of the system. As a result, some designers resort to analytical expression based and

behavioral macromodeling simulations of PLLs [56, 57]. While these methods offer

significant speed-ups compared to a full transistor level simulation, an overly sim-

plified linear model can often neglect key nonlinear behaviors, resulting in erroneous

response of the PLL. In addition, complex behavioral models can be cumbersome to

implement and might not be easily integrated into a system level simulation.

In this chapter, we will examine the usage of LIM for the simulations of PLLs. First,

a behavioral level simulation will be performed using the PLL governing equations.

82

By exploiting the latency in the formulation, along with a leapfrog time-stepping

discretization scheme, we solve the PLL governing equations without the formulation

of complex, high-order differential equations. In addition, nonlinearities of the PLL

components can be easily integrated into the existing formulation and extensions to

higher-order PLLs are straightforward. Second, we show an example of simulating

a PLL at the transistor level using LIM. This will illustrate the capabilities of LIM

to perform a transistor level simulation of analog devices when higher accuracies are

desired.

6.2 Behavioral Simulations of PLLs Based on a Leapfrog

Voltage-Phase Formulation

In this section, we present a novel and simple behavioral model based simulation

method for PLLs. The method exploits the latency in the PLL formulation and uti-

lizes a leapfrog time-stepping discretization scheme to solve for the transient response

of the PLL. Various PLL dynamic responses such as lock-in, pull-in and pull-out con-

ditions are simulated and comparisons with analytical solutions are depicted when

available. In addition, the method is shown to be able to capture nonlinear behaviors

of the PLL. Due to the formulation in the voltage-phase domain, the method does

not suffer from the dual time scale problem which is a main issue in full transistor

level simulations of PLLs.

Fig. 6.1 shows a block diagram of a PLL, consisting of a phase detector (PD), a

low-pass loop filter (LPF) and a voltage-controlled oscillator (VCO). For simplicity,

the frequency divider, which is often used in a synthesizer, is assumed to be unity.

In order to overcome the dual time scale problem, we will adopt a phase-domain

characterization of the PD and the VCO. In Fig. 6.1, the PD typically governs the

main nonlinear behavior of the PLL due to its inherent nonlinearity. For example,

83

VCO

ϕin

ϕvco

Vd

Vt

PD LPF

Figure 6.1: Block diagram of a PLL.

when an analog multiplier is used as a PD, its output signal is given by

Vd(t) = KD sin (φe(t)) (6.1)

where φe(t) is the phase error defined as

φe(t) = φin(t)− φvco(t). (6.2)

Note that the sum output term has been neglected since it will be filtered out by the

LPF. Alternative implementations of the PD exist, for example by using a JK flip-flop

in a digital PD. In that case, (6.1) can be replaced by a sawtooth function [58].

The LPF in Fig. 6.1 is modeled by its transfer function. For example, for an active

second order filter, we obtain [58]

Vt(s)

Vd(s)
=

1 + τ2s

τ1s
. (6.3)

Rearranging the terms in (6.3) and taking the inverse Laplace transform we obtain

τ1
d

dt
Vt(t) = Vd(t) + τ2

d

dt
Vd(t). (6.4)

84

For higher order filters, (6.4) can be modified accordingly.

Finally, the VCO is modeled by

d

dt
φvco(t) = KV Vt(t) + ωoffset (6.5)

where the output frequency has been substituted as the derivative of the phase and

ωoffset is the free running frequency of the VCO. Substituting (6.2) into (6.5) yields

d

dt
(φin(t)− φe(t)) = KV Vt(t) + ωoffset (6.6)

d

dt
φe(t) = ωin − ωoffset −KV Vt(t) (6.7)

Next, substituting (6.1) into (6.4) and rearranging the terms we obtain

d

dt
Vt(t) =

KD

τ1

sinφe(t) +
τ2

τ1

d

dt
(KD sinφe(t)) . (6.8)

In order to solve (6.7) and (6.8), we apply a leapfrog discretization scheme where

Vt(t) and φe(t) are collated in half time steps to generate sequences of the form V
n−1/2
t ,

V
n+1/2
t , V

n+3/2
t for the tune voltages and φne , φn+1

e , φn+2
e for the phase errors. This is

similar to LIMs solution of the Kirchhoff’s voltage and current law circuit equations.

Applying this to (6.7) and (6.8) we obtain

φn+1/2
e = φn−1/2

e + ∆t (ωin − ωoffset −KV V
n
t) (6.9)

V n+1
t = V n

t +
∆t

τ1

(
KD sinφn+1/2

e

(
1 +

τ2

∆t

)
− τ2

∆t
KD sinφn−1/2

e

)
(6.10)

The transient solution of the PLL can then be calculated by alternating the com-

putations of (6.9) and (6.10) as time progresses. Note that this method avoids the

formulation of a complex high-order differential equation. In addition, nonlinearities

85

Table 6.1: PLL parameters.

KD KV τ1 τ2

5/(2π) 2π(3× 105) 4.385× 10−6 1.592× 10−6

in the PLL components can be readily integrated into the modeling equations of (6.1)

and (6.5).

Next, we apply the developed method to simulate the lock-in and pull-in or acqui-

sition process of a PLL. An example PLL is used where the parameters are shown in

Table 6.1.

First, the PLL is assumed to be in a locked condition and a small unit step change

is applied to the input frequency. The dynamics of the PLL as it relocks is monitored

and the output frequency and phase error are plotted in Fig. 6.2 and Fig. 6.3 respec-

tively. For this small perturbation, the phase error is sufficiently small and the PLL

operates in the linear region where

sinφe(t) ≈ φe(t) (6.11)

Using this approximation in the linear region, an analytical solution of the PLL can

be calculated by taking the inverse Fourier transform of the closed-loop frequency

response multiplied by the unit step function. This method is presented in detail

in [59]. The output frequency and phase error calculated using the analytical solution

are superimposed on Fig. 6.2 and Fig. 6.3 respectively. We see a good agreement

between the two methods.

Next, a larger step change of 500 kHz is applied to the input frequency. This

simulates the acquisition process which typically occurs when the PLL is first powered

up or when subjected to a large perturbation. In this case, the PLL leaves the linear

region, and exhibits a highly nonlinear behavior. The output frequency is simulated

86

0 0.5 1 1.5 2 2.5 3

x 10
-5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f o
u
t
(n
o
rm

a
liz
e
d
)

Time (s)

This method

Analytical

Figure 6.2: Output frequency of PLL during lock-in.

0 0.5 1 1.5 2 2.5 3

x 10
-5

-2

-1

0

1

2

3

4

5

6

7
x 10

-6

Time (s)

φ
e
 (
ra
d
)

This method

Analytical

Figure 6.3: Phase error of PLL during lock-in.

87

0 2 4 6 8 10

x 10
-5

-1

0

1

2

3

4

5

6

7
x 10

5

Time (s)

C
h
a
n
g
e
 i
n
 f
o
u
t
(H
z
)

Figure 6.4: Output frequency of PLL during acquisition.

and shown in Fig. 6.4. Note that for this nonlinear process, simple analytical solutions

which assume the linearity of the PLL are no longer valid.

Finally, the PLL is subjected to an even larger step change of 2 MHz in input

frequency. The output frequency is simulated and plotted in Fig. 6.5. In this case,

the PLL struggles to acquire lock and no indication of locking can be seen in the time

frame simulated.

Before concluding this section, we note that all the simulations depicted using the

method took less than one second to run on an AMD 3 GHz desktop computer with

4 GB of RAM.

6.3 Transistor Level Simulations of PLLs Using LIM

In this section, a transistor level simulation of a PLL will be performed using LIM.

The PLL is represented as in Fig. 6.1. An XOR gate is used as a phase detector and

a circuit diagram of it is given in Fig. 6.6. The loop filter is a first order low-pass

filter as shown in Fig. 6.7 and the VCO is shown in Fig. 6.8, where an inverter is used

88

0 5 10 15 20

x 10
-6

-1

-0.5

0

0.5

1

1.5
x 10

5

C
h
a
n
g
e
 i
n
 f
o
u
t
(H
z
)

Time (s)

Figure 6.5: Output frequency of PLL for a large step change in input frequency
illustrating a pull-out process.

to convert between the generated sine wave and a square wave. For simplicity, all the

MOS transistors are assumed to have parameters as follows: Kn = Kp = 20µA/V2,

Wn = Wp = 10 µm, Ln = Lp = 1 µm, VTn = −VTp = 0.75 V and V dd = 5 V. The

variable capacitors in the VCO have values of 195.8 pF − 10 pF/Vt which gives a

free running frequency of 36 MHz (Vt = 0) and a tuning characteristic of 1 MHz/Vt.

No particular implementation is assumed for the varactors in this simulation. In

practice, they are often implemented as reverse biased diodes, PMOS transistors

with the drain, source and bulk connected together, or an array of these to achieve

wider tuning ranges [60]. Finally, we note that since an XOR gate is used as a

phase detector, the PLL is designed to have a center frequency of 38.5 MHz which

corresponds to a tuning voltage of V dd/2 = 2.5 V.

The PLL is then subjected to a square wave input signal Vin, with rise and fall times

of 1 ns, a pulse width of 11.987 ns and a period of 25.974 ns which corresponds to a

frequency of 38.5 MHz. The magnitude of the pulse is 5 V. VBIAS is 1 V and Ikickstart is

a current pulse with rise and fall times of 1 ns, a pulse width of 3 ns and a magnitude

89

Vdd

Vdd

Vdd

Vin

VVCO

Vin

VVCO

Vin

Vin

Vin

Vin

VVCO

VVCO

VVCO

VVCO

Vd

Figure 6.6: XOR phase detector.

C = 0.1 nF

R = 50 kΩ
VtVd

Figure 6.7: Low pass filter.

of 0.5 A which is used solely for the purpose of simulation. All the node voltages in

the circuit are assumed to begin at zero and the behavior of the PLL as it locks to the

input signal is simulated using both LIM and SPECTRE [22], a commercial circuit

solver from Cadence Design Systems. This corresponds to an acquisition process

when the PLL is first powered up. In LIM, small fictitious inductors and capacitors

of magnitude 1 nH and 0.01 pF respectively are inserted into branches and nodes

without latencies in order to enable the method. The tuning voltage Vt is plotted

90

Vdd

VBIAS

100 nH 100 nH

Vdd

VVCO

Ikickstart

Figure 6.8: VCO.

in Fig. 6.9 for a 75 µs simulation time for both LIM and SPECTRE. We see a very

good agreement between the two methods. In terms of runtime, LIM required a

time step of 5 ps for a stable simulation which resulted in a runtime of 10.82 s for

15,000,000 time steps. SPECTRE was able to obtain an accurate result with a time

step of 0.1 ns which resulted in a runtime of 34.78 s for 989,514 time steps. (Note

that SPECTRE automatically adjusts the time step for convergence of the embedded

Newton-Raphson iteration.) This illustrates a typical scenario for a PLL simulation

at the transistor level, where a large number of simulation time steps is required due

to the dual time scale problem, where the high frequency of the embedded voltage-

controlled oscillator necessitates the use of a very small simulation time step, while

the lower overall loop bandwidth determines the total simulation time that has to

be performed to observe the dynamic behavior of the system. In both cases, the

simulations are performed on a Linux server with Intel Xeon 3.16 GHz processors

and 32 GB of RAM. We see that the runtime for both methods are comparable for

91

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

Time (µs)

V
t
(V
)

LIM

SPECTRE

Figure 6.9: PLL tuning voltage during acquisition.

this small example. However, we expect that for larger circuits, such as when a PLL

is embedded into a larger system, LIM would outperform SPECTRE as we have seen

in Chapter 2 that LIM exhibits a linear numerical complexity with respect to the

number of nodes.

Next, the same PLL is simulated using the behavioral model approach presented

in Section 6.2. Since an XOR gate is used as a phase detector, (6.1) is replaced by a

triangular function from 0 to 5 with period π:

Vd(t) = 2.5 · 2

π

(
(φe(t) + π/2)− π

⌊
(φe(t) + π/2)

π
+

1

2

⌋)
(−1)b

(φe(t)+π/2)
π

− 1
2c + 2.5

(6.12)

where bxc represents the floor function of x. In addition, (6.4) is replaced by a passive

first order filter:

Vt(t) + τ1
d

dt
Vt(t) = Vd(t) (6.13)

92

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

V
t
(V
)

Time (µs)

Figure 6.10: PLL tuning voltage during acquisition from behavioral model.

where τ1 = RC. The VCO is modeled as in (6.5) with an offset frequency of 38.5

MHz corresponding to a tuning voltage of 2.5 V:

d

dt
φvco(t) = (2π · 38.5× 106)−KV (Vt(t)− 2.5) . (6.14)

The remaining parameters of the PLL are KD = 1, since the phase detector gain

has been included in (6.12), and KV = 2π(106) corresponding to a 1 MHz/V tuning

characteristic of the VCO. Fig. 6.10 shows the tuning voltage Vt from the behavioral

model simulation. We see a good agreement with the transistor level simulation

shown in Fig. 6.9. Some slight differences between the outputs of the two methods

are expected to be caused by the nonideal behavior of the actual circuit that is not

captured in the behavioral modeling. This will be investigated next. Before we

proceed, we remark that the behavioral model simulation took less than one second

of runtime on the same computer.

In order to examine the accuracy of the modeling equations used in the behavioral

level simulation, we plot the average output voltage of the phase detector shown in

93

-10 -5 0 5 10
0

1

2

3

4

5

φ
e
 (rad)

V
d
 (
V
)

Circuit PD

Model

Figure 6.11: Response of XOR phase detector.

Fig. 6.6 as the phase error between the two inputs is varied from −3.5π to 3.5π, along

with the modeling equation in (6.12). This is shown in Fig. 6.11. In addition, the

output frequency of the VCO shown in Fig. 6.8 is plotted as the tuning voltage, Vt is

varied from 0 V to 5 V, along with the linear approximation used in (6.14). This is

shown in Fig. 6.12. Two notable differences between the responses of the actual circuit

and the model are: (1) for very small (φe ≈ 0, 2π, ...) and very large (φe ≈ π, 3π, ...)

phase errors, the response for the actual circuit only approaches the ideal response

of 0 V and 5 V respectively, due to the delay of the internal components of the

PD, and (2) the tuning characteristic of the actual VCO deviates slightly from the

ideal approximation used in the model. This would explain the slight discrepancies

between the results in Fig. 6.9 and Fig. 6.10. If needed, the modeling equations in

(6.12) and (6.14) can be tuned to better capture the exact behaviors of the PD and

the VCO. This would, for example, be useful in a bottom-up design approach where

the individual component parameters are first extracted and then used in the design

and simulation of the final overall system.

94

0 1 2 3 4 5
35

36

37

38

39

40

41

42

X: 2.5
Y: 38.5

V
t
 (V)

F
re
q
.
(M

H
z
)

Circuit VCO

Model

1 MHz/V

Figure 6.12: Response of VCO.

6.4 Additional Simulations and Discussions

In this section, we present some additional simulations of the PLL and include

some discussions of the results. First, the same PLL used in the previous section

is subjected to a square wave input signal Vin, with rise and fall times of 1 ns, a

pulse width of 11.8205 ns and a period of 25.641 ns which corresponds to a frequency

of 39 MHz. The magnitude of the pulse is 5 V. The simulation results from both

LIM and SPECTRE are shown in Fig. 6.13. In this case, we see that the input

frequency is outside the PLL pull-in range and the PLL does not acquire lock. The

same simulation is also performed using the behavioral model approach and is shown

in Fig. 6.14. Comparable accuracy is observed between all three methods.

Next, a long simulation is performed on the PLL. This is shown in Fig. 6.15. First

the PLL is subjected to a square wave input signal Vin, with rise and fall times of 1 ns,

a pulse width of 11.987 ns and a period of 25.974 ns which corresponds to a frequency

of 38.5 MHz. Once the PLL has acquired lock the input signal is changed twice, first

to 38.3 MHz at 75 µs and then again to 38.6 MHz at 130 µs. We see that the PLL

95

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

Time (µs)

V
t
(V
)

LIM

SPECTRE

Figure 6.13: PLL tuning voltage for a 39 MHz input signal.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

Time (µs)

V
t
(V
)

Figure 6.14: PLL tuning voltage for a 39 MHz input signal from behavioral model.

96

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

Time (µs)

V
t
(V
)

LIM

SPECTRE

Figure 6.15: PLL tuning voltage for a long simulation.

is able to track the input signal and maintain a locking condition. Finally, at 180

µs, the input signal is changed to 38 MHz. In this case, the change is large enough

that the PLL loses lock. The same simulation is also performed using the behavioral

model approach and is shown in Fig. 6.16. Comparable accuracy is observed between

all three methods.

In all the simulations in this section, the runtimes for both LIM and SPECTRE

are comparable to those recorded in the previous section. The runtime for the LIM

simulation can be improved by using larger fictitious latency elements which would

allow the use of a larger time step without violating the stability criterion. Doing so,

however, would result in some loss of accuracy. For instance, consider the example

simulated in Fig. 6.9. If the fictitious capacitors were increased to 0.1 pF, the time

step could be increased to 10 ps which reduces the runtime to 5.51 s. If the fictitious

inductors were also increased to 10 nH, the time step could be further increased to 50

ps which further reduces the runtime to 1.28 s. The outputs from these simulations

are shown in Fig. 6.17. We see a clear tradeoff between speed and accuracy. In

97

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

V
t
(V
)

Time (µs)

Figure 6.16: PLL tuning voltage for a long simulation from behavioral model.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

Time (µs)

V
t
(V
)

Original (0.01 pF, 1 nH)

(0.1 pF, 1 nH)

(0.1 pF, 10 nH)

Figure 6.17: PLL tuning voltage for different fictitious latency values.

addition, this also suggests that the insertion of fictitious latencies can be utilized as

a way to perform dynamic time step control in LIM, which could be the subject of a

future research.

98

6.5 Summary

In this chapter, we have presented two methods for the simulations of PLLs based

on the latency insertion method. First, the behavioral model approach is depicted as

a fast, simple and efficient methodology for the simulations of PLLs. The modularity

of the method allows the incorporations of nonlinear effects in the PLL components

in a straightforward manner. The resulting equations are solved for in a leapfrog

time-stepping scheme by taking advantage of the latency in the formulation. It is

shown that the method is able to capture intrinsic behaviors of PLLs and exhibits

good correlations with transistor level simulations when accurate models and design

parameters are available. Second, a transistor level simulation of a PLL is performed

using LIM and comparisons with an existing commercial simulator is shown. This

illustrates the capabilities of LIM as an analog circuit simulation tool. Based on the

findings in the previous chapters, LIM is expected to be most beneficial when the size

of the circuit is large.

99

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this work, we have presented a fast, multi-purpose circuit simulator using the

latency insertion method. Advancements in LIM, such as the ability to simulate

circuits with dependent sources using the Block-LIM formulation, were depicted.

A detailed stability analysis of the method was also performed which led to the

formulation of the multi-rate or partitioned latency insertion method (PLIM) where

circuits with partitions of multiple latencies could be simulated using different time

steps for each partition.

Next, a detailed formulation of blackbox macromodeling in the LIM environment

was carried out. Circuits characterized by their terminal responses were modeled

either by a passive MOR technique utilizing the vector fitting method or by a fast

convolution approach. Various aspects of each method such as stability, passivity and

causality were also addressed. This concluded with a comparative study of the two

methods and its incorporation into a LIM simulation.

The simulations of nonlinear devices, such as CMOS circuits, were also presented

where the accuracy of the method was verified and the speed improvement depicted

in comparison to traditional SPICE-based methods. The multi-rate simulation tech-

nique was also extended to CMOS circuits.

Finally, the subject of analog circuit simulations was explored by utilizing LIM for

the simulation of phase-locked loops. Two approaches for the simulations of PLLs

100

were presented. First a behavioral model simulation was described using the PLL

governing equations. Simulation examples were shown that illustrated the method’s

strength in terms of speed and accuracy, when used in either a top-down or bottom-

up design approach. Second, a full transistor level simulation of an example PLL

was performed using LIM and comparisons with existing commercial simulators are

depicted. We conclude that LIM is well suited for the simulations of analog circuits

and shows great potential moving forward.

7.2 Future Work

While some significant contributions have been presented in this dissertation to-

wards applying the latency insertion method as a fast, multi-purpose circuit simulator,

there are undoubtedly more challenges and further improvements that can be made

to the method. We summarize some prospective future work on the subject here.

The first, and perhaps most prominent, aspect of the method that can be better

investigated and explored is the issue of latency insertion. As mentioned in Chapter

2, LIM requires the presence of latencies in the circuit to perform the leapfrog time

stepping algorithm. When they are not present, small fictitious values are inserted in

order to enable the method. This leads to a clear tradeoff between speed and accuracy.

Smaller fictitious values increase the accuracy of the simulation but they also decrease

the maximum stable time step, which results in longer simulation times. The study

and development of a fully automated process of latency insertion, for example based

on user specified threshold error values, would be a significant contribution to the LIM

method and would be very valuable towards marketing LIM as a robust computer-

aided design tool for the engineering community.

A second, interesting topic that can be explored, is on the parallelization of LIM

for applications on multi-core CPUs and GPUs. As the semiconductor industry ap-

101

proaches the limit of Moore’s law, microprocessor designers have shifted from the

former trend of increasing the clock frequency for faster computation, to the present

trend of stacking multiple cores on a single processor. This has led to the need

of multi-threaded programs which take advantage of the availabilities of these addi-

tional processing cores for enhanced performance. LIM too could benefit greatly from

a parallel implementation. We believe that the distributed nature of the partitioned

latency insertion method (PLIM), presented in Chapter 3, would make it a suitable

candidate for parallelization and provides a good starting point for future research

on the subject.

Another possible future direction that can be taken on the subject is on the in-

corporation of field solvers into a LIM simulation. Such a hybrid field-circuit solver

would be beneficial as it would be able to take advantage of the high accuracy of

field solvers for the solutions of microwave components, while at the same time allow

fast and simple solutions of lumped linear and nonlinear components using circuit

simulation techniques. Due to its resemblance to the finite-difference time-domain

(FDTD) method, a natural initial choice would be on the formulation of an FDTD-

LIM hybrid. While the idea of a synergy between field and circuit solvers is not new,

we feel that earlier works have only scraped the surface of the potential that could

be unlocked with a robust and comprehensive implementation. A short list of related

past work on the subject that would serve as a good starting point for future research

on this topic would include [61–65].

A fourth and final future work proffered here is on the formulation of a LIM-

SPICE hybrid, where some initial work can be found in the literature [66,67]. Despite

its inherent shortcoming in solving large circuits, SPICE still benefits from a wide

array of features such as the abundance of device modeling in its environment and

its popularity in the industry. On the other hand, LIM is most adept at solving

large, high-frequency circuits. Thus, an integration of LIM as a functional block

102

into SPICE would allow for the fast simulations of large interconnect networks using

LIM while at the same time offering compatibility with any other components and

terminations that are supported by SPICE. Furthermore, an association with SPICE

could potentially raise more awareness of LIM which is invaluable towards marketing

LIM to the engineering community as a whole.

103

REFERENCES

[1] R. Achar and M. Nakhla, “Simulation of high-speed interconnects,” Proceedings
of the IEEE, vol. 89, no. 5, pp. 693–728, May 2001.

[2] A. Ruehli and A. Cangellaris, “Progress in the methodologies for the electrical
modeling of interconnects and electronic packages,” Proceedings of the IEEE,
vol. 89, no. 5, pp. 740–771, May 2001.

[3] F. Branin, “Transient analysis of lossless transmission lines,” Proceedings of the
IEEE, vol. 55, no. 11, pp. 2012–2013, Nov. 1967.

[4] F. Y. Chang, “Transient analysis of lossless coupled transmission lines in a nonho-
mogeneous dielectric medium,” Microwave Theory and Techniques, IEEE Trans-
actions on, vol. 18, no. 9, pp. 616–626, Sep. 1970.

[5] F. Y. Chang, “The generalized method of characteristics for waveform relaxation
analysis of lossy coupled transmission lines,” Microwave Theory and Techniques,
IEEE Transactions on, vol. 37, no. 12, pp. 2028–2038, Dec. 1989.

[6] C. Paul, Analysis of Multiconductor Transmission Lines. New York, NY: Wiley,
1994.

[7] W. Beyene and J. Schutt-Aine, “Accurate frequency-domain modeling and effi-
cient circuit simulation of high-speed packaging interconnects,” Microwave The-
ory and Techniques, IEEE Transactions on, vol. 45, no. 10, pp. 1941–1947, Oct.
1997.

[8] B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain
responses by vector fitting,” Power Delivery, IEEE Transactions on, vol. 14,
no. 3, pp. 1052–1061, Jul. 1999.

[9] S. Grivet-Talocia, “Package macromodeling via time-domain vector fitting,” Mi-
crowave and Wireless Components Letters, IEEE, vol. 13, no. 11, pp. 472–474,
Nov. 2003.

[10] D. Deschrijver, B. Haegeman, and T. Dhaene, “Orthonormal vector fitting: A
robust macromodeling tool for rational approximation of frequency domain re-
sponses,” Advanced Packaging, IEEE Transactions on, vol. 30, no. 2, pp. 216–
225, May. 2007.

104

[11] D. Deschrijver, M. Mrozowski, T. Dhaene, and D. De Zutter, “Macromodeling
of multiport systems using a fast implementation of the vector fitting method,”
Microwave and Wireless Components Letters, IEEE, vol. 18, no. 6, pp. 383–385,
Jun. 2008.

[12] D. Saraswat, R. Achar, and M. Nakhla, “A fast algorithm and practical con-
siderations for passive macromodeling of measured/simulated data,” Advanced
Packaging, IEEE Transactions on, vol. 27, no. 1, pp. 57–70, Feb. 2004.

[13] S. Grivet-Talocia, “Passivity enforcement via perturbation of Hamiltonian ma-
trices,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 51,
no. 9, pp. 1755–1769, Sep. 2004.

[14] D. Saraswat, R. Achar, and M. Nakhla, “Global passivity enforcement algorithm
for macromodels of interconnect subnetworks characterized by tabulated data,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 13,
no. 7, pp. 819–832, Jul. 2005.

[15] A. Lamecki and M. Mrozowski, “Equivalent SPICE circuits with guaranteed
passivity from nonpassive models,” Microwave Theory and Techniques, IEEE
Transactions on, vol. 55, no. 3, pp. 526–532, Mar. 2007.

[16] B. Gustavsen and A. Semlyen, “Fast passivity assessment for S-parameter ra-
tional models via a half-size test matrix,” Microwave Theory and Techniques,
IEEE Transactions on, vol. 56, no. 12, pp. 2701–2708, Dec. 2008.

[17] E. Chiprout and M. Nakhla, Asymptotic Waveform Evaluation and Moment
Matching for Interconnect Analysis. Boston, MA: Kluwer, 1993.

[18] D. Mardare and J. LoVetri, “The finite-difference time-domain solution of lossy
MTL networks with nonlinear junctions,” Electromagnetic Compatibility, IEEE
Transactions on, vol. 37, no. 2, pp. 252–259, May. 1995.

[19] A. Orlandi and C. Paul, “FDTD analysis of lossy, multiconductor transmis-
sion lines terminated in arbitrary loads,” Electromagnetic Compatibility, IEEE
Transactions on, vol. 38, no. 3, pp. 388–399, Aug. 1996.

[20] J. Schutt-Aine, “Latency insertion method (LIM) for the fast transient sim-
ulation of large networks,” Circuits and Systems I: Fundamental Theory and
Applications, IEEE Transactions on, vol. 48, no. 1, pp. 81–89, Jan. 2001.

[21] L. W. Nagel, “SPICE2, A computer program to simulate semiconductor circuits,”
Univ. California, Berkeley, Tech. Rep. ERL-M520, 1975.

[22] Virtuoso Advanced Analysis Tools User Guide, Cadence 5.1.41 Spectre
Guide Documents, Cadence, Berkshire, U.K., 2008. [Online]. Available:
http://www.cadence.com.

105

[23] Eldo Classic Integrated Circuit Simulation Datasheet, Mentor Graphics Corpo-
ration, Wilsonville, OR, 2011. [Online]. Available: http://www.mentor.com.

[24] Analog FastSPICE Platform Datasheet, Berkeley Design Automation Inc., Santa
Clara, CA, 2010. [Online]. Available: http://www.berkeley-da.com.

[25] K. Yee, “Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media,” Antennas and Propagation, IEEE
Transactions on, vol. 14, no. 3, pp. 302–307, May 1966.

[26] J. Schutt-Aine, “Stability analysis of the latency insertion method using a block
matrix formulation,” in Electrical Design of Advanced Packaging and Systems
(EDAPS), IEEE Symposium on, Dec. 2008, pp. 155–158.

[27] J. P. Hespanha, Linear Systems Theory. Princeton, NJ: Princeton University
Press, 2009.

[28] P. Goh, J. Schutt-Aine, D. Klokotov, J. Tan, P. Liu, W. Dai, and F. Al-Hawari,
“Partitioned latency insertion method (PLIM) with stability considerations,” in
Signal Propagation on Interconnects (SPI), IEEE 15th Workshop on, May 2011,
pp. 107–110.

[29] P. Goh, J. Schutt-Aine, D. Klokotov, J. Tan, P. Liu, W. Dai, and F. Al-Hawari,
“Partitioned latency insertion method with a generalized stability criteria,”
Components, Packaging and Manufacturing Technology, IEEE Transactions on,
vol. 1, no. 9, pp. 1447–1455, Sep. 2011.

[30] P. Liu, J. Tan, Z. Zhou, J. Schutt-Aine, and P. Goh, “A comparison of two latency
insertion methods in dependent sources applications,” in Electrical Performance
of Electronic Packaging and Systems (EPEPS), IEEE 20th Conference on, Oct.
2011, pp. 295–298.

[31] P. Liu, J. Tan, Z. Zhou, J. Schutt-Aine, and P. Goh, “Application of the ampli-
fication matrix latency insertion method to circuits with dependent sources,” in
Electrical Design of Advanced Packaging and Systems (EDAPS), IEEE Sympo-
sium on, Dec. 2011.

[32] R. Gao and J. Schutt-Aine, “Improved latency insertion method for simulation of
large networks with low latency,” in Electrical Performance of Electronic Pack-
aging (EPEP), IEEE 11th Topical Meeting on, 2002, pp. 37–40.

[33] H. Asai and N. Tsuboi, “Multi-rate latency insertion method with RLCG-MNA
formulation for fast transient simulation of large-scale interconnect and plane
networks,” in Electronic Components and Technology (ECTC), IEEE 57th Con-
ference on, May-Jun. 2007, pp. 1667–1672.

106

[34] N. Tsuboi and H. Asai, “Multi-rate latency insertion method for the fast tran-
sient simulation of large networks with nonlinear termination,” in Electrical Per-
formance of Electronic Packaging (EPEP), IEEE 15th Topical Meeting on, Oct.
2006, pp. 137–140.

[35] Z. Deng and J. Schutt-Aine, “Stability analysis of latency insertion method
(LIM),” in Electrical Performance of Electronic Packaging (EPEP), IEEE 13th
Topical Meeting on, Oct. 2004, pp. 167–170.

[36] S. Lalgudi, M. Swaminathan, and Y. Kretchmer, “On-chip power-grid simulation
using latency insertion method,” Circuits and Systems I: Regular Papers, IEEE
Transactions on, vol. 55, no. 3, pp. 914–931, Apr. 2008.

[37] S. Lalgudi and M. Swaminathan, “Analytical stability condition of the latency
insertion method for nonuniform GLC circuits,” Circuits and Systems II: Express
Briefs, IEEE Transactions on, vol. 55, no. 9, pp. 937–941, Sep. 2008.

[38] J. Schutt-Aine, J. Tan, C. Kumar, and F. Al-Hawari, “Blackbox macromodel
with S-parameters and fast convolution,” in Signal Propagation on Interconnects
(SPI), IEEE 12th Workshop on, May 2008, pp. 1–4.

[39] M. R. Wohlers, Lumped and Distributed Passive Networks. New York, NY: Aca-
demic, 1969.

[40] S. Grivet-Talocia and A. Ubolli, “On the generation of large passive macromodels
for complex interconnect structures,” Advanced Packaging, IEEE Transactions
on, vol. 29, no. 1, pp. 39–54, Feb. 2006.

[41] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities
in System and Control Theory. Hoboken, NJ: Wiley, SIAM Studies in Applied
Mathematics, vol. 15, 1994.

[42] D. Saraswat, R. Achar, and M. Nakhla, “Fast passivity verification and enforce-
ment via reciprocal systems for interconnects with large order macromodels,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 15,
no. 1, pp. 48–59, Jan. 2007.

[43] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory. Boston, MA: Aca-
demic, 1990.

[44] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. New York, NY:
Cambridge University Press, 1996.

[45] K. Zhou and D. J. C. Doyle, Essentials of Robust Control. Upper Saddle River,
NJ: Prentice Hall, 1998.

107

[46] A. Semlyen and A. Dabuleanu, “Fast and accurate switching transient calcu-
lations on transmission lines with ground return using recursive convolutions,”
Power Apparatus and Systems, IEEE Transactions on, vol. 94, no. 2, pp. 561–
571, Mar. 1975.

[47] J. Schutt-Aine, J. Tan, C. Kumar, “Use of Smith chart to compensate for missing
data on network performance at lower frequency,” patent application, Oct. 2007.

[48] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Upper
Saddle River, NJ: Prentice Hall, 1999.

[49] J. Schutt-Aine, P. Goh, Y. Mekonnen, J. Tan, F. Al-Hawari, P. Liu, and W. Dai,
“Comparative study of convolution and order reduction techniques for black-
box macromodeling using scattering parameters,” Components, Packaging and
Manufacturing Technology, IEEE Transactions on, vol. 1, no. 10, pp. 1642–1650,
Oct. 2011.

[50] J. Schutt-Aine, D. Klokotov, P. Goh, J. Tan, F. Al-Hawari, P. Liu, and W. Dai,
“Application of the latency insertion method to circuits with blackbox macro-
model representation,” in Electronics Packaging Technology (EPTC), IEEE 11th
Conference on, Dec. 2009, pp. 92–95.

[51] Agilent Advanced Design System (ADS), Agilent Technologies, Santa Clara, CA,
2009. [Online]. Available: http://www.agilent.com.

[52] J. Choi, M. Swaminathan, N. Do, and R. Master, “Modeling of power sup-
ply noise in large chips using the circuit-based finite-difference time-domain
method,” Electromagnetic Compatibility, IEEE Transactions on, vol. 47, no. 3,
pp. 424–439, Aug. 2005.

[53] T. Sekine and H. Asai, “CMOS circuit simulation using latency insertion
method,” in Electrical Performance of Electronic Packaging (EPEP), IEEE 17th
Conference on, Oct. 2008, pp. 55–58.

[54] D. Klokotov, P. Goh, and J. Schutt-Aine, “Latency insertion method (LIM) for
DC analysis of power supply networks,” Components, Packaging and Manufac-
turing Technology, IEEE Transactions on, vol. 1, no. 11, pp. 1839–1845, Nov.
2011.

[55] P. Goh and J. E. Schutt-Aine, “Latency insertion method (LIM) for CMOS
circuit simulations with multi-rate considerations,” in Electrical Performance of
Electronic Packaging and Systems (EPEPS), IEEE 20th Conference on, Oct.
2011, pp. 125–128.

[56] M. Perrott, “Fast and accurate behavioral simulation of fractional-N frequency
synthesizers and other PLL/DLL circuits,” in ACM/EDAC/IEEE 39th Design
Automation Conference (DAC), 2002, pp. 498–503.

108

[57] S. Sancho, A. Suarez, and J. Chuan, “General envelope-transient formulation of
phase-locked loops using three time scales,” Microwave Theory and Techniques,
IEEE Transactions on, vol. 52, no. 4, pp. 1310–1320, Apr. 2004.

[58] S. Goldman, Phase-Locked Loops Engineering Handbook for Integrated Circuits.
Norwood, MA: Artech House, 2007.

[59] G. Bianchi, Phase-Locked Loop Synthesizer Simulation. New York, NY: McGraw-
Hill, 2005.

[60] A. Kral, F. Behbahani, and A. Abidi, “RF-CMOS oscillators with switched tun-
ing,” in Custom Integrated Circuits Conference, Proceedings of the IEEE 1998,
May 1998, pp. 555–558.

[61] W. Sui, D. Christensen, and C. Durney, “Extending the two-dimensional FDTD
method to hybrid electromagnetic systems with active and passive lumped el-
ements,” Microwave Theory and Techniques, IEEE Transactions on, vol. 40,
no. 4, pp. 724–730, Apr. 1992.

[62] M. Piket-May, A. Taflove, and J. Baron, “FD-TD modeling of digital signal
propagation in 3-D circuits with passive and active loads,” Microwave Theory
and Techniques, IEEE Transactions on, vol. 42, no. 8, pp. 1514–1523, Aug. 1994.

[63] V. Thomas, M. Jones, M. Piket-May, A. Taflove, and E. Harrigan, “The use of
SPICE lumped circuits as sub-grid models for FDTD analysis,” Microwave and
Guided Wave Letters, IEEE, vol. 4, no. 5, pp. 141–143, May 1994.

[64] P. Ciampolini, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Accurate and
efficient circuit simulation with lumped-element FDTD technique,” Microwave
Theory and Techniques, IEEE Transactions on, vol. 44, no. 12, pp. 2207–2215,
Dec. 1996.

[65] C. Kuo, B. Houshmand, and T. Itoh, “Full-wave analysis of packaged microwave
circuits with active and nonlinear devices: An FDTD approach,” Microwave
Theory and Techniques, IEEE Transactions on, vol. 45, no. 5, pp. 819–826, May
1997.

[66] Z. Deng and J. Schutt-Aine, “LIM-SPICE for the analysis of power distribution
networks,” in Signal Propagation on Interconnects (SPI), IEEE 9th Workshop
on, May 2005, pp. 17–20.

[67] Z. Deng and J. Schutt-Aine, “Turbo-SPICE with latency insertion method
(LIM),” in Electrical Performance of Electronic Packaging (EPEP), IEEE 14th
Topical Meeting on, Oct. 2005, pp. 329–332.

109

