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CHAPTER 1

INTRODUCTION

1.1 Background

Electromagnetic modeling plays an important role in the design of electronic

packages. As speed and/or frequency of high-performance circuits increases, much

e�ort has been placed on the performance of interconnects and package structures

driven by very short pulse signals. Increasing interconnection densities combined

with high-speed circuit cells have exacerbated problems such as time delay, signal

degradation, clock skew, and crosstalk, in the electronic packages. Thus, accurate

modeling of these interconnection structures and circuit elements is necessary to

ensure correct simulation of electrical performance at the design stage. When sig-

nal speed increases, high-frequency components of the signal must be taken into

account. High-frequency e�ects, such as the appearance of longitudinal �eld com-

ponents, are no longer negligible. The full-wave nature of the circuit components

and interconnects becomes important. Therefore, a frequency-dependent circuit

modeling based upon full-wave analysis is necessary [1].

A number of numerical techniques capable of highly accurate modeling of elec-

tromagnetic phenomena have been developed over the past years in tandem with

the progress of computer technology. The list of the most popular ones includes

the method of moments (MoM) [2] and �nite element method (FEM) [3] in the
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frequency domain and the transmission line matrix (TLM) [4] method and �nite-

di�erence time-domain (FDTD) method [5] in the time domain.

1.2 Motivation

The �nite-di�erence time-domain (FDTD) method is arguably the simplest,

both conceptually and in terms of implementation, of the full-wave techniques used

to solve problems in electromagnetics. In essence, it is a direct solution method for

Maxwell's di�erential (curl) equations in time domain. The method employs no

potentials. Rather, it is based upon volumetric sampling of the unknown electric

�eld vector E and magnetic �eld vector H within and surrounding the structure of

interest, and over a period of time. The FDTD method uses �nite di�erence ap-

proximations to both the spatial and temporal derivatives that appear in Maxwell's

equations (speci�cally Ampere's and Faraday's laws). It is a marching-in-time pro-

cedure that simulates the continuous actual electromagnetic waves in a �nite spatial

region by sampled-data numerical analogs propagating in a computer data space.

Time-stepping continues as the numerical wave analogs propagate in the space

lattice to causally connect the physics of the modeled region. Time-stepping is

carried on until the desired late-time pulse response is observed at the �eld points

of interest [5].

There are several primary reasons for the expansion of interest in FDTD and

related computational solution approaches for Maxwell's equations:

• FDTD uses no linear algebra. Being a fully explicit computation, FDTD

avoids the di�culties with linear algebra that limit the size of frequency

domain integral-equation and �nite-element electromagnetic models.
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• FDTD treats impulsive behavior naturally. Being a time-domain technique,

FDTD directly calculates the impulse response of an electromagnetic sys-

tem. Therefore, a single FDTD simulation can provide either ultrawideband

temporal waveforms or the sinusoidal steady-state response at any frequency

within the excitation spectrum.

• FDTD is a systematic approach. With FDTD, specifying a new structure

to be modeled is reduced to a problem of mesh generation rather than the

potentially complex reformulation of the equations describing the model.

• Computer memory capacities are increasing rapidly. Computers are getting

faster and more powerful. While this trend positively in�uences all numerical

techniques, it is of particular advantage to FDTDmethods, which are founded

on discretizing space over a volume, and therefore require a large random

access memory.

• Computer visualization capabilities are increasing rapidly. It is again of par-

ticular advantage to FDTD methods, which generate time-marching arrays of

�eld quantities suitable for use in color videos to illustrate the �eld dynamics.

With the increase in speed of modern integrated circuits, shrinking of their dimen-

sions, and consequent increase in levels of integration, the modeling of interconnects

and the simulation of transients have become of prime importance in the design

process. In particular, characterization of the microstrip lines, which represent the

most commonly used type of interconnect, is essential for the determination of an

optimized layout scheme for printed circuit boards, chip carriers, or LSI (large-scale

integration) chips found in most of today's high-speed digital networks.

To accurately model modern high-speed circuits, fully accounting for such phe-

nomena as fringing, coupling, and radiation it is often necessary to simulate the
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entire structure in one computation. The FDTD method can be used to perform

such simulations. It is capable of e�ectively calculating frequency-dependent char-

acteristics of microstrip interconnects, and it shows great promise in its �exibility

in handling a variety of circuit con�gurations [6].

1.3 Contents

The material presented in this thesis is organized in two main parts. First

an overview of the method is given, which includes formulation of the algorithm

for one-, two-, and three-dimensional cases as well as discussion of such issues

as stability of the method, truncation of problem space, and methods of source

implementation in di�erent cases. Along with the formulation of the key points,

results of the corresponding FDTD simulations are presented.

In the second part application of the FDTD method to the simulation of vari-

ous microstrip devices is explored; results of the simulations are compared to the

measured data and also to the results of the simulation using a commercial elec-

tromagnetic simulator Agilent ADS Momentum.
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CHAPTER 2

OVERVIEW OF THE METHOD

2.1 Finite Di�erencing Formulas

The basic idea of the �nite di�erence method is in approximation of derivatives

in partial di�erential equations. This approximation can be obtained directly from

the well-known de�nition of the derivatives as the relation of a very small increase

in a value of a function to a very small increase of a variable. This yields

f ′(x) =
df

dx
≈ f(x+ ∆x)− f(x)

∆x
(2.1)

which is called the forward di�erencing formula. Similarly, we can decrease x and

obtain the backward di�erencing formula

f ′(x) =
df

dx
≈ f(x)− f(x−∆x)

∆x
(2.2)

We can also take the average of (2.1) and (2.2) to obtain

f ′(x) =
df

dx
≈ f(x+ ∆x)− f(x−∆x)

2∆x
(2.3)

which is called the central di�erencing formula.

Using Taylor series it is easy to show [3] that approximations (2.1) and (2.2)

are �rst-order accurate. Central di�erencing formula (2.3), on the other hand, is

second-order accurate and is the most widely used di�erencing formula.
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Figure 2.1: FDTD unit cell

2.2 The Yee Algorithm

Formulation of the FDTD method begins by considering the di�erential form of

Maxwell's two curl equations which govern propagation of �elds in the structures.

For simplicity, the media are assumed to be lossless (i.e., no volume currents or

�nite conductivity). With these assumptions, Maxwell's curl equations may be

written as

µ
∂H

∂t
= −∇× E (2.4)

ε
∂E

∂t
= ∇×H (2.5)

To obtain discrete approximation to these continuous partial di�erential equa-

tions, central di�erence approximation is used. For convenience, the six �eld loca-

tions are considered to be interleaved in space as shown in Figure 2.1, which is a

drawing of the FDTD unit cell.

The entire computational domain is obtained by stacking these cells into a larger

rectangular volume. To emphasize this arrangement, E- and H-�eld components

are assumed to be located at one half spatial step from each other. In a similar

manner, �eld components are staggered in time, a half temporal step apart, in

order to achieve centered di�erences for the time derivatives.
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The FDTD algorithm was �rst proposed by Kane Yee [7]. The algorithm can

be summarized as follows [8]:

1. Replace all the derivatives in Ampere's and Faraday's laws with �nite di�er-

ences. Discretize space and time so that the electric and magnetic �elds are

staggered in both space and time.

2. Solve the resulting di�erence equations for �future� �elds in terms of �past�

�elds. That is to say, solve for �elds at time (n+ 1/2)∆t in terms of �eld at

time n∆t or (n− 1/2)∆t.

3. Evaluate the future magnetic �elds so they are known (e�ectively they become

past �elds).

4. Evaluate the future electric �elds so they are known (e�ectively they become

past �elds).

5. Repeat the previous two steps until the desired duration has been achieved.

To clarify the above concept we will �rst consider a case of one-dimensional wave

propagation. The extension to higher dimensions is straightforward.

2.3 One-Dimensional Formulation

Consider a one-dimensional space where there are only variations in the z di-

rection [9]. In that case (2.4) and (2.5) produce only two scalar equations

∂Hy

∂t
= − 1

µ

∂Ex
∂z

(2.6)

∂Ez

∂t
= −1

ε

∂Hy

∂z
(2.7)
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Figure 2.2: Plane wave

These are the equations of a plane wave with the electric �eld oriented in the x

direction, the magnetic �eld oriented in the y direction, and traveling in the z

direction as depicted in Figure 2.2.

Taking the central di�erence approximation for both the temporal and spatial

derivatives in (2.6) and (2.7) gives

Ex|n+1/2
k − Ex|n−1/2

k

∆t
= −1

ε

Hy|nk+1/2 −Hy|nk−1/2

∆x
(2.8)

Hy|n+1
k+1/2 −Hy|nk+1/2

∆t
= − 1

µ

Ex|n+1/2
k+1 − Ex|n+1/2

k

∆x
(2.9)

In (2.8) and (2.9), time is speci�ed by the superscripts, while subscripts repre-

sent positions in discreet space. Figure 2.3 shows the sequence of �eld components

computation interleaved in space and time.

Equations (2.8) and (2.9) can be rearranged in an iterative algorithm

Ex|n+1/2
k = Ex|n−1/2

k − 1

ε

∆t

∆x

[
Hy|nk+1/2 −Hy|nk−1/2

]
(2.10)
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Figure 2.3: A diagram of the calculation of E and H �elds in FDTD

Figure 2.4: One-dimensional update scheme

Hy|n+1
k+1/2 = Hy|nk+1/2 −

1

µ

∆t

∆x

[
Ex|n+1/2

k+1 − Ex|n+1/2
k

]
(2.11)

Again, the values of E and H are interleaved in both time and space. In (2.10)

the new value of Ex is calculated from the previous value of Ex and the current

value of Hy. This is the fundamental paradigm of the FDTD method [7].

Equations (2.10) and (2.11) with a few adjustments can be easily implemented

in computer code. Since �elds in a computer simulation are stored in the form of

arrays with integer indices, (k+1/2) and (k−1/2) are rounded o� to (k) and (k−1);

we will assume that Ex nodes are located to the left of Hy nodes with the same

spatial indices. Time is implicit in the FDTD method. A basic one-dimensional

�eld update scheme can be written in C computer code as shown in Figure 2.4.

In this case we assume that medium being simulated is homogenious, then 1
ε

∆t
∆x

and 1
µ

∆t
∆x

are constant parameters of the simulation. In practice the update scheme

is sometimes modi�ed for convenience of implementation [9]. The following change

of variables is made in (2.10) and (2.11):
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Figure 2.5: One-dimensional FDTD code

Ẽ =

√
ε0
µ0

E (2.12)

Substituting this into (2.10) and (2.11) gives

Ẽx|n+1/2
k = Ẽx|n−1/2

k − 1

ε

1
√
ε0µ0

∆t

∆x

[
Hy|nk+1/2 −Hy|nk−1/2

]
(2.13)

Hy|n+1
k+1/2 = Hy|nk+1/2 −

1

µ

1
√
ε0µ0

∆t

∆x

[
Ẽx|n+1/2

k+1 − Ẽx|n+1/2
k

]
(2.14)

Then 1√
ε0µ0

∆t
∆x

is simply set equal to 1
2
(the reason for this will be explained

later). With these modi�cations a simple one-dimensional simulation of wave prop-

agation in free space can be performed using the code shown in Figure 2.5

To demonstrate the functionality of the code in Figure 2.5, we consider a simula-

tion of a wave propagating in free space where there are 200 electric- and magnetic-

�eld nodes. A source with Gaussian pro�le is set up in the center of the grid. As

a result, a Gaussian pulse is generated in the center and propagates away in both
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Figure 2.6: One-dimensional FDTD simulation

Figure 2.7: Simulation of a dielectric half space

directions. Figure 2.6 shows the snapshot of the normalized Ex �eld after 150 time

steps.

In order to simulate a medium with a dielectric constant other than one, it is

necessary to add the relative dielectric constant to update equations in 2.5. Figure

2.7 shows results of the simulation of a pulse traveling in free space until it strikes

a dielectric medium. A portion of the pulse propagates into the medium and a

portion is re�ected.
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Figure 2.8: Update of the Ex �eld component in three-dimensional FDTD simula-
tion

2.4 Extension to Higher Dimensions

One of the advantages of the FDTD method is that extension to the higher di-

mensions is straightforward. The same discretization scheme and update equations

are employed in two- and three-dimensional formulations. In full tree-dimensional

case two Maxwell's vector curl equations (2.4), (2.5) can be written as

µ
∂H

∂t
= −

(
x̂

(
∂Ez
∂y
− ∂Ey

∂z

)
+ ŷ

(
∂Ex
∂z
− ∂Ez

∂x

)
+ẑ

(
∂Ey
∂x
− ∂Ex

∂y

))
(2.15)

ε
∂E

∂t
=

(
x̂

(
∂Hz

∂y
− ∂Hy

∂z

)
+ ŷ

(
∂Hx

∂z
− ∂Hz

∂x

)
+ẑ

(
∂Hy

∂x
− ∂Hx

∂y

))
(2.16)

Equations (2.15) and (2.16) yield six scalar equations which can be �tted into

the standard FDTD scheme. Figure 2.8 demonstrates a segment of code corre-

sponding to calculation of Ex �eld in three-dimensional FDTD simulation.

Figure 2.9 illustrates three-dimensional pulse propagation. Again, a source is

put in the center of the space, and Gaussian pulse propagates outwards. The �gure

shows distribution of the transverse component of electric �eld.

Results of the three-dimensional simulation look virtually the same as the two-

dimensional ones, since only a �slice� of the space can be visualized.
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Figure 2.9: Three-dimensional simulation of a pulse in free space

2.5 Cell Size, Time Step, and Stability

The �rst step of the FDTD algorithm involves discretization of the computa-

tional space and time. Therefore, it is important to understand the restrictions

associated with the choice of spacial and temporal steps. The size of a grid cell

directly in�uences accuracy of the method. Theoretically, there is no lower limit

for ∆x; in fact, with ∆x → 0 FDTD solution becomes exact. However, in�nitely

�ne discretization requires in�nite computational resources. It can be shown that

the number of �oating point operations required for the simulation is proportional

to N3/4, where N is the total number of cells in the FDTD space. A common rule

of thumb is to have at least 20 cells per wavelength at the highest frequency of

interest. Another practical consideration is associated with geometry of the model.

The mesh must adequately resolve the �ne-scale geometric details of the structure,

which is one of the main limiting factors of the FDTD method. Also, since the

most natural and convenient shape of the lattice cell in the FDTD mesh is a cube,

nonrectangular objects are modeled using staircase approximation, which can re-
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quire the use of smaller lattice cells. The side length of a unit cubic cell is usually

chosen to �t the critical dimensions of the model with an integer number of cells.

Once the spatial step is chosen, the choice of the temporal step is determined

by the stability condition of the FDTD method. A classical approach to analyze

numerical stability is the spectral technique developed by von Neumann. This

method expresses the error in a numerical solution at any point in time as �nite

spatial Fourier series. Numerical stability results if each Fourier term has a unity-

or-less growth factor over one time-step. However, even without carrying out a

rigorous derivation, we can simply consider the way �elds propagate in an FDTD

grid. Since in the FDTD algorithm each node only a�ects its nearest neighbors, it

is logical that energy in an FDTD grid should not be able to propagate any further

than one spatial step for each temporal step, i.e., c∆t ≤ ∆x. The ratio c∆t
∆x

is

referred to as the Courant number Sc [10]. For a one-dimensional simulation from

the above discussion, it follows that the stability condition is Sc ≤ 1. In a two-

dimensional square-cell grid it takes two time steps to communicate information

across the diagonal of the cell; and, as it takes three steps in the cubic three-

dimensional lattice, consequently, the stability condition transforms into Sc ≤ 1/
√

2

and Sc ≤ 1/
√

3. The general expression for the stability condition is given by [11]

∆t ≤ 1

c

(
1

∆x2
+

1

∆y2
+

1

∆z2

)−1/2

(2.17)

Since a larger time step means a shorter run time, it is desirable to use the

maximum value of ∆t. Also, it can be shown that the grid dispersion error is

proportional to
(√

(∆x)2 + (∆y)2 + (∆z)2/λ
)2

[12], hence maximizing ∆t mini-

mizes the dispersion. However, the condition in (2.17) is extremely rigorous, so

that even slightest violation of the bound leads to instability and the computed

results spuriously increase without limit during time-marching. For that reason,
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due to a rounding error in the computer, in practice ∆t is often set to a value

just below the limit given by (2.17). A less optimal but convenient approach is to

set Sc = 0.5, the way we did it in Section 2.3. Although not optimal, this choice

is equally suitable for one-, two-, and three-dimensional simulations resulting in

simple values of coe�cients in update equations.

2.6 Source Setup in an FDTD Simulation

FDTD algorithms require initial conditions, which means that values of the

�elds must be speci�ed throughout the lattice at the start of the simulation. Typ-

ically, all �elds are initialized to zero. To perform a simulation, energy has to be

introduced into the problem space; i.e., an electromagnetic wave source has to be

created. The general classes of EM wave sources are:

1. Hard-sourced and �elds in one- and two-dimensional grids;

2. Plane-wave excitation via total-�eld/scattered-�eld formulation in one, two,

and three dimensions;

3. Lumped electronic circuit models of resistive voltage source.

A hard source is set up simply by assigning a desired time function to speci�c

components of E and H �elds in the FDTD space lattice. This time function is

independent of anything else in the model. One of the most common pointwise hard

sources provides a lowpass Gaussian pulse with �nite dc content. Such a source

was used to generate the snapshot depicted in Figure 2.9. The time waveform of

the pulse is centered at time-step n0 and has a 1/e characteristic decay of ndecay

time-steps:
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Figure 2.10: FDTD simulation of a sinusoidal source in free space

Ez|nis = E0e
−[(n−n0)/ndecay]

2

(2.18)

Ez in (2.18) has a nonzero value at n = 0, so that if a smooth transition from

zero into Gaussian pulse is required, n0 should be taken as at least 3ndecay. The

value of ndecay controls the width of the pulse in time domain and correspondingly

its bandwidth in frequency domain.

Another common hard source is a sinusoidal source, which generates a contin-

uous sinusoidal wave of frequency f0 that is switched on at n = 0:

Ez|nis = E0 sin (2πf0n∆t) (2.19)

Each hard source radiates a numerical wave having a time waveform corre-

sponding to the source function. A pointwise hard source located within a two-

dimensional FDTD grid excites a radially propagating cylindrical wave centered on

the source point. Figure 2.10 demonstrates radiation from a sinusoidal hard source

governed by (2.19) in two-dimensional free space.
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However, all hard sources have a major drawback. In prolonged simulations,

waves re�ected from the objects in the computational space eventually reach source

points, whereupon spurious, nonphysical re�ections occur. For example, the Gaus-

sian point source speci�ed by (2.18) decays to zero with time and then acts as

a perfect electric conductor (PEC), causing spurious re�ections. For this reason,

using hard source in an FDTD simulation requires either limiting duration of the

simulation or employing some scheme of removing the source from the computa-

tional domain.

An alternative way to realize a plane wave source that avoids the di�culties

caused by using hard sources is the total-�eld / scattered-�eld (TF/SF) formulation

[13]. The TF/SF formulation is based on linearity of Maxwell's equations. It

assumes that the physical total electric and magnetic �elds can be decomposed as

follows:

Etotal = Eincident + Escattered Htotal = Hincident + Hscattered (2.20)

The FDTD lattice is subdivided into two regions as in Figure 2.11, Region 1

containing objects and total �elds, and Region 2, in which only scattered �elds are

present.

The di�erence between �elds in the two regions is the incident �eld. To main-

tain continuity of the tangential �elds, incident �eld has to be subtracted or added

at the boundary. This way, Regions 1 and 2 are separated by a nonphysical surface

that serves to connect the �elds in two regions, and thereby generates an incident

wave. Incident �eld values can be generated by an auxiliary one-dimensional simu-

lation and applied at the boundary surface, generating a plane wave with constant

amplitude along the surface. Auxiliary simulation can be excited by a pointwise

source with a user speci�ed time function. Figure 2.12 illustrates generation of the
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Figure 2.11: Total-�eld / scattered �eld zoning of the FDTD space lattice

Figure 2.12: Simulation of a plane wave source using TF / SF formulation

plane wave with Gaussian pro�le using TF / SF boundary. The incident �eld is

added at one end of the computational space and subtracted at the other end.

The major advantage of the TF / SF formulation is that the interface between

the regions, which serves as a source of the incident wave, is transparent for the

backward propagating waves scattered by objects in the total �eld region.

For the resistive source implementation the FDTD formulation is extended to

allow for the addition of lumped linear and nonlinear circuit elements. Circuit
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elements can be accounted for by adding a lumped electric current density term JL

to the conduction and displacement currents in Maxwell's curl equation for H-�eld

resulting in

∇×H = JC +
∂D

∂t
+ JL (2.21)

The resistive voltage source permits simulation of a source matched to a mi-

crostrip line.

2.7 Truncation of the FDTD Lattice

Many of electromagnetics problems require modeling of large or even in�nite,

unbounded problem space. Since it is obviously impossible to actually incorporate

in�nity into a computer simulation, FDTD lattice must be limited in size. Trunca-

tion of the FDTD computational space creates one immediate problem: each �eld

node in the FDTD computation requires values of �elds at neighboring nodes in

the update scheme. However, nodes adjacent to the boundary of the lattice do

not have neighbors since there is no information concerning �elds outside of the

computational space. This problem is solved by setting �elds at the outermost

nodes to a constant value and never updating them in the computation. In most

cases a PEC bounding box is created. Construction of a PEC boundary creates

another, less immediate, problem. Outgoing waves eventually reach the boundary

and they are totally re�ected back into the computational domain. Such spuri-

ous re�ections contaminate the solution. The straightforward way to avoid this

problem is to place domain boundaries very far from the region of interest. This

solution is obviously very ine�ective, especially for prolonged simulations. Hence,

a suitable boundary condition is required, which permits all outward-propagating
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numerical waves to exit the problem space as if the simulation were performed on

a computational domain of in�nite extent.

Depending upon their theoretical basis, outer-boundary conditions of this type

are called either radiation boundary conditions (RBCs) or absorbing boundary con-

ditions (ABCs). The notation ABC is usually used as a general term. ABCs can

be roughly divided into two general types: (1) analytical ABCs, and (2) perfectly

matched absorbing layers (PML). One of the most common analytical ABCs is

Mur's ABC [14]. It is based on the �nite-di�erence approximation of the one-way

wave equation. When applied at the outer boundary of an FDTD computational

space, a one-way wave equation numerically absorbs impinging outgoing waves.

Another technique was developed by Higdon [15]. Higdon's approach involves the

construction of a series of linear di�erential operators to annihilate outgoing nu-

merical waves.

A popular alternative approach to realize ABCs is based on the idea that in-

stead of constructing analytical absorbers it is possible to actually surround the

computational domain with an absorbing material medium. This is analogous to

the physical treatment of the walls of an anechoic chamber. Ideally, the absorbing

medium is only a few lattice cells thick, re�ectionless to all impinging waves over

their full frequency spectrum, highly absorbing, and e�ective in the near �eld of a

source or a scatterer.

To illustrate the idea behind PML absorber it is prudent to consider an interface

between a homogeneous, dispersionless half-space (Region 1) and a conventional

lossy medium (Region 2) having electric and magnetic conductivities σand σ∗. A

plane wave incident upon such an interface at angle θi is partially re�ected and

partially transmitted into the lossy medium. A ratio of re�ected and incident �elds

or the re�ection coe�cient can be expressed as
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Γ =
η1 cos θi − η2 cos θt
η1 cos θi + η2 cos θt

(2.22)

In (2.22) η1 and η2 are the wave impedances in Regions 1 and 2, given by

η1 =

√
µ1

ε1

(2.23)

η2 =

√
µ2(1 + σ∗/jωµ2)

ε2(1 + σ/jωε2)
(2.24)

From (2.22) we can see that in general Γ 6= 0 for arbitrary angle θi. However,

for the special case of normal incidence (θi = θref = θtrans = 0 ), we have

Γ =
η1 − η2

η1 + η2

(2.25)

Now, if we set ε1 = ε2, µ1 = µ2, and choose conductivities so that

σ∗

µ1

=
σ

ε1

(2.26)

then η1 = η2. From (2.25) we can see that in this case for the normally impinging

wave Γ = 0 , and the Region 1 / Region 2 interface is re�ectionless. Moreover, the

wave in the lossy medium is quickly attenuated so that the medium can be used

as the absorbing boundary.

However, a conventional lossy medium can be matched to the interior of the

FDTD lattice only for the case of normal incidence. To be feasible the absorbing

boundary must be matched for an arbitrary angle of incidence. The �rst formu-

lation of such a re�ectionless absorbing material was introduced by Berenger in

1994 [16]. Berenger called his absorber the perfectly matched layer (PML), em-

phasizing its re�ectionless property. To achieve re�ectionless condition for all angles

of incidence, Berenger utilized arti�cial splitting of the �elds into orthogonal sub-
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components (the split-�eld formulation). A di�erent implementation of the PML

was later proposed by Sacks et al. [17]. The alternative formulation avoided non-

physical �eld splitting. Instead, an anisotropic absorbing material was postulated,

which was made perfectly re�ectionless by the speci�c choice of permittivity and

permeability tensors. Sacks et al. used their anisotropic PML with the FEM in fre-

quency domain. Following the work by Sacks et al., Gedney formulated anisotropic

PML for use with the FDTD method in time domain, which he called the Uniaxial

PML (UPML) [18], [19]. A similar approach was used by Sullivan in formulation

of the simpli�ed PML [20].

Figure 2.13 demonstrates e�ectiveness of the PML. Snapshots of the E-�eld

show how the sinusoidal source stays stable over time, with outgoing waves be-

ing absorbed by the PML. In case of the lattice terminated with PEC, spurious

re�ections destroy the �eld pattern.

To implement either simpli�ed PML or UPML, a standard FDTD scheme is

slightly altered. Within the PML layer, �elds are updated in two steps: �rst D

(electric �ux density) is computed, then E (electric �eld intensity); and in the

same way for magnetic �eld: �rst B (magnetic �ux density), then H (magnetic

�eld intensity) are calculated. PML material properties are represented by a set

of coe�cients in these update equations. A detailed description of computer im-

plementation of the UPML can be found in [5]; the simpli�ed PML is described

in [9].
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Figure 2.13: Sinusoidal source with (on the left) and without PML
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CHAPTER 3

NUMERICAL RESULTS,

MEASUREMENTS, AND

OBSERVATIONS

3.1 Overview

A full-wave three-dimensional FDTD simulation engine was developed and used

for simulation of a number of microstrip devices. The program was written in C

computer code. Some MATLAB functions were also employed for data processing

and visualization. The code functionality was �rst tested by the simulation of a

microstrip antenna. Results of that simulation were compared with those presented

by Sheen et al. in [6]. Then, a number of microstrip test boards were designed,

simulated, manufactured, and measured. Results of the simulations were compared

to the measured data. Additionally, some of the devices were simulated using a

commercial electromagnetic simulator Agilent ADS Momentum.

3.2 Simulation of the Microstrip Antenna

To test the program, a simulation of a line-fed rectangular microstrip antenna

was performed and scattering matrix coe�cients for the antenna were computed.

This problem is a popular benchmark used by many researchers. The original

simulation was done by Sheen et al. [6], who also manufactured the device and

measured it using HP 8510 network analyzer.
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Figure 3.1: Line-fed microstrip antenna

3.2.1 Simulation setup

The simulation was set up closely following the work by Sheen et al. The

microstrip antenna analyzed is shown in Figure 3.1.

Metal parts of the circuit were assumed to be perfectly lossless, i.e., perfect

electric conductor (PEC) approximation was used. In the simulation tangential

components of the electric �eld were set to zero at locations corresponding to

metal parts of the circuit. Thickness of the metal was assumed to be negligible

in comparison with thickness of the substrate. The circuit was constructed on the

Duroid substrate with relative permittivity εr = 2.2. Spatial step ∆z = 0.265mm

was chosen to model the substrate thickness with exactly 3 cells. The time step

used was ∆t = 0.441 ps.

A voltage source excitation was simulated using a hard source scheme. Vertical

Ez �eld was imposed in a rectangular region underneath the feeding strip, between

the strip and the ground plane. The Gaussian pulse was used for excitation. The

source plane was put directly at the boundary of the computational domain.

The second order Higdon ABC was used for truncation of the lattice.

3.2.2 Results of the antenna simulation

Figure 3.2 shows the spatial distribution of Ez(x, y, t) just beneath the mi-

crostrip at 100, 230, 330, and 410 time steps. Three-dimensional properties of the
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Figure 3.2: Snapshots of Ez(x, y, t) at 100, 230, 330, and 410 steps

propagation are observed, including enhancement of the �eld near the edges of the

microstrip.

The frequency-dependent scattering matrix coe�cients can be easily calculated

from the results of the simulation. The scattering matrix, or [S] matrix [21], is

de�ned in relation to incident and re�ected voltage waves as

[V ]ref = [S][V ]inc (3.1)

The vertical electric �eld under the strip was recorded at each time-step. Under

the assumption that voltage is proportional to the �eld value, the time-domain data

recorded in the simulation can be treated as the sum of the incident and re�ected

voltage waves. To recover the incident �eld the simulation was performed for a

microstrip line, which was extended to the far boundary of the computational do-
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Figure 3.3: Magnitude of S11 parameters of the antenna

main. Then the re�ected waveform was calculated by subtracting the results of the

two simulations. Time-domain data was then processed using Fourier transform,

and S11 parameters were calculated as the ratio of the re�ected and incident waves

at port 1

S11(ω) =
F {V1ref (t)}
F {V1inc(t)}

(3.2)

The scattering coe�cient results, shown in Figure 3.3, are in good agreement

with the data obtained by Sheen et al. The operating resonance at 7.5 GHz is

almost exactly shown by both theory and measurement; it corresponds to the

frequency where the x -dimension of the antenna, 12.45 mm, is a half wavelength.

3.3 Modeling of Microstrip Traces

The FDTD code was modi�ed and used to simulate a number of meandered mi-

crostrip traces. Meandered lines were chosen as test structures representing e�ects

of bending, coupling, and radiation in circuit boards traces. To verify the results
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Figure 3.4: The test board

of numerical simulations, several test boards were manufactured and measured us-

ing Agilent E8363B PNA Network Analyzer. In this paper, results for one of the

meandered lines are presented together with the results for a straight line with the

same dimensions, which was used as a reference.

3.3.1 Simulation setup

Figure 3.4 shows the top view of the meandered line test structure.

All lines were constructed on FR4 substrate 61 mils thick. Board length was 60

mm, conductor width was 1.4 mm. Each board had two SMA connectors attached

at the ends of the traces.

The FDTD code was modi�ed to improve the accuracy of the simulation. Sig-

nals propagating through the meandered line experience numerous re�ections; there

is a strong coupling between closely spaced traces that form the meandered struc-

ture; also, a signi�cant amount of energy is being radiated from the surface of the
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meandered line. As a result, the load on the absorbing boundaries is increased.

To avoid spurious re�ections, a highly e�ective boundary condition, the perfectly

matched absorbing layer was used for truncation of the computational domain. A

form of uniaxial PML (UPML) proposed by Gedney [18] in modi�cation derived

by Sullivan [20] was implemented.

Voltage source used for the microstrip antenna simulation is di�cult to use

especially in conjunction with the PML ABC. Instead, a plane wave source based on

the TF/SF formulation was implemented. A source plane was located between the

conductor strip and the ground plane. TEM (transverse electromagnetic) incident

wave was simulated.

In the simulation of the microstrip antenna it was assumed that the feeding

microstrip had characteristic impedance of 50 Ohms, so that it was matched to the

measuring system. Our test lines were designed to have characteristic impedance of

75 Ohms. Due to processing variations the actual impedance measured with time-

domain re�ectometer was approximately 73 Ohms. To account for the impedance

discontinuity between measurement systems, connectors, and the test structures,

short segments of 50-Ohm line were included in the model. The segments were

placed at the ends of the test lines and extended into the absorbing boundary

layer to simulate the 50-Ohm reference. Figure 3.5 shows the setup used for the

simulation of the straight microstrip with a 50-Ohm reference.

In Figure 3.5, the structure between reference planes represents the device under

test, the line. All dimensions are given in grid cells. In the x -direction 1 cell = 0.25

mm; in the y-direction 1 cell = 0.5 mm. The length of the actual board is 60 mm;

external parts of the connectors soldered to the strip extend outside the board for

about 1 mm each. So the distance of 124 cells (= 62 mm) between reference planes

is justi�ed.
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Figure 3.5: Simulation setup for the straight microstrip line

Reference planes must be placed at the 50-Ohm segments of the structure. It

would seem natural to put them exactly at the edges of the 50-Ohm segments.

However, placing a reference right at the discontinuity is not desirable. To avoid

this, 50-Ohm segments are extended �ve cells inwards. We treat these extensions

as representation of parts of connectors attached to the microstrip. The length of

the connector's extensions is 2.5 mm.

3.3.2 Results and analysis

Magnitudes and phases of S11 and S21 parameters were computed for the me-

andered lines and the straight microstrip. The devices were assumed to be sym-

metrical and reciprocal, so that S11 = S22 and S21 = S12 . The meandered lines

were also simulated using Agilent ADS Momentum simulator.
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Figure 3.6: S-parameters of the straight line

Figure 3.6 shows the results of the straight line simulation together with the

measured data.

From Figure 3.6 we can see that the magnitude of S11 of the straight line agrees

very well with the measurement. Magnitude of S21 agrees with the measurement at

frequencies below 7 GHz. At higher frequencies the skin e�ect causes the measured

curve to deviate from the simulated one. Due to skin e�ect, resistance of the line

increases with frequency lowering S21 (essentially the transmission coe�cient). The

curve obtained from the simulation stays at the same level over the whole range of

frequencies, since in the simulation conductors are assumed to be perfectly lossless.

Phase of S21 is in good agreement with the measurement, which means that the

length of the line is modeled correctly.

Figure 3.7 shows the results for one of the meandered lines.
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Figure 3.7: Magnitudes and phases of S-parameters of the meandered line

Results of the FDTD simulation are compared to the measurement. In general

there is a good correlation between the FDTD simulation and the measurement is

observed up to 12 GHz. At higher frequencies the agreement becomes rather poor.

As was mentioned earlier, the FDTD model does not account for conductor loss,

which is signi�cant in the relatively long folded line, especially at high frequencies.

Unaccounted substrate loss also contributes to the error. Finally, the dielectric

constant of FR4 substrate, assumed to be constant in the model, in reality has

strong frequency dependence. In general FR4 substrate is not used for very high

frequency applications.

Results of the FDTD simulation were also compared to the simulated results

obtained using the Agilent ADS Momentum simulator. Comparison of the FDTD

simulation results with the results obtained from ADS Momentum shows very good

correlation. At the same time, both simulators fail to predict the behavior of the

test structure at frequencies above 12 GHz as it is shown in Figure 3.8.
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Figure 3.8: Results of the ADS Momentum simulation of the meandered line

This leads to a conclusion that some of the discrepancies can be attributed to

the measurement errors. Measurement errors occur because of the microstrip-to-

coaxial transitions, which are not de-embedded in the measurement, calibration

errors at high frequencies. Also, the actual parameters of the manufactured test

structures deviated from the values speci�ed in the design. Another factor that

limits accuracy of the measurements is the fact that some parts of the measurement

setup, such as SMA cables and SMA connectors are not reliable at frequencies above

15 GHz [21].

3.3.3 Possible improvements

For accurate modeling of the circuit high frequency behavior, the frequency-

dependent conductor loss must be included in the model. Generally, the contribu-
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tion of the substrate loss is low compared to the conductor losses; however, at high

frequencies substrate loss should be accounted for. There exist di�erent formula-

tions of the PML ABC, such as complex frequency shifted PML (CFS PML) and

convolutional PML (CPML) [5], which yield better absorption characteristics and

can be incorporated in the existing program to reduce spurious re�ections errors.

On the measurement side, alternative calibration techniques such as transmission-

line-thru (TRL) [21] can be employed to remove coaxial-to-microstrip discontinu-

ities and, perhaps, provide better error correction at high frequencies. At fre-

quencies above 15 GHz, 3.5-mm connectors and cables must be used to improve

the accuracy of the measurement. Also, new substrate materials can be used to

manufacture test boards with better performance at high frequencies.
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CHAPTER 4

CONCLUSIONS

A numerical simulator based on the FDTD method was developed, featuring

highly e�ective PML ABC and a plane wave voltage source based on the TF/SF

formulation. The simulator was used to perform time-domain simulations of pulse

propagation in various microstrip structures. Frequency-dependent scattering pa-

rameters of the line-fed rectangular patch antenna and several microstrip traces

have been calculated. These results were compared with measured data and with

the results of the simulation using commercial simulator. In general, a good corre-

lation with the measured data was observed. Ways of improvement of the FDTD

simulator performance along with the necessary modi�cations of the measurement

setup were considered.
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