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This dissertation includes three topics in the transient analysis of linear systems:  indirect

numerical integration, difference approximation, and circuit simulation of transmission lines.

Indirect numerical integration is a new class of numerical integration methods with ideal

accuracy, convergence and stability properties.  The methods are based on a novel time-response

invariant discrete synthesis.  The foundations and general principles of indirect numerical

integration are discussed in detail.  The dissertation includes the complete set of indirect

numerical integration formulas in the three canonic forms of state-variable representation.

Difference approximation is a general method for applying numerical integration to

systems characterized by discrete samples of their responses.  General principles of the method

are analyzed, the set of indirect numerical integration formulas for the difference approximation

is given, and novel interpolation-based approximation methods are presented.

The above two techniques are applied to the transient simulation of transmission lines.

The author attempts to formulate a high-level description of the transmission line simulation

method that has maximum efficiency, accuracy and applicability to the transient simulation of

high-speed digital circuits.  To formulate the approach, most significant aspects of the problem

are identified, and alternative approaches in each of the aspects are analyzed and compared to

find the combination which results in maximum efficiency, accuracy and applicability for the

transient analysis of high-speed digital circuits.

The step-by-step implementation of the approach for uniform and nonuniform

multiconductor lossy frequency-dependent lines characterized by samples of their responses is

presented.  The resulting transmission line model can be directly incorporated into a circuit

simulator.  The implementation includes ac, dc and transient analyses.  The method has been

adopted in several industrial and commercial circuit simulators, and in numerous real-life

simulation exercises proved to be reliable and accurate.  It is shown on an extensive set of

runtime data that, based on this approach, the accurate line modeling in a circuit simulator is as

efficient as the simple replacement of interconnects with lumped resistors.
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1.  INTRODUCTION

This dissertation is a continuation of the work described in [2].  It includes three topics in the

area of transient simulation of linear systems, namely:  indirect numerical integration, difference

approximation, and circuit simulation of transmission lines.

Numerical integration is a general method for numerical solution of differential equations

which has numerous applications.  In this dissertation, we consider numerical integration in its

application to the transient simulation of dynamic systems, and use the corresponding notation

and terminology.

Numerical integration represents  one of the three classes of transient simulation methods

(the other two are numerical transformation and convolution).  Numerical integration is the most

efficient and practically applicable of the three.  In contrast to the numerical convolution and

transformation techniques, numerical integration has linear computational complexity, can

directly (without relaxation) handle nonlinear and time-varying systems, does not introduce time-

or frequency-response truncation errors, supports variable time stepping, and is directly

compatible with recursive time-domain solvers employed by circuit simulators.

Numerical integration is based on the discretization of the system differential equations

resulting in discrete-time algebraic equations. The latter are used to perform the transient

simulation recursively in the time domain.

In the case of direct numerical integration methods, the differential equations are

discretized using a discrete approximation for integral/differential operators based on an

approximation for the system response.  The discrete approximation is applied to the derivatives

in the differential equations to transform the latter into discrete-time algebraic equations.  Direct

numerical integration includes such conventional methods as Runge-Kutta, linear multistep

formulas, forward and backward Euler formulas, trapezoidal rule, and Gear’s formulas.

Indirect numerical integration is a new class of numerical integration methods with ideal

accuracy, convergence and stability properties.  Indirect numerical integration is based on the

analytical relationship between the discrete samples of the excitation and response.  To obtain the
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relationship, the system differential equations are discretized by means of the novel time-

response invariant discrete synthesis.  The resulting discrete-time difference equations differ

from those obtained via the conventional numerical integration methods only in the values of the

coefficients, and can replace the latter to efficiently perform transient simulation of dynamic

circuits and systems in exactly the same manner.

The foundations of indirect numerical integration and its general principles are discussed

in Chapter 2.  The complete set of the indirect numerical integration formulas is presented in

Appendix A.

While being the only transient simulation method with linear computational complexity,

numerical integration is based on discretization of the system differential equations, and can not

be directly applied to systems characterized by measured or simulated samples of their responses,

which are often encountered in practice.  A general systematic solution to this problem is to

approximate any frequency or time response of the system with the corresponding response of a

system whose differential equations are known.  Then numerical integration can be applied and

the difference equations can be readily obtained.

This procedure is called the difference approximation.  Its applications include efficient

transient simulation of systems characterized by discrete data samples, transcendental transfer

functions, and higher-order systems (the order-reduction problems).  In recent years, the

difference approximation has been used by an increasing number of time-domain simulation

methods such as Asymptotic Waveform Evaluation (AWE) techniques, techniques used with the

Finite-Difference Time-Domain method to model frequency-dependent materials and implement

surface-impedance boundary conditions, and numerous transmission line simulation methods.

The theory behind the difference approximation, however, has not been studied adequately.

Chapter 3 of this dissertation attempts to fill the gap and to analyze the general principles

and foundations of the difference approximation, common for all of its applications.  In addition,

it presents novel interpolation-based approximation methods, and discusses AWE as an

important special case of the difference approximation.

The problem of transmission line simulation gained special importance with the

development of high-speed digital electronics.  As transient times become faster, the

transmission line behavior of electronic interconnects starts to significantly affect transient

waveforms, and accurate modeling of on-board and even on-chip interconnects becomes an

essential part of the design process.  The complexity of contemporary digital circuits necessitates

the simultaneous simulation of thousands of lossy coupled frequency-dependent lines surrounded

by thousands of nonlinear active devices.  Lines to be simulated may be characterized by

measured or electromagnetically simulated samples of their responses.
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The problem of line simulation involves several areas of science, such as

electromagnetics, computational mathematics, and circuit and system theories.  The solution of

the problem is straightforward in the sense that all of the components involved are well known

and need only to be combined together.  The integration of areas, however, is a difficulty that

keeps the problem open and accounts for the diversity of developed methods.

This thesis presents an original attempt to identify the components of the problem and to

formulate a high-level description of a method which provides maximum efficiency, accuracy

and applicability for the transient analysis of digital circuits.  Such an approach allows one to

more accurately assess and compare the performance of numerous and diverse methods.

Chapter 4 presents the formulation of the optimal approach, and discusses many of the

existing line simulation methods.  It also describes step-by-step implementation of the optimal

method for uniform and nonuniform multiconductor lossy coupled frequency dependent lines,

and presents numerical verification of the method’s accuracy and efficiency.
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2.  INDIRECT NUMERICAL INTEGRATION

2.1. Introduction

2.1.1. Numerical integration

Numerical integration is a general method for numerical solution of differential equations which

has numerous applications.  In this dissertation, we consider numerical integration in its

application to the transient simulation of dynamic systems and use the corresponding notation

and terminology.

Numerical integration represents  one of the three classes of transient simulation methods

(the other two are numerical transformation and convolution).  Numerical integration is the most

efficient and practically applicable of the three.  In contrast to the numerical convolution and

transformation techniques, numerical integration has linear computational complexity, can

directly (without relaxation) handle nonlinear and time-varying systems, does not introduce time-

or frequency-response truncation errors supports variable time stepping, and is directly

compatible with recursive time-domain solvers employed by circuit simulators.

Numerical integration is based on the discretization of system differential equations1,

resulting in discrete-time algebraic equations. The latter are used to perform the transient

simulation recursively in the time domain.

In the case of direct numerical integration methods, the differential equations are

discretized using a discrete approximation for integral/differential operators based on an

approximation for the system response.  The discrete approximation is applied to the derivatives

in the differential equations to transform the latter into discrete-time algebraic equations.  Direct

1Numerical integration can be applied to systems whose differential equations are not available (e.g., systems
characterized with discrete samples of their frequency- or time-domain responses) via the difference approximation
technique described in the next chapter and [1], [2].
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numerical integration includes such conventional methods as Runge-Kutta, linear multistep

formulas, forward and backward Euler formulas, trapezoidal rule, and Gear’s formulas [5], [6].

Typically, the system response is approximated with a polynomial of order p.  In this

case, p is called the order of the method.  If the discrete approximation for integral/differential

operators contains the present-time derivative of the response, the method is called implicit;

otherwise, it is called explicit.

An important feature of numerical integration is that the discrete-time equations obtained

via different numerical integration methods, including indirect numerical integration presented in

Section 2.2, differ only in the values of the coefficients, but have very different properties which

depend greatly on the way in which the original continuous-time equations were discretized.

2.1.2. Convergence, accuracy and stability

Important characteristics of a numerical integration method are convergence, accuracy and

stability.  Accuracy for direct numerical integration methods is characterized by the local

truncation error (LTE), which represents the error introduced at the current time iteration by

truncation of the higher-order terms in the polynomial approximation of the continuous signal

used to obtain the discrete-time approximation for derivatives.  Consequently, the order of the

LTE is p + 1.  For conventional numerical integration methods, LTE provides an effective way

of estimating error introduced at each time iteration at its source, and is commonly used for step

control.

Stability properties of a numerical integration method are estimated with respect to a

first-order linear homogeneous test equation

ẏ(t) = λ y(t).  (2.1)

Ideally, stability properties of the numerical solution should match those of the exact solution.

Implicit and explicit methods have radically different stability properties.  Finally, convergence

indicates whether the numerical solution converges to the exact solution as the time step goes to

zero.

2.1.3. Linearization methods

For the transient simulation of nonlinear dynamic systems, numerical integration is applied in

conjunction with linearization methods.  There are three groups of linearization methods [3],
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namely, separation of linear and nonlinear parts, harmonic linearization (used for narrow-

bandwidth systems), and iterative linearization.

The separation of linear and nonlinear parts has limited but important applications such as

circuit simulation based on the modified nodal approach (MNA) [5] in which linear and

nonlinear circuit elements and subcircuits are modeled and represented independently in the

circuit matrix by their stamps.  Transmission line models described in Chapter 4 and [14], [15]

may serve as an example of such separation.

The iterative linearization methods, such as Katzenelson and Newton-Raphson [4], [5],

are the most general.  The Katzenelson method approximates a nonlinear function by a piecewise

linear one, whereas the Newton-Raphson method solves nonlinear equations in a relaxation

iterative fashion based on the first-order Taylor expansion of the nonlinear function.  As a result,

the Katzenelson method is more efficient, while the Newton-Raphson method is more accurate

but prone to convergence problems.

Numerical integration is especially well-suited for use with iterative linearization

methods, because it performs the transient analysis iteratively in small increments, and

linearization can be performed locally and accurately.  With the transformation and convolution

techniques, the linearization can be applied only globally, leading to relaxation methods which

additionally degrade efficiency and accuracy of the transient simulation.

2.2. Indirect Numerical Integration

2.2.1. Time-response invariant discrete synthesis

In [2], a new class of numerical integration methods—indirect numerical integration—was

introduced.  Indirect numerical integration is based on the analytical relationship between the

discrete samples of the excitation and response.  To obtain the relationship, the system

differential equations are discretized by means of the  novel time-response invariant discrete

synthesis.  It proceeds in the following three steps.

1. Assume the excitation to be piecewise2 of a certain form (e.g., staircase, piecewise-linear or

quadratic).  This will be the form of the invariance.

2. Find the general solution of the system differential equations for the assumed form of the

excitation.

2On the intervals between the discrete time points.
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3. Express unknown constants of the general solution in terms of the discrete samples of the

excitation and response by using the samples as boundary conditions.

The result is a discrete-time model of the continuous system, which, for linear stationary

systems, has the form of difference equations, and, for this reason, is called the system difference

model.  The difference model is used for the transient simulation in exactly the same manner as

the discrete equations obtained via direct numerical integration methods, and, as for direct

methods, the computational complexity is linear.

Example.  To illustrate the derivation of indirect numerical integration formulas, let us apply the

ramp-response invariant discrete synthesis to the following first-order linear scalar differential

equation

ẏ(t) = λ y(t) + x(t), (2.2)

where x(t) is the excitation, y(t) is the response, and ẏ(t) = dy(t) dt .

1.  For the ramp invariance, the excitation is assumed to be piecewise linear

x(t) = at + b, tn−1 ≤ t ≤ tn .  (2.3)

2.  Then, the general solution of the differential equation (2.2) is

y(t) = − a + bλ
λ2

− a

λ
t + ceλ t , tn−1 ≤ t ≤ tn , (2.4)

where c is an arbitrary constant.

3.  Finally, by applying the boundary conditions

x(tn ) = xn ,

x(tn−1) = xn−1,

y(tn ) = yn ,

y(tn−1) = yn−1 ,

to the invariance function (2.3) and general solution (2.4), the general solution can be expressed

as

yn = eλ Tn − λ Tn − 1
λ2 Tn

xn +
1 + λ Tn − 1( )eλ Tn

λ2 Tn

xn−1 + eλ Tn yn−1, (2.5)

where Tn = tn − tn−1 is the time step.
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The formula (2.5) is the ramp-invariant difference model of a continuous system

described by the differential equation (2.2).  

The total number of samples of the excitation and response in a difference model equals

the total number of the unknown constants in the invariance function and general solution (a, b,

and c in the above example) plus one.  For linear two-port systems, the derivation can be reduced

to table lookups and purely algebraic operations by using Laplace and Z-transforms to solve

differential equations and express the general solution in terms of discrete samples [2].

The invariance has to be of zero order (the step invariance) or higher.  The impulse

invariance can not be used for indirect numerical integration, because the system response to a

δ-sampled excitation has to be additionally integrated to converge to the exact response as the

time step goes to zero [3], [7].  The invariance function does not necessarily have to be a

polynomial.

Theorem 2.1.  During the transient simulation, the difference model interpolates the discrete

samples of the excitation with the invariance function and provides the exact solution of the

system differential equations for the interpolated excitation.

Proof:  Follows directly from the definition of the time-response invariant discrete

synthesis, according to which the difference model is the exact analytical solution of the system

differential equations expressed in terms of the discrete samples of the excitation and response,

and for the excitation interpolated by the invariance function.  

In effect, Theorem 2.1 simply rephrases the definition of the time-response invariant

discrete synthesis.

Corollary 2.1.  For excitations which are piecewise of the same form as the form of the

invariance, the difference model provides the exact solution.

Proof:  The invariance function will exactly match the excitations which are piecewise of

the same form as the form of the invariance.  Thus, according to Theorem 2.1, the difference

model will provide the exact solution in this case.  

For instance, a ramp-invariant difference model provides the exact system response to a

piecewise linear excitation, such as a pulse with linear rise and fall.  Notice that Corollary 2.1

imposes no limitations on the value of the time step.

Corollary 2.2.  Any difference model provides the exact solution of the homogeneous test

equation (2.1).
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Proof:  Any invariance function will match the zero excitation exactly.  Thus, according

to Theorem 2.1, the difference model will provide the exact solution in this case.  

Notice that Corollary 2.2 imposes no limitations on the value of the time step or the form

of the invariance.

2.2.2. Stability

The stability properties of a numerical integration formula are evaluated with respect to the

homogeneous test equation (2.1).

Theorem 2.2.  Any difference model of the homogeneous test equation (2.1) matches exactly its

stability properties.

Proof:  According to Corollary 2.2, any difference model provides the exact solution of

the homogeneous test equation.  Thus, it also matches exactly the stability properties of that

equation.  

Theorem 2.2 imposes no limitations on the form of the invariance or the value of the time

step.  The separation into explicit and implicit is not applicable to indirect numerical integration

methods because they use no approximation for derivatives.

2.2.3. Local interpolation error

The accuracy of conventional numerical integration methods is characterized by the local

truncation error.  LTE represents the error introduced at the current time iteration by truncation

of the higher-order terms in the power series expansion of the signals to which the discrete

approximation for derivatives is applied.  Thus, for conventional numerical integration methods,

LTE provides an effective way to estimate the local error at its source.  In the case of indirect

numerical integration, no approximation for the derivatives is made, and LTE is no longer

effective in estimating the local error.  For indirect numerical integration, the only error arises

from the interpolation of the excitation with the invariance function.  The expressions for the

local interpolation errors are given in Table 2.1.  The expressions were obtained with respect to a

one-order-higher interpolation.  They can be used to control the time stepping during the

transient simulation.

Similarly to the LTE for the direct methods, the local interpolation error provides an

efficient way to estimate the local numerical integration error at its source, which, for indirect
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TABLE 2.1

LOCAL INTERPOLATION ERRORS

Local Interpolation Error Step Invariance
x̃(t) = xn−1,
tn−1 ≤ t ≤ tn

Ramp Invariance

x̃(t) = xn−1 + xn − xn−1

Tn

t, tn−1 ≤ t ≤ tn

Maximum Absolute Error
εa = max

tn−1 ≤t≤tn
x(t) − x̃(t)

xn − xn−1 + O(Tn
2 ) Tn Tn xn−1 − xn−2( ) − Tn−1 xn − xn−1( )

4Tn−1 Tn + Tn−1( ) + O(Tn
3 )

Mean-Square Error

εm = 1
Tn

x(t) − x̃(t)( )2
dt

tn−1

tn

∫
xn − xn−1

3
+ O(Tn

2 )
Tn Tn xn−1 − xn−2( ) − Tn−1 xn − xn−1( )

30 Tn−1 Tn + Tn−1( ) + O(Tn
3 )

N o t e :   x(t) is the excitation, x̃(t) is the interpolating function (the invariance function),
and Tn = tn − tn−1 is the time step.

numerical integration, is always in the excitation, in contrast to the direct numerical integration

methods which introduce an error in every derivative present in the original continuous-time

equation and result in the LTE being always present either in the response or in both the response

and excitation.  Transforming the local interpolation error to the response is not practical because

this operation depends not only on the order of the invariance but also on the specific form of the

difference model, and results in complicated expressions which are computationally more

expensive than numerical integration itself.

2.2.4. Convergence

As mentioned in Section 2.1.2, convergence characterizes whether the discrete solution

converges to the exact solution as the time step goes to zero.

Theorem 2.3.  An indirect numerical integration method is convergent iff the interpolation with

the invariance function converges to the input waveform as the time step goes to zero.

Proof:  Follows directly from the fact that the only error in the indirect numerical

integration comes from the interpolation of the excitation with the invariance function.  
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Corollary 2.3.  Indirect numerical integration methods with polynomial forms of invariance are

convergent.

Proof:  Polynomial interpolation of zero order and higher converges to the original

function as the interpolation step goes to zero.  Thus, according to Theorem 2.3, an indirect

numerical integration method with the polynomial form of invariance is convergent.  

Notice that Corollary 2.3 does not require the excitation to be continuous.

Corollary 2.4.  The impulse-invariant indirect numerical integration method is not convergent.

Proof:  The δ-impulse interpolation does not converge to the original function as the

interpolation step goes to zero.  Thus, according to Theorem 2.3, an impulse-invariant indirect

numerical integration method is not convergent.  

However, if the δ-impulse interpolation is integrated, it converges.  Therefore, an

impulse-invariant difference model can be made convergent by an additional integration.

Corollary 2.5.  The difference model of any form of invariance is convergent for a homogeneous

test equation (2.1).

Proof:  Any invariance function interpolates the zero excitation exactly.  Thus, according

to Theorem 2.3, the statement of this corollary is true.  

2.2.5. Canonic state-variable representations

When a difference model goes more than one step back in time, its accuracy is reduced because

of the overlap between the local domains of invariance.  Then, the exact result is obtained only

for the excitations which are globally of the same form as the form of the invariance.  To

preserve the piecewise exactness, a difference model has to go back only one time step.  This is

achieved by means of state variable formulations, which transform higher-order differential

equations into a system of first-order equations.  There are three conventional ways of

introducing state variables which correspond to the three canonic forms of system representation:

canonic, parallel canonic and cascade (or series) canonic forms [3], [7].

The canonic form corresponds to the standard state variable formulation.  It represents

higher-order differential equations as first-order matrix differential equations [3].  The canonic

form is the most general of the three, and can be used for multiport systems with nondistinct

poles.

The parallel canonic form represents a higher-order system as a set of first-order systems

connected in parallel.  The transfer function has then the form of a sum of first-order rational
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polynomial functions, and fundamental time-domain responses have the form of an exponential

series.  The parallel canonic form is not general, and can only be used for systems with distinct

poles.

In the cascade canonic form, a higher-order system is represented as a set of first-order

systems connected in cascade.  The cascade canonic form does not preserve the invariance of

difference models for higher-order systems.  This form is not suitable for representation of

multiport systems, and has no general closed-form expressions for the fundamental time-domain

responses.

The complete set of step- and ramp-invariant indirect numerical integration formulas in

the three canonic forms for arbitrary-order multiport linear stationary systems is given in

Appendix A.

2.2.6. Indirect numerical integration formulas in Appendix A

To obtain a difference model of a system using Appendix A, one has to represent either the

system differential equations, the transfer function, or a fundamental time-domain response in

one of the three canonic forms.  The corresponding difference models are then readily given in

Appendix A directly in terms of the parameters of the canonic representations.

The following example illustrates the application of the time-response invariant discrete

synthesis to multiport systems (in matrix form) on the derivation of the step-invariant canonic

difference model from Appendix A.

Example.  The canonic state equation is

ż(t) = Ωz(t) + Cx(t), (2.6)

where x(t) is the l ×1 excitation vector, z(t) is the m ×1 system state vector, Ω is the m × m

system matrix, and C is the m × l  control matrix [3].3

1.  For the step invariance, the excitation is assumed to be staircase (piecewise constant)

x(t) = a , tn−1 ≤ t ≤ tn .  (2.7)

2.  Then, the general analytic solution of the differential equation (2.6) is

z(t) = Ω −1 F(t) − I( )Ca + F(t)b, (2.8)

where I is the m × m  identity matrix, b is an arbitrary m ×1 constant vector, and

3Throughout the dissertation, capital boldface, small boldface and normal italic symbols denote matrices, vectors
and scalars, respectively.
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F(t) = eΩ t

is the fundamental matrix [3].  The boldface eΩ t  denotes matrix exponential.4

3.  Finally, by applying the boundary conditions

x(tn−1) = xn−1 ,

z(tn ) = zn ,

z(tn−1) = zn−1,

to the invariance function (2.7) and general solution (2.8), the general solution can be expressed

as

zn = F(Tn )zn−1 + Ω−1 F(Tn ) − I( )Cxn−1 .  (2.9)

The formula (2.9) is the step-invariant difference model of a  multiport continuous system

described by the matrix canonic state equation (2.6).  Notice that the derivation used no

assumptions on the Ω and C matrices other than Ω being invertible.  

Compared to the step-invariant models, the ramp-invariant models increase the

simulation accuracy with no increase in the computational complexity.  The step-invariant

models, however, do not contain the present-time sample of the excitation, which is important for

applications such as circuit simulation discussed in Chapter 4.  The ramp-invariant formulas are

given in two forms:  with equalized present- and past-time coefficients, and with zero present-

time coefficient.  The latter form, however, is somewhat more computationally involved and

requires storing an old value of one of the coefficients.  These forms were derived by

transforming the state variables in the discrete domain so as to equalize the coefficients or to null

one of them, with the purpose of reducing the number of multiplications.

Increasing the order of the invariance beyond the ramp invariance increases the

computational complexity without a substantial increase in accuracy.  It also results in multistep

difference models for first-order differential equations, and a state-variable representation has to

be applied once again in the discrete domain to preserve the invariance of the formulas.

The difference models obtained via indirect and conventional numerical integration

methods which employ an approximation for derivatives of the same order as the order of the

invariance differ only in the values of the coefficients.  Consequently, the storage requirements

and number of arithmetic operations per time step for indirect and conventional numerical

4The bold-face functions are used throughout the dissertation to denote matrix functions such as the matrix
exponential and matrix power.
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integration methods are the same, provided that all the matrices are full and the difference

models are already available.  However, different numerical integration and linearization

methods may have different effects on sparsity of sparse systems, which is also application-

specific.

To nonlinear time-varying systems, the formulas are applied in conjunction with staircase

approximation for the time variance and linearization techniques described in the preceding

section.  Alternatively, the time-response invariant discrete synthesis can be applied directly to

nonlinear time-varying systems.  The first approach is more universal, whereas the second is

more accurate but application-specific and limited to nonlinear differential equations which have

analytical solutions.

Analytical efforts involved in the derivation of indirect numerical integration formulas

can be greater than those for conventional methods.  In addition, formulation of the state

equations in the canonic forms is a difficult and application-specific problem, and can be

computationally more expensive than subsequent numerical integration.  There are, however,

numerous and important applications, such as asymptotic waveform evaluation (AWE) [12],

[13], difference approximation described in Chapter 3, and examples from the next section, in

which the system is already represented in a canonic form.

Evaluation of exponential functions in the coefficients of difference models is

computationally inexpensive, because the functions contain the time step (which is always small)

as an argument.  Furthermore, the coefficients have to be recomputed only when the value of the

time step changes.

Figure 2.1 shows a comparison of transient responses of a third-order system simulated

with the ramp-invariant indirect numerical integration method and trapezoidal rule (both applied

to the canonic state equations).  As one can observe, the indirect numerical integration provides

the exact results, whereas, for the same time step, the trapezoidal rule introduces a significant

error (although the local interpolation error for the ramp invariance is even one order lower than

the LTE for the trapezoidal rule).  The simulation runtime for the indirect numerical integration

(including evaluation of the coefficients) was only half of the runtime for the trapezoidal rule for

the same time step.  For a comparable accuracy, the simulation runtime for the trapezoidal rule is

in excess of 25 times that for the indirect numerical integration.
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Fig. 2.1.  Comparison of the ramp-invariant indirect numerical integration method and
trapezoidal rule.

2.3. Applications

While offering the improved accuracy, convergence and stability properties, the discrete-time

difference equations obtained via indirect numerical integration differ from those obtained via

the conventional methods only in the values of the coefficients, and, in many cases, can replace

the latter to efficiently perform transient simulation of circuits and systems in exactly the same

manner.

Indirect numerical integration covers, as special cases, many important techniques which

have been used extensively for a number of years, such as recursive convolution [8]-[11], the

step-invariance method of infinite impulse response digital filter design [3], [7], approximation

of the response of a linear network to an arbitrary piecewise linear input waveform used with the

AWE methods [12], [13], and even the trapezoidal rule, which is a ramp-invariant difference
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Fig. 2.2.  Comparison of transient waveforms simulated in Spice using the built-in convolution-
based model for lossy transmission lines and an indirect numerical integration based model.

model for a simple integrator but acts as a direct numerical integration method for more complex

systems.

The introduction of the novel time-response invariant discrete synthesis and indirect

numerical integration as a new class of numerical integration methods generalizes and provides a

deeper systematic insight into some of these techniques and their properties.  For instance, it

explains why the convolution integral can be taken recursively for some kernels by showing that

these cases are equivalent to numerical integration of finite-order ordinary differential equations.

It also extends the digital filter design techniques, previously limited to scalar constant-time-step

systems by the use of the Z-transformation, to multiport variable-time-step discrete-time systems.

Indirect numerical integration has also found a number of new applications, some of which are

illustrated below.

Indirect numerical integration was applied to transient simulation of transmission lines as

described in Chapter 4.  Figure 2.2 shows a comparison of transient waveforms for a circuit

consisting of lossy transmission lines, nonlinear elements (MOSFETs) and lumped linear

elements, simulated in Spice using the built-in convolution-based model for lossy transmission

lines [16] and an otherwise similar indirect numerical integration based model.  Figure 2.2 shows



17

0
0.1

0.2
0.3

0.4 0

0.1

0.2

0.3

0.4
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

x (m)
y (m

)

N
or

m
al

iz
ed

 e
le

ct
ri

c 
fi

el
d,

 E
z (

tim
es

)

Fig. 2.3.  Electric field distribution simulated using FDTD with surface impedance boundary
conditions based on indirect numerical integration.

that the waveforms are indistinguishable, although the total simulation runtime was reduced by

two orders of magnitude.

In Oh and Schutt-Ainé [10], ramp-invariant indirect numerical integration is used to

implement the surface impedance boundary conditions for the finite-difference time domain

(FDTD) method.  Figure 2.3 shows the simulated electric field distribution for a two-dimensional

scattering from a square cylinder.  The total order of indirect numerical integration carried out to

model the surface of the scatterer was 1280.  As shown in [10], the results are in a good

agreement with those for conventional FDTD, and the size of the problem is significantly

reduced.
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Indirect numerical integration in conjunction with AWE is used to simulate transient

behavior of semiconductor devices, Beyene and Schutt-Ainé [17].  Using moment-matching

AWE techniques, the partial diffusion equation is approximated by ordinary differential

equations which are then solved using indirect numerical integration.  Figure 2.4 shows the

distribution of excess minority carrier concentration in the n-type region of a p+-n junction

simulated using step-invariant indirect numerical integration.
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Fig. 2.4.  Distribution of carrier density simulated using indirect numerical integration applied in
conjunction with AWE to solve the diffusion equation.
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Fig. 2.5.  (a) Current distribution along a transmission line simulated using indirect numerical
integration applied to solve Telegrapher’s equations.  (b) Comparison of transient waveforms at

the transmission line terminal.

In the following example, indirect numerical integration is used to directly solve the

partial Telegrapher’s equations [2].  Ramp-invariant indirect numerical integration was applied to

separately discretize the time and spatial sides of the partial differential equations while treating

the other side as an excitation.  Figure 2.5 shows the simulated current distribution along a

transmission line and comparison of the transient waveforms with those simulated using the
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Fig. 2.5 continued.

FDTD method based on the central-difference (direct) numerical integration scheme.  Figure 2.5

shows that indirect numerical integration provides the exact results, whereas FDTD introduces a

substantial error.

2.4. Conclusions

This chapter presented indirect numerical integration [21], a new class of numerical integration

methods based on the novel time-response invariant discrete synthesis.  While offering improved

accuracy, convergence and stability properties, the discrete-time difference equations obtained

via indirect numerical integration differ from those obtained via the conventional numerical

integration methods only in the values of the coefficients, and, in many cases, can replace the

latter to efficiently perform transient simulation of dynamic circuits and systems in exactly the

same manner.
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The foundations of indirect numerical integration and its general principles were

discussed in detail in the Section 2.2.  Finally, the complete set of the step- and ramp-invariant

indirect numerical integration formulas is presented in Appendix A.
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3.  DIFFERENCE APPROXIMATION

3.1. Introduction

Numerical integration is the most efficient transient simulation method (the only method with

linear computational complexity).  It is based on discretization of the system differential

equations resulting in discrete-time difference equations which are used to perform the transient

simulation of the system recursively in the time domain.  In practice, systems are often

characterized by measured or simulated samples of their responses, and the differential equations

are not available.  A general systematic solution to this problem is to approximate any frequency

or time response of the system with the corresponding response of a system whose differential

equations are known.  Then numerical integration can be applied and the difference equations

can be readily obtained.

This procedure is called the difference approximation.  Its applications include efficient

transient simulation of systems characterized by discrete data samples, transcendental transfer

functions, and higher-order systems (the order-reduction problems).  In recent years, the

difference approximation has been used by an increasing number of time-domain simulation

methods such as Asymptotic Waveform Evaluation (AWE) techniques [12], [13], techniques

used with the Finite-Difference Time-Domain method to model frequency-dependent materials

[18] and implement surface-impedance boundary conditions [10], [18], and numerous

transmission line simulation methods [8], [19], [20].  The theory behind the difference

approximation, however, has not been studied adequately.

This chapter attempts to fill the gap and to analyze the general principles and foundations

of the difference approximation, common for all of its applications.  In addition, Section 3.3

presents novel interpolation-based approximation methods, and Section 3.4 discusses AWE as an

important special case of the difference approximation.
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3.2. General Principles of Difference
Approximation

3.2.1. Fundamental issues

The fact that the difference approximation is based on an approximation does not mean that it is

less accurate than numerical convolution and transformation techniques which can be applied

directly to the samples of system responses.  The latter methods employ a discrete approximation

of the samples, which is potentially less accurate than the functional approximation employed by

the difference approximation.

The approximating system for the difference approximation should be of a type to which

numerical integration is easily applied.  From this standpoint, systems described by stationary

ordinary linear differential equations with constant (frequency-independent) coefficients are the

most suitable, and their use will be implied throughout the chapter.  We will also limit the

discussion to linear systems.  To nonlinear systems, the same techniques are applied in

conjunction with linearization methods [3]-[5].

The foremost issue to address is the fundamental possibility of such an approximation, or,

in other words, whether the exact representation is possible when the approximation order

approaches infinity.  Unfortunately, even for linear stationary systems the answer is, in general,

no.  The difference approximation with the above approximating systems is fundamentally

possible only for systems with constant parameters.  Systems with frequency-dependent

parameters (which includes all real electromagnetic systems such as transmission lines) can not,

in general, be described exactly by the ordinary differential equations of even infinite order.5  In

practice, it means that for systems with frequency-dependent parameters the approximation

accuracy can not be improved by increasing the order of the approximation beyond some point.

For most of the practical cases, however, a satisfactory (within a few percent) accuracy can be

achieved.  For systems with constant parameters, any desired degree of accuracy can be achieved

by increasing the approximation order.

Although any system response can be used for the difference approximation, to attain

maximum accuracy one should approximate a response which is as close as possible to the

5This fact can be easily understood if one considers the power-series expansions of the original and approximating
transfer functions.  The exact representation implies that the coefficients of the power-series expansions coincide.
Transfer functions of the approximating systems considered in the paper have the form of rational polynomial
functions with real coefficients (consequently, the coefficients of the power series are real as well).  For the systems
with frequency-dependent parameters, the coefficients are, in general, complex, and, therefore, can not be matched.
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response to be simulated.  At the same time, it should be a simple fundamental response.  In the

time domain such a response is the transient characteristic (unit-step response).  Approximation

of the transient characteristic results in the closest correlation between the approximation and

simulation errors.  If the impulse characteristic (δ-impulse response) is approximated, the

approximation error is integrated during the transient simulation.  In the case of the ramp-

response approximation, the approximation error is differentiated.  In the frequency domain, it is

best to approximate the transfer function, because higher-order frequency-domain responses are

singular at the zero frequency.

3.2.2. Canonic forms

For the approximating systems considered, the frequency-domain responses have the form of

rational polynomial functions, and the time-domain responses are composed of the exponential

and damped harmonic functions.  The expressions for the transfer functions, impulse, step and

ramp responses, the corresponding differential equations, and indirect numerical integration

formulas in the three canonic forms [3] of state-variable representation for arbitrary-order

multiport systems are given in Appendix A.

The canonic form (the standard state-variable formulation) starts with the common-

fraction representation of the rational polynomial transfer function

H( jω) = Q( jω)
p( jω)

= C0 + jωC1 + ( jω)2 C2 +K+( jω)M CM

1 + jωβ1 + ( jω)2β2 +K+( jω)M βM

.  (3.1)

In the parallel canonic form, a higher-order system is represented as a set of first-order

systems connected in parallel, and the transfer function is in the form of a sum of first-order

rational polynomial functions

H( jω) = H∞ + Am

1 + jω / ωcmm=1

M

∑ .  (3.2)

According to the residue theorem [23], the partial expansion coefficients, Am , are related to the

common fraction form as follows [22]:

Am = − Q(−ωcm )

kβk
k =1

M

∑ (−ωcm )k

,

and the final value
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H∞ = 1
βM

CM .

Because the coefficients Cm  and βm  of the common fraction (3.1) are real, the system poles,

−ωcm , (the roots of the denominator of Equation (3.1)) and the partial expansion coefficients,

Am , are either real or form complex-conjugate pairs.  Complex poles should be used only for the

difference approximation of systems with oscillating time-domain responses.  Aperiodic systems

should be approximated with only real poles.

The parallel canonic form can be used only for systems with distinct poles.  It is, also, the

most suitable form for the time-domain approximation, because, in this case, the dynamic parts

of the fundamental time-domain responses have the form of a simple exponential series

F(t) = Dm e−ω cm t

m=1

M

∑ .  (3.3)

In the cascade canonic form, a higher-order system is represented as a set of first-order

systems connected in cascade, and the transfer function has the form of a product of the first-

order rational polynomial functions:

H( jω) = H0

1 + jω / ωpm

1 + jω / ωcmm=1

M

∏ .  (3.4)

The cascade canonic form is not suitable for approximation of multiport systems (in matrix form)

nor for the time-domain difference approximation.

The difference approximation procedure consists of one step:  Approximate a system

response in the time or frequency domain with the corresponding response from Appendix A.

The system difference model is readily given in Appendix A, directly in terms of the

approximation parameters.  The frequency-domain difference approximation is more general

because it can be performed in all of the three canonic forms, and system responses are usually

measured in the frequency domain.

3.2.3. Complex-to-real mapping, magnitude, real- and
imaginary-part approximations

Although transfer functions are complex, the fact that the coefficients of the approximating

rational polynomial function are real prohibits performing the frequency-domain difference

approximation directly in the complex form.  For systems with constant parameters, transfer

functions can be mapped into the real domain by scaling the frequency with the factor of –j.  The
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approximation is then performed with the correspondingly scaled rational polynomial functions

in the real domain.  This implies, however, that the original transfer functions are given in the

functional form with frequency-independent parameters.

In the general case of frequency-dependent systems characterized by discrete samples of

their responses, one can exploit the fact that for any analytic complex function the real and

imaginary parts are uniquely (to an additive constant) related by the Riemann-Cauchy equations

and are harmonic conjugates of each other [22], [23].  In practice, this means that one can

approximate only the real part, imaginary part or magnitude of the original function (which are

real) with the corresponding part of the approximating function, and the rest will match

automatically.

The magnitude, real- and imaginary-part approximations can be performed via an

approximation with a rational polynomial function of the squared frequency.  To retrieve the

approximation parameters, the result of the real-part approximation has to be put in the form

Re H( jω)( ) = H∞ + Am

1 + ω2 / ωcm
2

m=1

M

∑ , (3.5)

and the normalized imaginary-part approximation in the form

1
ω

Im H( jω)( ) = −(1 / ωcm )Am

1 + ω2 / ωcm
2

m=1

M

∑ .  (3.6)

Then ωcm  and Am  in the expressions (3.5) and (3.6) will correspond to those in (3.2).

Similarly, after the rational polynomial approximation of the squared magnitude is

represented in the following form:

  
H( jω) 2 = H0

2
1 + ω2 / ωp1

2( ) 1 + ω2 / ωp2
2( )⋅K⋅ 1 + ω2 / ωpM

2( )
1 + ω2 / ωc1

2( ) 1 + ω2 / ωc2
2( )⋅K⋅ 1 + ω2 / ωcM

2( ) , (3.7)

ωcm  and ωpm  in (3.7) will correspond to those in (3.4).  The magnitude approximation is

insensitive to the delay component of the original function.

The relationships (3.5)-(3.7) hold not only for real but also for complex-conjugate poles

and zeros (except for purely imaginary poles and zeros).

The systems to be simulated are usually known to be stable, and the approximating poles

should be located in the left half of the complex plane.  Because the real-part and magnitude

approximations are performed in terms of the squared poles, they can not generate unwanted

right-half-plane poles.
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3.2.4. Difference approximation of multiport systems

There are two ways of applying the difference approximation to a multiport system.  First, the

system can be treated as a single multiport system, and the difference approximation is

performed in the matrix form.  Second, a multiport system can be treated as a set of two-port

systems connected in the order of the matrix multiplication, and the scalar difference

approximation is applied individually to each element of the matrix transfer function or transient

characteristic.  The computational complexity of the transient simulation is the same for both

approaches (the computational complexity of numerical integration is linearly proportional to the

order of difference approximation).  The number of the state variables, however, is linearly

proportional to the number of the system ports for the first approach and quadratically for the

second.

For symmetric n × n matrix transfer functions, such as admittance matrices, the number

of scalar transient simulations to be performed can be reduced from n2  to n(n + 1) / 2 by

converting the matrices into the self/mutual-parameter form [19].

3.2.5. Matrix delay separation

A two-port (scalar) dynamic linear system is said to contain a delay τ, if its one-sided time-

domain response h(t) can be written as

h(t) = ĥ(t − τ)1(t − τ),

where 1(t) is the unit step function.  In other words, the delay is merely a time shift.  Then, the

phase of the frequency-domain response H(ω) will contain a linear component − ωτ:

H(ω) = Ĥ(ω)e− jωτ .

We will call ĥ(t) and Ĥ(ω) the delayless responses.  For most of the practical delayless

transfer functions, such as open-loop delayless transfer functions of transmission lines discussed

in Chapter 4, the phase is limited at infinity.  In this case, the delay also corresponds to the

infinite-frequency slope of the phase of the transfer function.  Using this property, one can

estimate the delay component in a system characterized by measured frequency-domain data by

the high-frequency asymptote of the phase.

To increase the accuracy, the delay component should be separated from the original

function before the approximation.  For multiport systems, the conventional modal
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transformation approach to the frequency-domain delay separation consists of the

diagonalization of the square matrix transfer function H(ω),

H(ω) = M(ω) Hm (ω) M−1(ω) ,

and extraction of the scalar delays from the elements of the diagonal transfer function matrix,

Hm (ω), [8], [19].  The eigenvector matrix, M(ω), is, in general, a nonminimum-phase function6

with unstable time-domain responses, which limits the applicability of the technique to few

special cases in which the eigenvectors of H(ω) are constant.

In a general case, the delay can be separated by the novel matrix delay separation

technique, which represents the matrix transfer function as follows:

H(ω)= Ĥ(ω) Me− jω Τ m M−1 ,

where

Ĥ(ω)= H(ω) e+ jω Τ

is the delayless matrix transfer function.  The technique uses a novel notion of the matrix delay,

Τ, which generalizes the scalar delay to multiport systems.  Analogously to the scalar systems,

the matrix delay is the infinite-frequency slope of the argument of the matrix exponential

representation of H(ω), which is the matrix equivalent of phase.  However, in the time domain,

the matrix delay not only shifts the responses, but also creates coupling between them.  The

diagonal modal-delay matrix, Τm , is the eigenvalue matrix of Τ , and M  is the constant

eigenvector matrix of Τ.  The elements of Τm  are the same as the modal delays obtained with the

modal transformation technique.  The difference approximation is applied to Ĥ(ω).  Specific

examples of the matrix delay separation can be found in Chapter 4.

3.3. Approximation Methods

3.3.1. Comparison of approximation methods

As shown in the preceding section, the difference approximation can be performed via the scalar

exponential series approximation in the time domain, or rational polynomial approximation in

the frequency domain.  The choice of the approximation method affects overall efficiency and

6A transfer function whose poles are not restricted to the left half of the complex plane.
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• the poorest accuracy
• computationally efficient
• require the functional represen-
tation of the original function or a
large number of samples
• can provide closed formulas for
the approximation parameters if the
functional representation of the ori-
ginal function is available

(point fitting)
• high accuracy
• the simplest and most computa-
tionally efficient methods
• require the fewest number of ori-
ginal function samples (the number
of samples is equal to the number of
the approximation parameters)

• the highest accuracy
• the most complex, unreliable and
computationally extensive methods
(nonlinear optimization)
• require a large number of original
function samples

• high accuracy
• computationally extensive
• require a large number of original
function samples

Fig. 3.1.  Approximation methods.

accuracy of the difference approximation.  Based on approximation criteria, approximation

methods can be categorized into four major groups:  minimum maximum error based (mini-max)

methods, least square methods, interpolation methods and series expansion based methods (see

Fig. 3.1).  Mini-max methods provide the highest accuracy, but result in the most inefficient and

unreliable algorithms [24], [25].  Least square methods provide high accuracy, but are still

computationally extensive for nonlinear problems.  Prony’s method [26] and its modifications,

such as pencil-of-function method [27], reduce the exponential approximation to a linear least-

square problem, which can be solved efficiently, but extract the poles by minimizing the linear

prediction error instead of the approximation error and are restricted to uniform sampling.

Another efficient least-square based method—Laguerre expansion—is limited to approximations

with a single repeated pole [20].  Series expansion based methods (such as Padé synthesis used

for AWE [24], [25], [28]) are computationally efficient, but provide the poorest accuracy.

Interpolation (point-fitting) agrees exactly with the original function on a given set of

samples.  Interpolation provides high accuracy, and is the most efficient among the

approximation methods.  It is reducible to a linear problem for both exponential (Prony’s
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TABLE 3.1

COMPARISON OF APPROXIMATION METHODS

Approximation Method
Maximum

Relative Error
Relative
run time

Mini-max approximation 0.0004% 200

Least squares approximation 0.002% 50

Interpolation 0.003% 1.0

Economized rational approximation 0.004% 2.0

Padé synthesis at zero 0.06% 1.3

Padé synthesis at infinity 0.3% 1.5

interpolation [26]) and rational polynomial [24], [25] approximations.  It also requires the

minimal number of samples, which is important when the original responses are obtained from

electromagnetic simulations.

Table 3.1 presents typical values of maximum relative error and computational efficiency

for various approximation methods as applied to the frequency-domain rational polynomial

approximation of open-loop transmission-line functions introduced in Chapter 4.  Economized

rational approximation starts with Padé synthesis, which is not accurate away from the expansion

point, and then perturbs it to reduce the leading coefficient of error in the given approximation

interval [24], [25].  As one can observe, interpolation provides accuracy comparable with that of

least square approximation, and is 200 times more efficient than mini-max approximation.

Interpolation is also up to two orders of magnitude more accurate and 30-50% more efficient

than Padé synthesis used by the AWE.  As shown in Section 3.4, for more complicated functions,

the accuracy of AWE approximation is much worse than that listed in Table 3.1.

3.3.2. Relaxation interpolation method

This method is applicable to interpolation of limited aperiodic functions with a sum or product of

limited monotonous functions.  It can be used for low-order real-pole time- and frequency-

domain difference approximation of aperiodic systems, such as open-loop transmission line

functions.  The method reduces the solution of complicated nonlinear equations for the
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interpolation with a sum or product of simpler basis functions to a recursive solution of equations

involving only one basis function at a time, which can often be solved analytically.

The method is based on the assumption that the basis functions are approaching the

limiting value at different rates.  Consequently, the first basis function dominates at the first

interpolation interval, and its parameters can be estimated separately.  This basis function is then

removed from the original function, which makes the second basis function dominant.  The

process is repeated until it passes through all of the basis functions.  The subsequent passes are

made using the approximation parameters estimated previously to iteratively improve the

accuracy.  Because the method takes advantage of the specific properties of the original and

approximating functions, it has much better convergence than the more general Newton-Raphson

method.

Let us first consider the interpolation with a sum of basis functions:

f̃ (x) = F∞ + ϕm (x)
m=1

M

∑ .

If all of the basis functions, ϕm (x) , have the final value of zero (which can always be achieved

by lumping nonzero final values in F∞ ), the relaxation interpolation algorithm proceeds as

follows.

1. Single interpolation pass:

1.1. The final value, F∞ , may be either given or determined iteratively along with other

unknown parameters.  If F∞  is not given, compute

F∞ = f (x0 ) − ϕm (x0 )
m=1

M

∑ ,

where f (x) is the original function, and x0  is the largest abscissa among the

interpolation points.
1.2. For each basis function ϕm (x)  determine (if possible, analytically) the unknown

approximation parameters αm1,K,αmLm
 from the system of equations

  

ϕm (αm1,K,αmLm
, xm1) = θm (xm1)

M

ϕm (αm1,K,αmLm
, xmLm

) = θm (xmLm
),

⎧

⎨
⎪

⎩
⎪

(3.8)

where
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θm (x) = f (x) − F∞ − ϕk (x)
k =1,
k ≠m

M

∑ . (3.9)

The systems of equations are solved recursively starting with m = 1 and finishing

with m = M , where x11 is the largest abscissa (or the second to largest if F∞  is not
given) and xMLM

 is the smallest abscissa.  The order of computation is important.

2. Repeat step 1 until convergence.

For the interpolation with a product of basis functions

f̃ (x) = F0 ϕm (x)
m=1

M

∏ ,

we will assume that all of the basis functions have the initial value of unity (which can always be
achieved by factoring nonunit initial values in F0 ).  Then the relaxation interpolation algorithm

takes the following form.

1. Single interpolation pass:
1.1. The initial value F0  may be either given or determined iteratively along with the

other unknown parameters.  If F0  is not given, compute

F0 = f (x0 )

ϕm (x0 )
m=1

M

∏
,

where x0  is the smallest abscissa among the interpolation points.

1.2. For each basis function ϕm (x)  determine (if possible, analytically) the unknown

approximation parameters   αm1,K,αmLm
 from the system of equations (3.8) where

θm (x) = f (x)

F0 ϕk (x)
k =1,
k ≠m

M

∏
. (3.10)

The systems of equations are solved recursively starting with m = 1 and finishing
with m = M , where x11  is the smallest abscissa (or the second to smallest if F0  is

not given) and xMLM
 is the largest abscissa.  (Note that the order is the reverse of

that for the series form.)

2. Repeat step 1 until convergence.



33

The number Lm  of the interpolation points xm1,K, xmLm
 used in the system of equations

(3.8) for the mth basis function equals the number of unknown parameters αm1,K,αmLm
 to be

determined for the basis function.  The total number of the interpolation points equals the total

number of the approximation parameters, i.e., Lm
m=1

M

∑  if F∞  (or F0 ) is given and 1 + Lm
m=1

M

∑  if F∞

(or F0 ) is determined iteratively.

The relaxation nature of the method permits easy imposition of constraints on the

approximation parameters, e.g., to eliminate imaginary and nondominant poles (poles with small

partial expansion coefficients).  Constraints are imposed at step 1.2 by skipping the basis
functions ϕk (x) in the right-hand side of the expressions (3.9) and (3.10) for which the

approximation parameters determined during the current pass do not satisfy the constraints.  (As

a result, the final order of the approximation may be smaller than that originally specified.)

Similarly, the basis functions with k > m  are skipped at the first pass because their parameters

have not yet been evaluated.

For the time- and frequency-domain difference approximation, the system of equations

(3.8) can be solved analytically.  The corresponding formulas are given in Table 3.2.  The total

number of interpolation points is 2M  if the limiting values are given and 2M + 1 if they are

determined iteratively.  The interpolation points should be chosen so that the variation of the

original function from point to point would be about the same.  The end of the interpolation

interval should be chosen so that approximately 95-99% of the total sweep of the original

function would fall within the interpolation interval.

The convergence of the method depends on how rapidly the basis functions are

approaching the limiting value compared to the original function, and on the number of the basis

functions.  The exponential interpolation converges especially rapidly, because the exponential

basis functions are very quickly decreasing.  Figure 3.2 shows the results of a single-pass fifth-

order relaxation exponential interpolation of transient characteristics of transmission-line

propagation functions.

Figure 3.3 presents an example of the third-order real-part relaxation interpolation of the

characteristic admittance of a multiconductor nonuniform transmission line.  As can be seen,

although only the real part was approximated, the magnitude and phase are well-matched.

The relaxation interpolation method is used for transmission line simulation [2] and with

the method of moments for capacitance computations in a multilayered dielectric medium [31].

In numerous simulation exercises, the relaxation interpolation method demonstrated much better

convergence than exponential approximation based on the Newton-Raphson method [8], and

efficiency superior to that of the Prony’s method [26].
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TABLE 3.2

RELAXATION INTERPOLATION FORMULAS FOR THE DIFFERENCE APPROXIMATION

Type of
Approximation

Basis Functions, ϕm
Analytical Solution of (3.8) for the

Approximation Parameters

Frequency-domain
real-part
approximation in the
parallel form (3.5)

am

1 + (ω / ωcm )2

ωcm = ωm2
2 θm (ωm2 ) − ωm1

2 θm (ωm1)
θm (ωm1) − θm (ωm2 )

,

am = θm (ωm2 ) 1 + (ωm2 / ωcm )2( )

Frequency-domain
magnitude
approximation in the
cascade form (3.7)

1
1 + (ω / ωcm )2 , if θm (ωm1) < 1;

1 + (ω / ωpm )2 , if θm (ωm1) > 1

ωcm = ωm1 1 θm (ωm1) − 1,

ωpm = ωm1 θm (ωm1) − 1

Time-domain
approximation in the
parallel form (3.3)

dm e−ω cm t
ωcm =

ln θm (tm2 ) θm (tm1)( )
tm1 − tm2

,

dm = θm (tm2 )eω cm tm2

3.3.3. Direct interpolation-based method for frequency-domain
difference approximation

Rational polynomial interpolation in the common-fraction form

  
f̃ (x) = c0 + c1 x + c2 x2 +K+cL x L

1 + β1 x + β2 x2 +K+βM x M
(3.11)

can be performed directly by matching (3.11) with the original function at a set of points and

premultiplying both sides of each equation with the denominator.  This results in the following

linear system of equations [24], [25]:
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to the original functions and thick dashed curves to the interpolating functions.

1 x1 x1
2 K x1

L −x1 f (x1) −x1
2 f (x1) K −x1

M f (x1)

1 x2 x2
2 K x2

L −x2 f (x2 ) −x2
2 f (x2 ) K −x2

M f (x2 )

M M

1 xK xK
2 K xK

L −xK f (xK ) −xK
2 f (xK ) K −xK

M f (xK )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

c0

M

cL

β1

M

βM

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

f (x1)

f (x2 )

M

f (xK )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, (3.12)

where f (x) is a complex-to-real mapping, squared magnitude, real part, or normalized imaginary

part of the original transfer function as discussed in Section 3.2.  Correspondingly, x  stands for

either s  or ω2 .  Because the system (3.12) involves powers of x , the approximation interval, xK ,

should be normalized to unity to make the system better conditioned.

The number of samples required for interpolation is K = L + M + 1 (it is, also, the order

of the linear system of equations to be solved).  Then, solving (3.12) produces a rational

polynomial function which coincides with f (x) at all of the interpolation points.
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Fig. 3.3.  (a) Magnitude and (b) phase of the original function (thin continuous curves) and real-
part relaxation interpolation (thick dashed curves).
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For a set of samples larger than L + M + 1, the least square solution of the system (3.12)

can be obtained.  However, it minimizes the approximation error premultiplied by the

denominator, which can lead to an inaccurate approximation.  Better results are obtained with the

method of averages, which partitions the larger number of equations into L + M + 1 subsets in

order of the increasing argument [22].  The equations within each subset are added up, which

makes the system consistent.  The method is effective in averaging out the noise in measured

data.

The denominator of the common-fraction approximation is then factored to extract the
system poles, −ωcm .  (Recall that magnitude and real-part approximations yield squared poles,

and, consequently, can not produce unstable right half plane poles.)  Unwanted poles (e.g., purely

imaginary poles), if any, are removed, and the remaining poles are used to formulate equations
for the partial expansion coefficients, am , of the parallel canonic form

H̃( jω) = H∞ + am

1 + jω / ωcmm=0

M

∑ .  (3.13)

Consequently, the order M of (3.13) is less than or equal to that of (3.11).

The equations can be formulated for the real mapping, real (3.5) or imaginary (3.6) part

of (3.13), or for any combination of these at once.  For instance, matching the real and imaginary

parts of the original transfer function H(ω) with the corresponding parts of (3.13) at a set of
frequencies   0, ω1, ω2 ,K, ωK{ }  leads to the following linear system of equations

  

A =

1 1 K 1

1
1

1 + ω1
2 / ωc1

2 K
1

1 + ω1
2 / ωcM

2

M

1
1

1 + ωK
2 / ωc1

2 K
1

1 + ωK
2 / ωcM

2

0
−ω1 / ωc1

1 + ω1
2 / ωc1

2 K
−ω1 / ωcM

1 + ω1
2 / ωcM

2

M

0
−ωK / ωc1

1 + ωK
2 / ωc1

2 K
−ωK / ωcM

1 + ωK
2 / ωc1

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

x =

H∞

a1

a2

M

aM

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

= b =

H0

Re H(ω1)( )
M

Re H(ωK )( )
Im H(ω1)( )

M

Im H(ωK )( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.  (3.14)

For interpolation M = 2K , and both real and imaginary parts of the original transfer function are

matched exactly at all of the K  frequency points and dc.

For an arbitrarily larger number of points, the least square solution of (3.14) is obtained

from

ATAx = ATb,
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or using the pseudo-inverse (singular value decomposition) [32].  To match the dc value

H0 = H∞ + am
m=1

M

∑  exactly, (3.14) is rewritten as

(
A D =

1 0 K 0

0 1 K 0

O

0 0 K 1

−1 −1 −1 −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

M +1× M

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

x̂ =

H∞

a1

a2

M

aM −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

= b̂ =
(
b − H0

(
aM , (3.15)

where 
(
A , 

(
aM , and   

(
b denote A , the last column of A , and b with the first row removed.  After

the least square solution of (3.15) is obtained, aM  is computed as

aM = H0 − H∞ − am
m=1

M −1

∑ .  (3.16)

To match a given final value H∞  exactly, it is subtracted from the original transfer function and

removed from Equations (3.14) and (3.15) by removing the first column of A  and 
(
A , the first

row of x , x̂ , b and b̂, and the first row and column of D.

To summarize, the direct approximation method proceeds as follows.

1. Fit the complex-to-real mapping, squared magnitude, real part, or normalized imaginary part

of the original transfer function with the common fraction (3.11)-(3.12).  This step requires

solving a linear real system of equations of the order L + M + 1.

2. Extract the poles by finding roots of the denominator of the common fraction, and remove

unwanted poles, if any.  The order of the polynomial to be factored is M.

3. Adjust the partial expansion coefficients of the parallel canonic form to compensate for the

removed poles by fitting complex-to-real mapping, real or imaginary part, or any

combination of these at once (3.13)-(3.16).  This requires solution of an M + 1-order system

of linear equations.  The elements of the system matrix A   (3.14) either are real or form

complex conjugate pairs.

The most accurate approximation results from fitting the real part at step 1 and both real and

imaginary parts at once at step 3.

The direct approximation method is used for the transient simulation of transmission

lines, and, in numerous simulation exercises, proved to be reliable, accurate and efficient.  Figure

3.4 shows an example of the 54th-order approximation of a Y-parameter macromodel for the

subcircuit of three coupled parabolically tapered lines from [20].
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Fig. 3.4.  Approximation of a Y-parameter macromodel for a subcircuit of three coupled
parabolically tapered transmission lines.  (a) Magnitude and (b) phase of the original function

(thin continuous curves) and approximating function (thick dashed curves).
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Both magnitude and phase of the original and approximating functions are in an excellent

match.  Note also that the delay has been completely removed by the matrix delay separation

technique.

Figure 3.5 shows the 24th-order approximation of measured S-parameter data for a 256-

pin surface-mounted IC package with complicated internal interconnects and delay left in.  In

both examples, the poles were extracted from the real-part approximation.  An empirical rule for

determining the order of the approximation is to multiply the number of bending points of the

original function by a factor of 1.5-3.5.

3.4. Difference Approximation and Asymptotic
Waveform Evaluation

As mentioned earlier in this chapter, the difference approximation covers some AWE methods as

a special case.  Because of the wide popularity of the AWE, its analysis based on the general

principles of the difference approximation discussed in this chapter may be of interest.

AWE applies Padé synthesis to construct an approximate rational polynomial transfer

function of a system.  Padé synthesis matches the coefficients of the Taylor series expansions of

the original and approximating functions.  Because coefficients of the power series in the

frequency domain correspond to the moments of the time-domain waveforms, Padé synthesis

provides a very accurate estimate of such important waveform characteristics as attenuation,

delay and overshoot with a low-order approximation.  It is, also, computationally efficient.

The main applications of AWE include estimation of signal degradation and transient

simulation of digital circuits.  Originally, AWE methods were used with the state-variable

formulation of circuit equations and were applied to the analysis of completely linearized

MOSFET circuits with lumped RLC representation of interconnects [28].  The state-variable

formulation allows for very efficient transient and ac analyses of linear circuits (without solving

circuit equations at each time or frequency iteration).  The computational complexity is primarily

influenced by the order of the differential state equations, not by the size (number of nodes) of

the circuit.  Consequently, for huge RLC circuits the order reduction by the AWE method

provided tremendous (several orders of magnitude) speedup.
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Fig. 3.5.  Approximation of measured S-parameter data for a 256-pin surface-mounted IC
package.  (a) Magnitude and (b) phase of the original function (thin continuous curves) and

approximating function (thick dashed curves).
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An accurate simulation, however, requires nonlinear models for active elements.  For

nonlinear systems, the state-variable formulation requires matrix inversion at each linearization

point and loses its superior efficiency.  For this reason, transient simulation of nonlinear circuits

is usually performed using the Modified Nodal Approach (MNA) [5], which (for transient

analysis of nonlinear circuits) provides about the same efficiency as the state-variable

formulation, but allows for much easier formulation of the circuit equations (directly from the

netlist by inspection).

The AWE is combined with the MNA by creating linear (usually Y-parameter)

macromodels for linear subnetworks and applying the AWE to the Y-parameters to reduce their

order [12], [13].  When the linear subnetworks contain distributed lines, AWE methods based on

the Y-parameter macromodels suffer from all of the drawbacks of the closed-loop distributed-line

characterization as discussed in Chapter 4.  An extension of the AWE with the method of

characteristics [13], [33] uses open-loop distributed-line characterization and models each line

individually, while creating macromodels only for the lumped subcircuits.  This AWE method is

closest to the optimal line simulation method formulated in Chapter 4.

For the MNA-based transient simulation, the computational complexity is primarily

affected by the size of the circuit equations, and the reduction of the order of the numerical

integration by applying the AWE does not produce a noticeable speedup.  The macromodels, on

the other hand, may significantly increase the efficiency of the simulation by eliminating internal

nodes of linear subnetworks, because the computational complexity of the MNA is cubically

proportional to the number of nodes.  Realistic digital circuits, however, do not normally contain

large linear subcircuits.

As applied to a transient simulation, the AWE is a special case of the frequency-domain

difference approximation, which uses Padé synthesis and complex-to-real mapping.  As a result,

it inherits all of the drawbacks of the complex-to-real mapping and series expansion based

difference approximation methods (see Fig. 3.1 and Table 3.1).  It provides the poorest accuracy

and produces spurious positive poles.  The poor accuracy of AWE is due to the fact that it does

not fit the original transfer function directly, but matches the coefficients of the power series

expansions of the original and approximating functions.  As a result, it also requires a functional

representation of the original function, and is not, in general, applicable to systems with

frequency-dependent parameters.  Modifications of AWE in a direction away from the single-

point Padé synthesis (such as economized rational approximation and complex frequency

hopping [29], [30]) improve the accuracy, but reduce the efficiency.

As shown in Table 3.1, the AWE approximation based on a single-point Padé synthesis is

up to two orders of magnitude less accurate and 30-50% less efficient than simple interpolation.

For more complicated functions, the accuracy of AWE is worse than that listed in Table 3.1.
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Fig. 3.6.  Comparison of the AWE and interpolation.

Figure 3.6 shows a comparison of the 30th-order AWE approximation (Padé synthesis at 0) and

magnitude interpolation of a Y-parameter macromodel for a transmission line.  Figure 3.6 shows

that the AWE approximation is only accurate in a small interval around the expansion point,

whereas the same-order rational interpolation provides accurate results in the entire interpolation

interval from 0 to 10 Grad/s.

In its other application, for an efficient and accurate estimation of signal degradation

(such as attenuation, delay and overshoot estimation) the AWE, as a moment-matching method,

provides excellent results and is indispensable for such applications as performance-driven

placement and routing.

3.5. Conclusions

In this chapter, the difference approximation, a general method for applying numerical

integration to systems whose differential equations are not known, was discussed.  The general

principles of the time- and frequency-domain difference approximation were analyzed, including
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the fundamental possibility of the approximation, three canonic forms of the state-variable

representation, complex-to-real mapping, magnitude, real- and imaginary-part approximations,

and approximation of multiport systems.  The novel matrix delay separation technique was

introduced, which avoids the use of frequency-dependent eigenvector matrices.  The complete set

of indirect numerical integration formulas for time- and frequency-domain difference

approximations in matrix form for multiport systems with arbitrary numbers of inputs and

outputs, and in the three canonic forms of the state variable representation, is given in Appendix

A.

Various approximation methods were compared, and novel interpolation-based methods

were introduced.  The relaxation interpolation method is applicable to low-order time- and

frequency-domain real-pole approximations of aperiodic systems.  The direct interpolation-based

method performs frequency-domain complex-pole approximation of arbitrary numbers of

arbitrarily spaced complex samples.  This method averages out the noise in measured data, and

fits both real and imaginary parts of the original function at once.  The method proceeds in two

steps.  First, the poles of the system are extracted with the method of averages, and then the

partial expansion coefficients are adjusted via least-square approximation.  The complexity of

this method is that of two linear solutions and one polynomial factoring.  The orders of the linear

systems and polynomial depend only on the order of the approximation and not on the number of

samples.  Both approximation methods can fit the initial and final values of the original response

exactly, can impose constraints on the poles, and, in numerous real-life simulation exercises,

proved to be reliable, accurate and efficient.
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4.  CIRCUIT SIMULATION OF
TRANSMISSION LINES

4.1. Introduction

The problem of transmission line simulation gained special importance with the development of

high-speed digital electronics.  As transient times become faster, the transmission line behavior

of electronic interconnects starts to significantly affect transient waveforms, and accurate

modeling of on-board and even on-chip interconnects becomes an essential part of the design

process.  The complexity of contemporary digital circuits necessitates the simultaneous

simulation of thousands of lossy coupled frequency-dependent lines surrounded by thousands of

nonlinear active devices.  Lines to be simulated may be characterized by measured or

electromagnetically simulated samples of their responses.

There are two approaches to interconnect simulation.  The first approach creates a

macromodel for a linear subcircuit which may contain many transmission lines and other linear

elements [13], [35].  This thesis discusses the second approach, in which each multiconductor

line is treated as an individual circuit element.

The problem of line simulation involves several areas of science, such as

electromagnetics, computational mathematics, and circuit and system theories.  The solution of

the problem is straightforward in the sense that all of the components involved are well-known

and have only to be combined together.  The integration of areas, however, is a difficulty that

keeps the problem open and accounts for the diversity of developed methods.

This chapter presents an original attempt to identify the components of the problem and

to formulate a high-level description of a method which provides maximum efficiency, accuracy

and applicability for the transient analysis of digital circuits.  Such an approach allows one to

more accurately assess and compare the performance of numerous and diverse methods.
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Fig. 4.1.  System model for transmission lines.

The next section introduces the system model for transmission lines and briefly reviews

the transmission line physics.  Section 4.3 presents the formulation of the optimal approach and

discusses many of the existing line simulation methods.  Section 4.4 describes step-by-step

implementation of the optimal method for uniform lines and presents numerical verification of

the method’s accuracy and efficiency.  It also summarizes the indirect numerical integration and

difference approximation techniques and extends the direct interpolation-based method

introduced in Chapter 3 to the approximation of multiport systems in matrix form.  Finally,

Section 4.5 describes application of the method to nonuniform lines.

4.2. System Model for Transmission Lines

Before attempting to formulate the optimal approach, we will briefly review the transmission line

physics.  The system diagram representation of a line with terminations is shown in Fig. 4.1.
WVf  and WVb represent the forward and backward matrix propagation functions for voltage

waves; Τ1 , Τ2  and Γ1 , Γ2  stand for the near- and far-end matrix transmission and reflection
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Fig. 4.2.  System model for a line-to-line junction.

coefficients.7  The model reproduces the general relationship between the physical phenomena of

wave propagation, transmission, reflection and coupling in a distributed system.  It can represent

arbitrarily distributed systems such as transmission lines, waveguides and plane-wave

propagation.  The model is very useful for system analysis of distributed systems, and allows one

to write the macrosolution for a distributed system without complicated mathematical

derivations.  The mathematical justification of the model can be found in [2].

An important special case occurs when the line terminates in another line.  The system

diagram representation of a line-to-line junction is shown in Fig. 4.2.  It can be used for the

solution of multilayered plane-wave propagation problems, for the analysis of many common

waveguide structures, and for the derivation of generalized transmission and reflection

coefficient formulas and scattering parameter formulas.  The system model for a transmission

line tree was also developed [2].

As one can observe from Fig. 4.1, the processes taking place in a transmission line are

very simple.  Signals from the excitation sources attenuate in the termination networks and

propagate along the line.  As the forward wave reaches the far-end termination, it reflects,

propagates backward, reflects from the near-end termination, propagates forward again, and so

on in a loop.  The voltage at any point along the line, including terminals, is a superposition of

7Since only multiconductor lines will be considered, the modifier “matrix” will be omitted in the future for brevity.
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Fig. 4.3.  Transient characteristic (the unit-step response) of a propagation function.

the forward and backward propagating waves.  Coupling between the conductors of a

multiconductor line is represented by the off-diagonal terms of the propagation functions.
The propagation functions, WVf  and WVb, describe how a wave is affected by its

propagation from one termination to another, and are equal for the forward and backward
directions: WVf = WVb .  As a wave propagates along the line, it experiences delay, attenuation

and distortion (see Fig. 4.3).  Lines with frequency-dependent parameters, and, therefore, all real

lines, do not contain the attenuation component.  A transient simulation technique is necessary

only to simulate the distortion which corresponds to the dynamic part of the propagation

function.  Attenuation is simply a multiplication by a constant, and delay is merely a time shift.

Consequently, for distortionless lines (which include lossless lines and some special cases of

lossy lines [2], [34]) no transient simulation method is required, and time-domain recursive

formulas relating the terminal and excitation waveforms can be written directly from Fig. 4.1 [2].

4.3. Formulation of Optimal Approach

To formulate the optimal approach to the transient simulation of transmission lines, major

aspects of the problem will be analyzed, viz., the formulation, the line characterization, the line

model, and the transient simulation method (see Fig. 4.4).  Alternative approaches in each of the
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aspects will be compared to find the optimal combination, which results in maximum efficiency,

accuracy and practical applicability.

4.3.1. Formulation

The formulation affects dimensions of the problem.  One can distinguish between time-and-

space formulations and time-only formulations.

Time-and-space formulations (such as segmentation models [36], [37]) are based on the

voltage and current distribution inside the line.  These formulations are multidimensional and

computationally extensive.

Time-only formulations deal exclusively with the voltages and currents at the line

terminals.  These formulations are one-dimensional and more efficient.  Consequently, to achieve

maximum efficiency, the line simulation should be based on a time-only formulation.

4.3.2. Line characterization

The system diagram [2] in Fig. 4.1 shows that a line with terminations forms a feedback system.

Therefore, one can distinguish between closed- and open-loop characterizations.

Closed-loop characterizations (such as Z-, Y-, H- and S-parameter characterizations [38],

[39]) include reflections from the terminations, and lead to complicated oscillating transfer

functions and transient characteristics (unit-step responses).

The open-loop characterization (direct characterization in terms of the propagation

functions) separates forward and backward waves and results in the simplest transfer functions

and transient characteristics (see Fig 4.5).  Complexity of the transfer functions and transient

characteristics is an important factor affecting accuracy and efficiency of the transient

simulation.  Consequently, to attain maximum efficiency and accuracy, the line simulation

should be based on the open-loop characterization.  The complete set of expressions for the open-

loop functions for uniform lines is given in Appendix B.
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Fig 4.5.  (a) Examples of open- and closed-loop transfer functions and (b) transient
characteristics.  The scattering parameters correspond to the matched lossless reference system.
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4.3.3. Line model

Line models can be divided into two large groups:  circuit and noncircuit .

Noncircuit models can not be directly integrated into a circuit simulator.  As a result,

these models can not be efficiently applied to the transient analysis of real circuits containing

thousands of nonlinear active devices.  Examples of noncircuit models are the scattering-

parameter model [38] and system model shown in Fig. 4.1.

Circuit models can be directly incorporated into a circuit simulator and are of prime

practical interest.  They relate voltages and currents at the line terminals and do not depend on

the terminations.  Circuit models can, in turn, be subdivided into equivalent-circuit and device

models.

Equivalent-circuit models have a larger number of nodes than the line they represent.

Examples of equivalent-circuit models are lumped and pseudo-lumped segmentation models

[36], modal decomposition models for multiconductor lines [16], [36], [40] and equivalent-

circuit modeling of the propagation function and characteristic impedance based on Padé

synthesis [41].

Device models have the same number of nodes as the line they represent. A well-known

example of device models is the method of characteristics [19], [20], [33], [42], [43].  The circuit

simulation time is cubically proportional to the number of nodes and to the number of voltage

and current variables.  Consequently, to achieve maximum efficiency and practical applicability,

the line simulation should be based on a device model that does not require the introduction of

current variables.

4.3.4. Transient simulation method

The transient simulation method is the prime factor affecting efficiency of the line simulation.

The selection of the transient simulation methods is confined to the numerical Fourier and

Laplace transformations, numerical convolution and numerical integration.

For the transformation and convolution methods, the computational complexity is higher

than linear.  These methods can not directly handle nonlinear and time-varying systems, and,

along with the discretization error, introduce time- and/or frequency-response truncation error.

In addition, the transformation methods can not be directly used with recursive time-domain

solvers employed by circuit simulators, which leads to relaxation techniques which additionally

degrade the overall efficiency and accuracy [43].  Examples of the convolution-based techniques

are the Spice model for lossy lines [16] and the scattering-parameter approach [38].
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Numerical integration has linear computational complexity;  it can directly handle

nonlinear and time-varying systems, does not introduce truncation error, supports variable time-

stepping, and is compatible with recursive time-domain solvers.  Numerical integration methods

can be subdivided into direct and indirect.

Direct numerical integration is based on approximations for integrals or derivatives and

includes such conventional methods as linear multistep formulas, Euler, Euler-Cauchy and

Runge-Kutta techniques.

Indirect numerical integration discussed in Chapter 2 is based on the time-response

invariant discrete synthesis, and has ideal accuracy, convergence and stability properties.

Consequently, to achieve maximum efficiency, accuracy and practical applicability, the line

simulation should be based on indirect numerical integration.  Indirect numerical integration

covers as special cases such techniques as recursive convolution [8], [20] and approximation of

the response of a linear network to an arbitrary piecewise linear input waveform used by some of

the asymptotic waveform evaluation (AWE) methods [12].

To systems characterized by samples of their responses, numerical integration is applied

via the difference approximation method described in Chapter 3.  The method is based on the

approximation of the system response with the corresponding response of a system for which

numerical integration formulas are already available.  The complexity of the difference

approximation method is only that of the approximation itself.  As soon as a system response has

been approximated, the numerical integration formulas are readily available directly in terms of

the approximation parameters.

To attain maximum efficiency and accuracy, the difference approximation should be

applied in the domain of system characterization.  For transmission lines it usually is the

frequency domain.  The time-domain approximation should be used only when time-domain

responses are available.  The complete set of analytical expressions for the fundamental time-

domain open-loop responses of two-conductor uniform constant-parameter lines is given in

Appendix C.  It also includes a new simple and accurate asymptotic approximation for the

responses of propagation functions.

To improve accuracy, the delay should be separated from the propagation functions

before the difference approximation is applied.  The conventional frequency-domain method of

delay separation for multiconductor lines is based on diagonalization with the frequency-

dependent modal transformation matrices [8], [19], [33].  These matrices are nonminimum-phase

functions of frequency with unstable time-domain responses, which limits the applicability of the

modal transformation to special cases in which the matrices are constant [16], .[44]

A novel matrix delay separation method [1] avoids the use of the frequency-dependent

modal transformation matrices and is applicable for a general case of matrix transfer functions
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containing delay.  For uniform lines, the formulas for the matrix delay separation from the

propagation functions are included in Appendix B, and, for the parabolically tapered lines, in

Appendix D.

4.3.5. Approximation methods

The choice of the approximation method for the difference approximation affects the overall

efficiency, accuracy and reliability of the line simulation.  Based on approximation criteria,

approximation methods can be categorized into four major groups:  minimum maximum error

based methods, least square based methods, interpolation methods, and series expansion based

methods (see Fig. 3.1).

Mini-max methods provide the highest accuracy, but result in the most inefficient and

unreliable algorithms (nonlinear optimization).

Least square methods provide high accuracy, but are still computationally extensive.  The

examples of least squares based methods for the time-domain difference approximation are

Prony’s method [26] and pencil-of-function method [27].

Series expansion based methods (such as Padé synthesis used for the AWE [24], [25],

[28]) are computationally efficient, but provide the poorest accuracy.

Interpolation (point-fitting)  agrees exactly with the original function on a given set of

samples.  It provides high accuracy for simple functions, such as open-loop transmission-line

responses, and is the most efficient among the approximation methods.  It also requires the

fewest original function samples, which is important when the samples are obtained from

electromagnetic simulations.  Consequently, to achieve maximum efficiency, the line simulation

should be based on interpolation.

Table 3.1 presents the typical values of maximum relative error in the full frequency

range from zero to infinity and relative runtimes for various approximation methods as applied to

the third-order frequency-domain difference approximation of open-loop transmission-line

functions.

Interpolation provides accuracy comparable with that of the least square approximation,

and is 200 times more efficient than mini-max approximation.  Interpolation is also up to two

orders of magnitude more accurate and 30-50% more efficient than Padé synthesis.  Notice also

that, because of the simplicity of the open-loop characterization, a very high accuracy is achieved

with as low as third-order approximation and as few as seven samples of the original function

used for the interpolation.
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4.3.6. Summary of the optimal approach

To summarize, the analysis of the problem showed that to achieve maximum efficiency,

accuracy and practical applicability, the line simulation should be based on:

• time-only formulation;

• open-loop characterization;

• device model which does not require the introduction of current variables;

• indirect numerical integration;

• frequency-domain difference approximation based on the interpolation and matrix delay

separation.

A method close to the optimal, but based on the time-domain difference approximation,

was first proposed by Semlyen and Dabuleanu [8], and was further developed by Gruodis and

Chang [19] to accommodate the frequency-domain approximation.  The advantages of the

approach were recognized only in recent years, and an increasing number of  techniques close to

optimal is being published [33], [20], including techniques based on the AWE, recursive

convolution and method of characteristics.  The applicability of the methods, however, had been

limited by the lack of accurate, reliable and efficient frequency-domain approximation and delay

separation techniques such as interpolation-based approximation methods and matrix delay

separation, and by the lack of open-loop models for nonuniform lines.

The author's implementation of the optimal method for uniform lines is outlined in the

next section.  The implementation of the method for nonuniform lines is described in Section 4.4.

4.4. Simulation of Uniform Lines

4.4.1. Frequency-domain line model for transient analysis

The frequency-domain element characteristic (for transient analysis) that does not require the

introduction of current variables and is suitable for the line modeling is given by

i1(ω) = Y1(ω) v1(ω) − j1(ω)

i2 (ω) = Y2 (ω) v2 (ω) − j2 (ω).
⎧
⎨
⎩

(4.1)

The conventions for the terminal voltages and currents are shown in Fig. 4.6.  The expressions
relating the matrix admittances Y1  and Y2  and vector current sources j1  and j2  to the

transmission line characteristics are derived directly from the continuity conditions for the
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Fig. 4.6.  Conventions for the voltages and currents at the line terminals.

voltages and currents at the line terminals.  To separate forward and backward waves and open
the feedback loop, the current source j1  must depend only on the backward wave, and j2  only

on the forward wave.  This condition uniquely defines Y1 , Y2  and j1 , j2  as follows:

Y1(ω) = Y2 (ω) = Yc (ω) (4.2)

and

j1(ω) = 2ib1(ω)

j2 (ω) = 2if 2 (ω),
⎧
⎨
⎩

(4.3)

where Yc  stands for the characteristic admittance, and the forward and backward current waves,

if 1 , if 2  and ib1, ib2 , are related as follows:

ib1(ω) = WIb(ω) ib2 (ω) = i2 (ω) + if 2 (ω)[ ]
if 2 (ω) = WIf (ω) if 1(ω) = i1(ω) + ib1(ω)[ ].

⎧
⎨
⎪

⎩⎪
(4.4)

The propagation functions for the forward and backward current waves are equal,
WIf = WIb = WI .  The open-loop device model (4.1)-(4.4) is equivalent to the generalized

method of characteristics [19], [20], [43].

The propagation function and characteristic admittance can be computed from the

insertion loss data [19], scattering parameters [45], or distributed RLGC parameters:

WI (ω) = e−K I (ω ) l
,

Yc (ω) = KI (ω) Z−1(ω),
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where l is the length of the line,

KI (ω) = Y(ω) Z(ω)[ ]
1
2

is the propagation constant for current waves,

Y(ω) = G(ω) + jωC(ω),

Z(ω) = R(ω) + jω L(ω)

are the admittance and impedance per unit length, and R , L , G  and C are the resistance,

inductance, conductance and capacitance per unit length.  Boldface (. )
1
2  and e(.)  denote matrix

square root and matrix exponential, respectively.

4.4.2. Difference approximation

To perform the transient analysis, indirect numerical integration is applied to the propagation

functions and characteristic admittances in the frequency-domain line model (4.1)-(4.4) by using

the difference approximation method.

For the difference approximation in the parallel canonic form, samples of the frequency-

domain transfer function are approximated with the rational polynomial function

˜ ˜
/

 H( ) H Amj
j mm

M

ω
ω ω

= +
+∞

=
∑ 1

10 c

, (4.5)

or samples of the time-domain unit-step response are approximated with the exponential series

˜ ( ) ˜h H A0 mt e c m t

m

M

= − −

=
∑ ω

1

,

where H̃0  and H̃∞  denote the initial and final values of the approximating transfer function

H̃( )jω .

Because the open-loop functions are aperiodic, they have to be approximated with only

real poles, −ωcm .  In addition, the poles have to be negative to assure stability.

To represent the original functions accurately with the minimum number of samples, the

variation of the original function from sample to sample should be about the same.  The

following empirical formula for the sampling frequencies was found to provide good results

  
ωk = ωK 1 − cos

πk

2K
⎛
⎝

⎞
⎠ , k = 0, 1,K, K .
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The end of the approximation interval, ωK , should be chosen so that the original function would

closely approach its final value.  This assures that the resulting indirect numerical integration

formulas will be accurate in the full frequency and time ranges from zero to infinity.  Because of

their simplicity, the open-loop functions can be accurately fit with the 3rd-9th-order

approximation, and represented by 7-19 samples.

4.4.2.1. Matrix delay separation

To increase the accuracy, the delay is separated from the matrix propagation function before the

approximation.  The conventional (modal-transformation) approach [8], [19], [33] is based on the

diagonalization of the matrix propagation function

WI (ω) = MI (ω) WIm (ω) MI
−1(ω).

The scalar delays are then extracted from the elements of the diagonal eigenvalue (modal

propagation function) matrix, WIm (ω).  This technique produces two full and one diagonal

transfer-function matrix in place of one.  In addition, the eigenvector (modal-transformation)

matrix, MI (ω), is, in general, a nonminimum-phase function of frequency with unstable time-

domain responses, which limits the applicability of this technique to a few special cases [16],

[44] in which the eigenvectors are constant.

The absence of general methods for the delay separation from the matrix propagation

function was a substantial limitation for the applicability of the approximation-based

multiconductor transmission line simulation techniques.  The problem is resolved by a novel

matrix delay separation method which avoids the use of the frequency-dependent eigenvector

matrices.  It represents the matrix propagation function in the following form:

WI (ω) = ŴI (ω) M̂I e− jωTIm M̂I
−1 ,

where Τ Im  and M̂I  are the constant eigenvalue and eigenvector matrices of the propagation

delay matrix

Τ I = C(∞) L(∞)( )
1
2 l = KI (∞) l .

Difference approximation is applied to the delayless propagation function

ŴI (ω) = WI (ω) e jωTI .

The delays in the diagonal modal-delay matrix Τ Im  are simulated using a low-order spline of the

simulated time points.
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4.4.2.2. Matrix complex rational approximation method for the frequency-

domain difference approximation

The frequency-domain difference approximation is performed by a novel matrix complex

rational approximation method.  The method fits samples of an N N×  complex matrix transfer

function H( )ω  with the rational polynomial function (4.5) at the set of arbitrarily spaced
frequencies   0, ω1, ω2 ,K, ωK{ } .  The method proceeds in three steps.

First, the real part of the sum of the elements of the original matrix function,

H ij
j

N

i

N

Σ ( ) ( )ω ω= [ ]
==

∑∑ H
11

,

is fit with the real part of the complex rational polynomial function, which is a real rational

polynomial function of squared frequency

  
Re H j

c c c cM
M

M
M

˜ ( )
( ) ( )
( ) ( )Σ ω ω ω ω

β ω β ω β ω( ) = + + + +
+ + + +

0 1
2

2
2 2 2

1
2

2
2 2 21

K

K
.  (4.6)

The following linear system of equations results from matching the real part of the original

function with (4.6) at the set of frequencies and premultiplying both sides of each equation with

the denominator

1 0 0 0 0

1

1

1
2

1
2

1
2

1 1
2

1

2 2 2 2

0

1

K K

K K

M M

K K

M

M

ω ω ω ω ω ω

ω ω ω ω ω ω
β

β

M M

K K
M

K K K
M

K

M

M

Re H Re H

Re H Re H

c

c− ( ) − ( )

− ( ) − ( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
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⎥
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⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥

Σ Σ

Σ Σ

( ) ( )

( ) ( )

⎥⎥
⎥
⎥
⎥
⎥
⎥

=

( )
( )

( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Re H

Re H

Re H K

Σ

Σ

Σ

( )

( )

( )

0

1ω

ω
M

. (4.7)

For interpolation, K = 2M  and solving (4.7) produces a rational polynomial function which

coincides with the real part of the original function at all of the sampling points.  For a set of

samples larger than 2M + 1, the least square solution of the system (4.7) can be obtained.

However, it minimizes the approximation error premultiplied with the denominator, which can

lead to inaccurate approximation.  Better results are achieved with the method of averages [22],

which partitions the larger number of equations into 2M + 1 subsets in order of the increasing of

ω .  The equations within each subset are added up, which makes the system consistent.  The

method is effective in averaging out the noise in measured data.

After the real part has been approximated, the denominator of (4.6) is factored yielding
the squared poles, −ωcm

2 .  Consequently, no unstable right-half-plane poles can be produced.

However, there still can be spurious complex conjugate and purely imaginary poles, which are
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removed.  The remaining real negative poles are used to formulate the equations for the partial

expansion coefficients, Am , of (4.5).  As a result, the order M of (4.5) is less than or equal to that

of (4.6).

Matching the real and imaginary parts of each element of the original matrix transfer

function H( )ω  with the corresponding parts of elements of (4.5) at the set of frequencies
0, ω1, ω2 ,K, ωK{ }  leads to the following linear systems of equations

  

A =

1 1 K 1

1
1

1 + ω1
2 / ωc1

2 K
1

1 + ω1
2 / ωcM

2

M

1
1

1 + ωK
2 / ωc1

2 K
1

1 + ωK
2 / ωcM

2

0
−ω1 / ωc1

1 + ω1
2 / ωc1

2 K
−ω1 / ωcM

1 + ω1
2 / ωcM

2

M

0
−ωK / ωc1

1 + ωK
2 / ωc1

2 K
−ωK / ωcM

1 + ωK
2 / ωc1

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

x =

H∞[ ]ij

A1[ ]ij

A2[ ]ij

M

AM[ ]ij

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

= b =

H(0)[ ]ij

Re H(ω1)[ ]ij( )
M

Re H(ωK )[ ]ij( )
Im H(ω1)[ ]ij( )

M

Im H(ωK )[ ]ij( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.

(4.8)

For interpolation M = 2K , and both real and imaginary parts of the original transfer function are

matched exactly at all of the K  frequency points and dc.  For an arbitrarily larger number of

points, the least square solution of the linear system (4.8) is obtained.

The total computational complexity of the approximation method is that of N 2 1+  real

linear solutions and one polynomial factoring.  The orders of the polynomial and linear systems

depend only on the order of the approximation and not on the number of the original function

samples.  Because no iterative or relaxation techniques are involved, the method is free from

convergence problems.

4.4.2.3. Indirect numerical integration

Once the approximation has been performed, indirect numerical integration formulas

(discrete-time difference equations) are readily given in terms of the approximation parameters.

For the step invariance the formulas are

y H x z

z A x z

m

m m m

( ) ( ) ( )t t t

t e t e t

n n n
m

M

n
T

n
T

n
c m n c m n

= +

= −( ) +

⎧

⎨
⎪

⎩
⎪

∞
=

−
−

−
−

∑˜

( ) ( ) ( ),

1

1 11 ω ω

(4.9)

where x, y  and zm  stand for the excitation, response and state variables, respectively, and

Tn = tn − tn−1  is the time step at the nth transient iteration.

For the ramp invariance
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y H x z

z D x x z

0 m

m m m

( ) ( ) ( )t t t

t T t t e t

n n n
m

M

n n n n
T

n
c m n

= −

= −( ) +

⎧

⎨
⎪

⎩
⎪

=

−
−

−

∑˜

( ) ( ) ( ) ( ) ( ),

1

1 1
ω

(4.10)

where

D Am m( )T
e

Tn

T

c m n

c m n

= − −1 ω

ω
.

An alternative form of the ramp-invariant indirect numerical integration formula has the

coefficients of the present-time sample of the excitation lumped together

y H D x z

z D D x z

0 m m

m m m m

( ) ˜ ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ).

t T t t

t T e T t e t

n n
m

M

n
m

M

n

n n
T

n n
T

n
c m n c m n

= −⎛
⎝⎜

⎞
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−

= −( ) +

⎧

⎨
⎪⎪

⎩
⎪
⎪

= =

−
−

−
−

−

∑ ∑
1 1

1 1 1
ω ω

(4.11)

This form is especially suitable for the discretization of the characteristic admittance, because,

for admittances, the present- and past-time terms in the numerical integration formulas have

different physical meanings.

The difference approximation is applied to the delayless propagation function and
characteristic admittance.  For the characteristic admittance Y1 in (4.1), the excitation x is the

terminal voltage v1 , and for Y2  the excitation is v2 .  For the propagation function WIf  in (4.4),

the excitation x is  the forward current wave if 1, and response y is if 2 .  For WIb , the excitation is

the backward current wave ib2 , and the response is ib1.

4.4.3. Companion model

By applying the difference approximation to the propagation function and characteristic

admittance, the frequency-domain element characteristic (4.1) is transformed into the following

discrete-time element characteristic, or companion model,

i1(tn ) = Ŷ1(tn ) v1(tn ) − ĵ1 (tn )

i2 (tn ) = Ŷ2 (tn ) v2 (tn ) − ĵ2 (tn ).

⎧
⎨
⎪

⎩⎪
(4.12)

The circuit-diagram interpretation of the companion model is shown in Fig. 4.7.

The admittances Ŷ1 and Ŷ2  represent present-time coefficients in the indirect numerical

integration formulas for the admittances Y1 and Y2 .  The current sources ĵ1  and ĵ2  combine the
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…
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–
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ˆ

ˆ ˆ
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Fig. 4.7.  Companion model for a transmission line.

currents jY1
 and jY2

 corresponding to the remaining parts of the numerical integration formulas

for the admittances, and j1  and j2  are given by the discretized Eqs. (4.3) and (4.4)

ĵ1 (tn ) = − jY1
(tn ) + j1(tn )

ĵ2 (tn ) = − jY2
(tn ) + j2 (tn ).

⎧
⎨
⎪

⎩⎪
(4.13)

Equations (4.3) and (4.4) do not contribute to the admittance part of the companion model

because the propagation functions contain a delay.

The Modified Nodal Approach (MNA) stamp corresponding to the companion model

(4.12) is

KCL at

node:
V1.1 V1.N V1' V2.1 V2.N V2'

1.1 Y1 1j
j 1

N

V1.1

V1.N

V1'

V2.1

V2.N

V2'

j1 1

1. N Y1 Nj
j 1

N

j1 N

1' Y1 i1
i 1

N

Y1 iN
i 1

N

Y1 ij
j 1

N

i 1

N

j1 i
i 1

N

2.1 Y2 1 j
j 1

N

j2 1

2. N Y2 Nj
j 1

N

j2 N

2' Y2 i1
i 1

N

Y2 iN
i 1

N

Y2 ij
j 1

N

i 1

N

j2 i
i 1

N

Y1

Y2

ˆ ˆ ˆ

ˆ

ˆ

ˆ ˆ ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

(4.14)
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In the circuit simulator during the transient analysis, the lines are represented by the tables of

numbers (4.14), which are recursively updated at each time iteration using numerical integration.

The left-hand side of the stamp (4.14) has to be updated only when the time step changes.  If the

step-invariant indirect numerical integration formulas (4.6) are used, the left-hand side of the

stamp becomes independent of the time step, and only the right-hand side vector has to be

updated.
Because the terminal currents are not introduced as variables, the values of i1  and i2  in

(4) are computed from (4.12).

4.4.4. Line model for ac and dc analyses

For ac and dc analyses, the complexity of the transfer functions is not significant, and the

element characteristic which does not require the introduction of current variables and is suitable

for the ac/dc modeling of transmission lines is the Y-parameter characteristic

i1(ω) = Y11(ω) v1(ω) + Y12(ω) v2(ω)

i2(ω) = Y21(ω) v1(ω) + Y22(ω) v2(ω).
⎧
⎨
⎩

(4.15)

The expressions for the Y-parameters are related to the open-loop functions as follows:

Y11(ω) = Y22 (ω) = Yc (ω) + 2 I − WI
2 (ω)[ ]−1

WI
2 (ω)Yc (ω),

Y12 (ω) = Y21(ω) = −2 I − WI
2 (ω)[ ]−1

WI (ω)Yc (ω),

where I is the identity matrix.  The expressions are derived by eliminating j1  and j2  from Eqs.

(4.1)-(4.4), and transforming them to the form of (4.15).

The dc model is merely the ac model at zero frequency.  For the limiting case of lines

with zero distributed conductance, G = 0 , the dc values of the Y-parameters are

Y11(0) = Y22 (0) = −Y12 (0) = −Y21(0) = 1
l

R−1 .  (4.16)

The MNA stamp corresponding to (4.15) is
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Y11

Y21 Y22

Y12

KCL at

node:
V1.1 V1.N V1' V2.1 V2.N V2'

1.1 Y11 1 j
j 1

N

Y12 1j
j 1

N

V1.1 0

1. N Y11 Nj
j 1

N

Y12 Nj
j 1

N

V1.N 0

1' Y11 i1
i 1

N

Y11 iN
i 1

N

Y11 ij
j 1

N

i 1

N

Y12 i1
i 1

N

Y12 iN
i 1

N

Y12 ij
j 1

N

i 1

N

V1' 0

2.1 Y21 1j
j 1

N

Y22 1j
j 1

N

V2.1 0

2. N Y21 Nj
j 1

N

Y22 Nj
j 1

N

V2.N 0

2' Y21 i1
i 1

N

Y21 iN
i 1

N

Y21 ij
j 1

N

i 1

N

Y22 i1
i 1

N

Y22 iN
i 1

N

Y22 ij
j 1

N

i 1

N

V2' 0

4.4.5. Initial conditions for transient analysis

The dc model is used to perform the operating-point (op) analysis before the transient simulation.

The op solution is then used as initial conditions for the transient analysis.  The initial conditions

for the indirect numerical integration are the dc values of the state variables, which are related to
the dc value of the excitation, x0 , as follows:  zm (t0 ) = amx0  for the step-invariant case (4.6),

zm (t0 ) = 0 for the ramp-invariant case (4.7), and zm (t0 ) = −dm (T1)x0  for the ramp-invariant case

(4.8).  The dc values of if 1 and ib2 , which serve as excitations for the propagation functions in

(4.4), have to be expressed in terms of the terminal voltages obtained from the op analysis.

Resolving Eqs. (4.1)-(4.4) leads to

if 1(0) = I − WI
2 (0)[ ]−1

Yc (0)v1(0) − WI (0)Yc (0)v2 (0)[ ]
ib2 (0) = I − WI

2 (0)[ ]−1
Yc (0)v2 (0) − WI (0)Yc (0)v1(0)[ ].

⎧
⎨
⎪

⎩⎪

For the limiting case of G = 0 , the expressions become

if 1(0) = −ib2 (0) = 1
2l

R−1 v1(0) − v2 (0)[ ].

4.4.6. Optimal line simulation algorithm

For an MNA-based simulator, the optimal line simulation algorithm is as follows.
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1. Before the transient analysis:

a) For each line in the circuit, perform the difference approximation of the propagation

function and characteristic admittance.

b) Perform op analysis of the circuit to find the initial conditions for the transient

analysis.  Use the ac/dc model (4.15)-(4.16).

2. At each time iteration:

Recursively update the line stamps using the indirect numerical integration formulas

obtained at step 1(a) and companion model (4.12)-(4.14).

Because the method introduces neither additional nodes nor current variables, the optimal

line modeling does not increase at all the circuit solution time compared to the simple

replacement of interconnects with lumped resistors.  The only additional time is required to

perform a low-order interpolation once in the beginning of the simulation, and for a low-order

numerical integration.  As shown in the next section, this time is negligibly small compared to

the circuit solution time.

4.4.7. Numerical results

The optimal method has been adopted in several industrial and commercial circuit simulators,

and, in numerous real-life simulation exercises, proved to be reliable, accurate and efficient.

Table 4.1 presents relative run-time data for circuits of various types and sizes.  Table 4.1 shows

that even for the worst case of a small circuit consisting of lines only, the optimal model is

virtually as efficient as the simple lumped resistors.  The resistive model was chosen for the

comparison because it represents the limiting case in the simplicity and computational efficiency

of the interconnect modeling.

Figure 4.8 shows verification of the optimal model accuracy with the Spice3e2 lossy

multiconductor line model [16].  A simple network was chosen as an example to reduce the

influence of factors other than the line model on the simulation accuracy.  A variable, third-to-

fifth-order frequency-domain difference approximation was applied.  As one can observe, the

compared waveforms are indistinguishable.  In fact, the accuracy of the optimal method depends

exclusively on the accuracy of the difference approximation which is very high (see Table 3.1).

The runtime for the optimal model was three orders of magnitude shorter than that for the Spice

model, which is, in turn, an order of magnitude faster than  the segmentation models.
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Fig. 4.8.  (a) The network configuration and (b) comparison of the transient waveforms generated
using the optimal line model installed in an MNA-based circuit simulator (thick broken curves)

and SPICE3e2 (thin continuous curves).  R1=R5=50 Ω, R2=R6=1 kΩ, R3=R4=10 MΩ;  self-
inductance Ls=418 nH/m, self-capacitance Cs=94 pF/m, mutual inductance Lm=125 nH/m, mutual

capacitance Cm=22 pF/m, R=15 Ω/m, G=0, l=0.677 m (all signal conductors are the same).
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4.5. Simulation of Nonuniform Lines

4.5.1. Open-loop model

A substantial amount of study has been devoted to the transient simulation of nonuniform

transmission lines in recent years [9], [20], [37], [43], [46]-[52].  The optimal method introduced

in this dissertation handles both uniform and nonuniform lines in exactly the same manner.  The

open-loop element characteristic (4.1), companion model (4.12), ac/dc element characteristic

(4.15), and simulation algorithm remain the same.  The uniform line model, and, as a result, the

characteristic equations, (4.2)-(4.4), and expressions for the Y-parameters, (4.16), are simply a

special case of those for nonuniform lines as described below.

Nonuniform lines can still be represented by the system model shown in Fig. 4.1, with the

only difference that the propagation functions in the forward and backward directions are no

longer the same, and the characteristic admittances become dependent on the position along the

line as well as on the direction of the wave propagation.

Then, the open-loop characteristic equations become

Y1(ω) = Yf 1(ω)

Y2 (ω) = Yb2 (ω),
⎧
⎨
⎩

(4.17)

j1(ω) = X1(ω) = I + Yf 1(ω)Zb1(ω)[ ]ib1(ω)

j2 (ω) = X2 (ω) = I + Yb2 (ω)Zf 2 (ω)[ ]if 2 (ω),

⎧
⎨
⎪

⎩⎪
(4.18)

ib1(ω) = WIb(ω) ib2 (ω) = i2 (ω) + if 2 (ω)[ ]
if 2 (ω) = WIf (ω) if 1(ω) = i1(ω) + ib1(ω)[ ],

⎧
⎨
⎪

⎩⎪
(4.19)

where Yf 1 , Yb2  and Zf 2 , Zb1  are forward and backward characteristic admittances and

impedances at the near- and far-end terminals.  The equations are derived as described for

uniform lines in Section 4.4.  The propagation functions for voltage and current waves are related
as follows:  WIf (ω) = Yf 2 (ω)WVf (ω)Zf 1(ω)  and WIb(ω) = Yb1(ω)WVb(ω)Zb2 (ω).  Equations

(4.17)-(4.19) show that for nonuniform lines, the open-loop device model is no longer given by

the generalized method of characteristics.  However, Eqs. (4.17)-(4.19) cover the generalized
method of characteristics as a special case, in which Yf 1 = Yf 2 = Yb1 = Yb2 = Yc , WIf = WIb

and X1 = X2 = 2I .
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The Y-parameters (for the ac/dc model (4.6)) are expressed in terms of the open-loop

functions as follows:

Y11(ω) = I + X1(ω)P1
−1(ω)WIb(ω) X2 (ω) − I( )WIf (ω)[ ]Yf 1(ω),

Y12 (ω) = −X1(ω)P1
−1(ω)WIb(ω)Yb2 (ω),

Y21(ω) = −X2 (ω)P2
−1(ω)WIf (ω)Yf 1(ω),

Y22 (ω) = I + X2 (ω)P2
−1(ω)WIf (ω) X1(ω) − I( )WIb(ω)[ ]Yb2 (ω),

(4.20)

where

P1(ω) = I − WIb(ω) X2 (ω) − I( )WIf (ω) X1(ω) − I( ),
P2 (ω) = I − WIf (ω) X1(ω) − I( )WIb(ω) X2 (ω) − I( ).

Again, the derivation procedure for these expressions is identical to that for uniform lines, and

the corresponding expressions for uniform lines, (4.7), are a special case of (4.20).

The open-loop propagation functions and characteristic admittances for nonuniform lines

can be obtained from the general solution of telegrapher’s equations by asymptotically separating

the terms corresponding to the forward and backward directions of propagation.  The expressions

for the open-loop propagation functions and characteristic admittances for parabolically tapered

lines are given in Appendix D.  Parabolically tapered lines have the simplest analytical solutions,

and are convenient to use for testing of nonuniform line models.

As long as a nonuniform line does not have abrupt discontinuities, the open-loop

responses are simple, aperiodic functions of frequency and time (as they are for uniform lines),

and can be accurately represented by a few samples and simulated using a low-order difference

approximation with only real poles.  Figure 4.9 shows the typical behavior of an open-loop

transfer function and its rational interpolation.

In contrast to uniform lines, the open-loop functions for nonuniform lines, while

providing the simplest possible characterization, do not represent distinct physical phenomena

which would have to satisfy the energy conservation law.  As a result, they can be nonminimum-

phase functions with unstable time-domain responses.  The reason for this is that in nonuniform

lines the forward and backward waves are coupled via the internal distributed reflections, which

are not explicitly included in the open-loop model.
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Fig. 4.9.  (a) Magnitude and (b) phase of an open-loop transfer function for a four-conductor
parabolically tapered line.  Thin continuous curves show the original function, and thick dashed

curves show the fifth-order rational interpolation.
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Fig. 4.10.  The internal-reflection system model for nonuniform lines.

For instance, for parabolically tapered lines, the far-end backward characteristic

admittance Yb2  is a nonminimum-phase function (see Appendix D and Fig. 4.9).  Nonminimum-

phase functions have to be approximated using positive poles, which, under certain conditions,

can lead to unacceptably large transient simulation errors.  However, for parabolically tapered

lines, Yb2  is the only nonminimum-phase function in the open-loop element characteristic, and a

completely stable characterization can be obtained by premultiplying both sides of the second

equation in (4.1) by Yb2
−1 .

4.5.2. Open-loop internal-reflection model

For a nonuniform-line characterization to be stable in a general case, the line model has to

explicitly include the internal distributed reflections.  The system-diagram representation of a

nonuniform transmission line taking into account the internal reflections is shown in Fig. 4.10.

The near- and far-end internal-reflection coefficients RV1  and RV2 combine the total

effect of the internal distributed reflections produced by the forward wave on its way from the

near- to the far-end terminal, and by the backward wave on its way from the far- to the near-end

terminal, respectively.

The internal-reflection propagation functions, W̃Vf  and W̃Vb, and reflection coefficients,

RV1  and RV2, are identical to the scattering parameters with the matched (at both ends) reference

system (as are the propagation functions for uniform lines) and can be directly measured:

W̃Vf = S21 , W̃Vb = S12 , RV1 = S11  and RV2 = S22 .  Formulas relating the open-loop internal-

reflection functions to the open-loop functions are given in Appendix E.

Because of their distinct physical meaning, the open-loop internal-reflection functions

have to satisfy the energy conservation law, and are guaranteed to be stable.  The internal-

reflection system model presented in Fig. 4.10 covers the system model for uniform lines (see

Fig. 4.1) as a special case in which no internal reflections are present, i.e., RV1 = RV2 = 0 .  By

taking into account internal distributed reflections and eliminating reflections from the
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terminations, the open-loop internal-reflection functions provide the simplest possible stable

characterization for nonuniform lines.

From the internal-reflection system model, one can derive the following open-loop

internal-reflection characteristic equations

Y1(ω) = X1(ω) − I( )Yc1(ω)

Y2 (ω) = X2 (ω) − I( )Yc2 (ω),

⎧
⎨
⎪

⎩⎪
(4.21)

j1(ω) = X1(ω) = I + I − RI1(ω)( ) I + RI1(ω)( )−1[ ]ib1(ω)

j2 (ω) = X2 (ω) = I + I − RI2 (ω)( ) I + RI2 (ω)( )−1[ ]if 2 (ω),

⎧
⎨
⎪

⎩⎪
(4.22)

ib1(ω) = W̃Ib(ω) ib2 (ω) = I − RI2 (ω)( )−1
i2 (ω) + if 2 (ω)( )[ ]

if 2 (ω) = W̃If (ω) if 1(ω) = I − RI1(ω)( )−1
i1(ω) + ib1(ω)( )[ ].

⎧
⎨
⎪

⎩⎪
(4.23)

The derivation proceeds in the manner described in Section 4.4.  The near- and far-end

characteristic admittances, Yc1  and Yc2 , are equal to the characteristic admittances of uniform

lines with the same values of distributed parameters as those of the nonuniform line at the ends,

and do not depend on the direction of propagation.  The propagation functions and internal

reflection coefficients for voltage and current waves are related as follows:

W̃If (ω) = Yc2 (ω)W̃Vf (ω)Zc1(ω),  W̃Ib(ω) = Yc1(ω)W̃Vb(ω)Zc2 (ω),

RI1(ω) = Yc1(ω)RV1(ω)Zc1(ω)  and RI2 (ω) = Yc2 (ω)RV2 (ω)Zc2 (ω).  Equations (4.21)-(4.23)

cover the generalized method of characteristics as a special case in which Yc1 = Yc2 = Yc ,

WIf = WIb, RV1 = RV2 = 0  and X1 = X2 = 2I .

For practical application, it is advantageous to combine Eqs. (4.22) and (4.23) and to

express them in terms of the termination voltages instead of the currents.

j1(ω) = HIb(ω) = X1(ω)W̃Ib(ω) I + RI2 (ω)( )−1
X2

−1(ω)[ ] X2 (ω)Yc2 (ω)v2 (ω) − j2 (ω)[ ]
j2 (ω) = HIf (ω) = X2 (ω)W̃If (ω) I + RI1(ω)( )−1

X1
−1(ω)[ ] X1(ω)Yc1(ω)v1(ω) − j1(ω)[ ].

⎧
⎨
⎪

⎩⎪

In this way, the terminal currents do not have to be recovered.
The transfer functions HIf  and HIb contain delays which originate from the propagation

functions W̃If  and W̃Ib .  Before the difference approximation is applied, the delays are separated

via the matrix delay separation technique, which represents the matrix transfer functions in the

following form
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HIf (ω) = ĤIf (ω) MIfe
− jωTIfm MIf

−1,

HIb(ω) = ĤIb(ω) MIbe− jωTIbmMIb
−1,

where the delayless transfer functions, ĤIf  and ĤIb, are found as

ĤIf (ω) = HIf (ω) e jωTIf ,

ĤIb(ω) = HIb(ω) e jωTIb .

The matrix propagation delays, TIf  and TIb , are the same in the forward and backward

directions:  TIf = TIb = TI , and are equal for all of WIf , WIb , W̃If , W̃Ib , HIf  and HIb.  TIfm  and

TIbm  and MIf  and MIb are diagonal eigenvalue and constant eigenvector matrices of TIf  and

TIb , respectively.

The Y-parameters in the ac/dc model are expressed in terms of the internal-reflection

functions as follows:

Y11(ω) = X1(ω) I + P1
−1(ω)W̃Ib(ω) I + RI2 (ω)( )W̃If (ω)[ ] − I{ }Yc1(ω),

Y12 (ω) = −X1(ω)P1
−1(ω)W̃Ib(ω)Yc2 (ω),

Y21(ω) = −X2 (ω)P2
−1(ω)W̃If (ω)Yc1(ω),

Y22 (ω) = X2 (ω) I + P2
−1(ω)W̃If (ω) I + RI1(ω)( )W̃Ib(ω)[ ] − I{ }Yc2 (ω),

where

P1(ω) = I − W̃Ib(ω) I + RI2 (ω)( )W̃If (ω) I + RI1(ω)( ),
P2 (ω) = I − W̃If (ω) I + RI1(ω)( )W̃Ib(ω) I + RI2 (ω)( ).

Again, these expressions cover the corresponding expressions for uniform lines as a special case,

and are derived in the same manner.

Because they include the distributed feedback resulting from the internal reflections, the

open-loop internal-reflection functions are more complicated than the open-loop functions.

Consequently, they require a higher-order approximation and have to be approximated using

both real and complex poles.  However, because the reflections from the terminations are

eliminated, the open-loop internal-reflection transfer functions do not contain nondecaying

oscillations (provided that the nonuniform line does not contain abrupt discontinuities inside),

and still can be approximated in the full range from zero to infinity.

Figure 4.11 shows the typical behavior of an internal-reflection transfer function and its

approximation.  Note that the delay component is completely removed by the matrix delay

separation technique.
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Fig. 4.11. (a) Magnitude and (b) phase of the delayless transfer function ĤIb for a four-conductor
parabolically tapered line.  Thin continuous curves show the original function, and thick dashed

curves show the 21st-order rational approximation.
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The required order of approximation can be estimated by multiplying the number of

peaks falling into the approximation interval by a factor of 3-5, which typically leads to a 15-to-

30-order approximation for the full frequency/time range (in contrast to the 3-to-10-order

approximation for the open-loop functions).  This is the price to be paid to insure stability of the

line characterization.  However, the open-loop internal-reflection characterization is still simpler

than any other stable characterization, such as S-, Y-, Z- or H-parameter, because it is the only

characterization that opens the feedback loop formed by reflections from the terminations.

4.5.3. Numerical results

The accuracy and reliability of the method have been tested in numerous simulation exercises.

Figure 4.12 shows transient waveforms for the four-conductor parabolically tapered frequency-

dependent line of [20] simulated with the open-loop and open-loop internal-reflection models

installed in an MNA-based circuit simulator.  The results are in excellent agreement with the

analytical solutions in [20], p. 12, Fig. 4(a) and (b).

Figure 4.13 presents the transient simulation results for a completely asymmetric

parabolically tapered nine-conductor line.  A simple circuit was used to reduce the influence of

factors other than the line model on the simulation accuracy.  The line parameters are:  l = 0.97

m, a = 1.03 m-1,

L =

2.311 0.414 0.0842 0.01693 3.91 ⋅10−3 7.58 ⋅10−4 1.250 ⋅10−4 2.656 ⋅10−5

0.414 2.988 0.527 0.1045 0.02307 4.21 ⋅10−3 6.28 ⋅10−4 1.805 ⋅10−4

0.0842 0.527 2.813 0.480 0.0743 0.01915 3.95 ⋅10−3 7.69 ⋅10−4

0.01693 0.1045 0.480 2.592 0.385 0.0984 0.01525 3.74 ⋅10−3

3.91 ⋅10−3 0.02307 0.0743 0.385 2.845 0.432 0.0995 0.02395

7.58 ⋅10−4 4.21 ⋅10−3 0.01915 0.0984 0.432 2.708 0.380 0.1010

1.250 ⋅10−4 6.28 ⋅10−4 3.95 ⋅10−3 0.01525 0.0995 0.380 2.172 0.382

2.656 ⋅10−5 1.805 ⋅10−4 7.69 ⋅10−4 3.74 ⋅10−3 0.02395 0.1010 0.382 2.040

⎡
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μH
m

,

C =

23.92 −5.41 −1.080 −0.3092 −0.0567 −0.01563 −0.00360 −0.000634

−5.41 21.23 −5.72 −1.111 −0.3081 −0.0498 −0.01588 −0.00337

−1.080 −5.72 24.47 −3.95 −1.200 −0.2201 −0.0469 −0.01435

−0.3092 −1.111 −3.95 21.08 −4.01 −1.368 −0.2995 −0.0666

−0.0567 −0.3081 −1.200 −4.01 23.26 −3.72 −1.064 −0.3136

−0.01563 −0.0498 −0.2201 −1.368 −3.72 25.18 −5.48, −1.330

−0.00360 −0.01588 −0.0469 −0.2995 −1.064 −5.48 16.63 −4.58

−0.000634 −0.00337 −0.01435 −0.0666 −0.3136 −1.330 −4.58 24.74
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Fig. 4.12.  Transient waveforms at conductor #3 of the four-conductor frequency-dependent
parabolically tapered line of [20].  Thin continuous curves show the results obtained with the

open-loop model and thick dashed curves show those for the open-loop internal-reflection
model.
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Fig. 4.13.  (a) The circuit diagram, and (b) and (c) transient simulation results for a
nine-conductor parabolically tapered line.  Thin continuous curves show the results

obtained with the open-loop model and thick dashed curves show those for the open-
loop internal-reflection model.

G =

609 141.9 23.23 4.17 0.829 0.2186 0.0355 0.00693

141.9 600 90 22.04 4.92 1.047 0.1793 0.0397

23.23 90 502 108.4 28.47 4.99 1.006 0.2256

4.17 22.04 108.4 715 106.5 21.83 4.28 0.713

0.829 4.92 28.47 106.5 684 92.7 18.27 3.96

0.2186 1.047 4.99 21.83 92.7 569 130.9 23.59

0.0355 0.1793 1.006 4.28 18.27 130.9 485 91.6

0.00693 0.0397 0.2256 0.713 3.96 23.59 91.6 479
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μS
m
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In both examples, a 7th-order real-pole approximation was used for the open-loop model, and a

17th-order complex-pole approximation was used for the open-loop internal-reflection model.

Because of the higher-order approximation and a larger number of dynamic modules, the

difference approximation and numerical integration execution times for nonuniform lines are

larger than those for uniform lines.  The total simulation time, however, is dominated by the

circuit solution time, and remains virtually the same.  The runtime comparisons for circuits of

various sizes and types can be found in [14].  The runtime data in [14] were obtained with the

open-loop nonuniform line model.
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Fig. 4.13 continued.
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4.6. Conclusions

From a novel analysis, based on identification of the most significant aspects of the problem and

comparison of alternative approaches in each of the aspects, it was shown that to achieve

maximum efficiency, accuracy, and practical applicability the line simulation should be based on

time-only formulation, open-loop characterization, a device model that does not require the

introduction of current variables, indirect numerical integration, and frequency-domain

difference approximation based on interpolation and matrix delay separation.

The practical implementation of the optimal method for uniform and nonuniform

multiconductor lossy frequency-dependent lines characterized by discrete samples of their

responses was outlined, including extraction of initial conditions from op analysis and the line

model for ac/dc analysis.  The complete set of expressions for the open-loop transmission line

functions was given, including new formulas for the matrix delay separation from the

propagation functions, which avoid the use of frequency-dependent modal transformation

matrices.  The complete set of analytical expressions for the fundamental open-loop time-domain

responses of two-conductor uniform lines was presented, including a new simple and accurate

asymptotic approximation for the responses of propagation function.  The novel interpolation-

based complex rational approximation method was extended to the matrix form, and suitable

ramp- and step-invariant indirect numerical formulas were reviewed.

It was shown on an extensive set of run-time data that, based on the optimal approach,

accurate line modeling in a circuit simulator is as efficient as simple replacement of interconnects

with lumped resistors.  The method is compatible with recursive time-domain solvers employed

by circuit simulators and supports variable time-stepping.  The method has been adopted in

several industrial and commercial circuit simulators and in numerous real-life simulation

exercises proved to be reliable and accurate.

The novel open-loop and open-loop internal-reflection models for nonuniform lines were

presented.  The open-loop model for nonuniform lines results in the simplest aperiodic responses

(similar to those for uniform lines), which can be accurately represented by a few samples and a

low-order interpolation with only real poles.  The model, however, does not guarantee stability of

the line characterization.  The open-loop internal-reflection model provides the simplest stable

characterization, which is, however, more complex than the open-loop characterization and

requires a higher-order approximation with complex poles.
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5.  CONCLUSIONS

This dissertation discussed indirect numerical integration, difference approximation, and circuit

simulation of transmission lines.

Indirect numerical integration is a new class of numerical integration methods based on

the novel time-response invariant discrete synthesis.  While offering the ideal accuracy,

convergence and stability properties, the discrete-time difference equations obtained via indirect

numerical integration differ from those obtained via the conventional numerical integration

methods only in the values of the coefficients, and, in many cases, can replace the latter to

efficiently perform transient simulation of dynamic circuits and systems in exactly the same

manner.

The foundations of indirect numerical integration and its general principles were

discussed in detail.  The complete set of the step- and ramp-invariant indirect numerical

integration formulas is presented in Appendix A.

The difference approximation is a general method for applying numerical integration to

systems whose differential equations are not known.  The general principles of time- and

frequency-domain difference approximation were analyzed, including the fundamental

possibility of the approximation, three canonic forms of the state-variable representation,

complex-to-real mapping, magnitude, real- and imaginary-part approximations, and

approximation of multiport systems.  A novel matrix delay separation technique was introduced,

which avoids the use of frequency-dependent eigenvector matrices.  The complete set of indirect

numerical integration formulas for time- and frequency-domain difference approximation was

given in matrix form for multiport systems with an arbitrary number of inputs and outputs, and in

the three canonic forms of the state variable representation.

Various approximation methods were compared, and novel interpolation-based methods

were introduced.  The relaxation interpolation method is applicable for low-order time- and

frequency-domain real-pole approximation of aperiodic systems.  The direct interpolation-based

method performs frequency-domain complex-pole approximation of an arbitrary number of
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arbitrarily spaced complex samples.  The method averages out the noise in measured data and fits

both real and imaginary parts of the original function at once.  The method proceeds in two steps.

First, the poles of the system are extracted with the method of averages, and then the partial

expansion coefficients are adjusted via least-square approximation.  The complexity of the

method is that of two linear solutions and one polynomial factoring.  The order of the linear

systems and polynomial depend only on the order of the approximation and not on the number of

samples.  Both approximation methods can fit the initial and final values of the original response

exactly, impose constraints on the poles, and, in numerous real-life simulation exercises, proved

to be reliable, accurate and efficient.

Finally, the indirect numerical integration and difference approximation were applied to

the circuit simulation of transmission lines.  From a novel analysis, based on identification of the

most significant aspects of the problem and comparison of alternative approaches in each of the

aspects, it was shown that to achieve maximum efficiency, accuracy and practical applicability

the line simulation should be based on time-only formulation, open-loop characterization, a

device model that does not require the introduction of current variables, indirect numerical

integration, and frequency-domain difference approximation based on interpolation and matrix

delay separation.

The practical implementation of the optimal method for multiconductor lossy frequency-

dependent lines characterized by discrete samples of their responses was outlined, including

extraction of initial conditions from op analysis and the line model for ac/dc analysis.  The

complete set of expressions for the open-loop transmission line functions was given, including

new formulas for the matrix delay separation from the propagation functions, which avoid the

use of frequency-dependent modal transformation matrices.  The complete set of analytical

expressions for the fundamental open-loop time-domain responses of two-conductor lines was

presented, including a new simple and accurate asymptotic approximation for the responses of

the propagation function.

It was shown on an extensive set of run-time data that, based on the optimal approach,

accurate line modeling in a circuit simulator is as efficient as simple replacement of interconnects

with lumped resistors.  The method is compatible with recursive time-domain solvers employed

by circuit simulators and supports variable time-stepping.  The method has been adopted in

several industrial and commercial circuit simulators, and, in numerous real-life simulation

exercises, proved to be reliable and accurate.

The novel open-loop and open-loop internal-reflection models for nonuniform lines were

presented.  The open-loop model for nonuniform lines results in the simplest, aperiodic responses

(similar to those for uniform lines), which can be accurately represented by a few samples and a

low-order interpolation with only real poles.  The model, however, does not guarantee stability of
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the line characterization.  The open-loop internal-reflection model provides the simplest stable

characterization, which is, however, more complex than the open-loop characterization and

requires a higher-order approximation with complex poles.
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APPENDIX A.  INDIRECT NUMERICAL
INTEGRATION FORMULAS

A.1. Canonic and Parallel Canonic Forms

Table A.1 presents the set of step- and ramp-invariant indirect numerical integration formulas in

the canonic and parallel canonic forms.  The formulas are in matrix form for arbitrary-order

multiport systems with arbitrarily numbers of inputs and outputs.  The ramp-invariant formulas

are given in two forms:  with equalized present- and past-time coefficients of the excitation, and

with zero present-time coefficient.  The latter form is more suitable for modeling of immittances.
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TABLE A.1

CANONIC AND PARALLEL CANONIC FORMS OF INDIRECT NUMERICAL INTEGRATION

FORMULAS

Canonic Forma Parallel Canonic Formb 

Transfer
function, 

State equations

Impulse char-
acteristicc, 

, where 

Transient char-
acteristicd, , where 

Ramp
response, 

Step-invariant
difference
model

Ramp-invariant
difference
model with
equalized
coefficients

 where ,

 where

Ramp-invariant
difference mo-
del with zero
present-time
coefficients

N o t e :   is the excitation,  is the response,  is the system state vector, , M  is the order of the system,  and
 are the initial and final values of the transfer function,  is the time step, and  is the unit-step function.   

a  is the system matrix,  is the control matrix,  is the observation matrix, and  is the fundamental matrix [3].  The boldface 
stands for the matrix exponential.   
b The system poles, , and partial expansion coefficients, , can be either real or occur in complex-conjugate pairs.   

c The δ-impulse response.   

d The unit-step response.   

H(s)
UT sI − Ω( )−1C + H∞ H∞ + 1

1 + s ωc m

Am
m=1

M

∑

y(t) = UTz(t) + H∞ x(t)

ż(t) = Ωz(t) + Cx(t)

⎧
⎨
⎩

  

y(t) = H∞ x(t) + zm (t)
m=1

M

∑
1

ωc m

żm (t) + zm (t) = Am x(t), m = 1, 2,K, M

⎧

⎨
⎪⎪

⎩
⎪
⎪

g(t)
H∞δ(t) + UT F(t)C 1(t) F(t) = eΩ t

H∞ δ(t) + ωc m e
−ω c m t Am

m=1

M

∑ 1(t)

h(t)
H∞ + UT Ω−1 F(t) − I( )C( ) 1(t)

H0 − e
−ω c m t Am

m=1

M

∑⎛
⎝⎜

⎞
⎠⎟

1(t) H0 = H∞ + Am
m=1

M

∑

r(t)
H∞t + UT Ω−2 F(t) − Ω t − I( )C( ) 1(t)

H0 t − 1 − e
−ω c m t

ωc m

Am
m=1

M

∑
⎛

⎝⎜
⎞

⎠⎟
1(t)

zn = F(Tn )zn−1 + Ω−1 F(Tn ) − I( )Cxn−1

yn = UTzn + H∞ xn

⎧
⎨
⎪

⎩⎪
  

zm, n = 1 − e−ωc m Tn( )Am xn−1 + e−ωc m Tn zm, n−1, m = 1, 2,K, M

yn = H∞ xn + zm, n
m=1

M

∑

⎧
⎨
⎪

⎩
⎪

ẑn = F(Tn ) ẑn−1 + D(Tn ) xn − xn−1( )
yn = UT ẑn + H0 xn

⎧
⎨
⎪

⎩⎪

H0 = H∞ − UT Ω−1 C

D(Tn ) = 1
Tn

Ω−2 F(Tn ) − I( )C

  

ẑm, n = Dm (Tn ) xn − xn−1( ) + e−ωc m Tn ẑm, n−1, m = 1, 2,K, M

yn = H0 xn − ẑm, n
m=1

M

∑
⎧
⎨
⎪

⎩⎪

Dm (Tn ) = 1 − e−ωc m Tn

ωc m Tn

Am

z̃n = F(Tn ) z̃n−1 + F(Tn )D(Tn−1) − D(Tn )( )xn−1

yn = UT z̃n + H0 + UT D(Tn )( )xn

⎧
⎨
⎪

⎩⎪

  

z̃m, n = e−ωc m Tn Dm (Tn−1) − Dm (Tn )( )xn−1 + e−ωc m Tn z̃m, n−1, m = 1, 2,K, M

yn = H0 − Dm (Tn )
m=1

M

∑⎛
⎝⎜

⎞
⎠⎟

xn − z̃m, n
m=1

M

∑

⎧

⎨
⎪

⎩
⎪

x(t) y(t) z(t) ż(t) = dz(t) dt H0

H∞ Tn = tn − tn−1 1(t)

Ω C U F(t) eΩ t

−ωc m Am
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A.2. Cascade Canonic Form

The transfer function

H(s) = H0

1 + s ω p m

1 + s ωc mm=1

M

∏ ,

where the system poles, −ωc m, and zeros, −ω p m , can either be real or occur in complex-

conjugate pairs.

The state equations are

y(t) = H0 zM (t)
1

ωc m

żm (t) + zm (t) = 1
ω p m

żm−1(t) + zm−1(t), m = 1, 2,K, M

z0 (t) = x(t).

⎧

⎨
⎪⎪

⎩
⎪
⎪

The difference model is

  

z0,n = xn

zm,n = am(Tn) zm−1,n + bm(Tn) zm−1,n−1 + e−ωc m Tn zm,n−1, m = 1, 2,K, M

yn = H0 zM,n,

⎧

⎨
⎪

⎩
⎪

where for the step invariance

am (Tn ) =
ωc m

ω p m

,

bm (Tn ) = 1 −
ωc m

ω p m

− e−ωc m Tn ,

and for the ramp invariance

am (Tn ) = 1 + 1
Tn

1
ω p m

− 1
ωc m

⎛

⎝⎜
⎞

⎠⎟
1 − e−ωc m Tn( ),

bm (Tn ) = −e−ωc m Tn − 1
Tn

1
ω p m

− 1
ωc m

⎛

⎝⎜
⎞

⎠⎟
1 − e−ωc m Tn( ) .
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APPENDIX B.  OPEN-LOOP
TRANSMISSION-LINE TRANSFER

FUNCTIONS

Table B.1 presents a set of frequency-domain expressions for the open-loop transmission-line

functions for voltage and current waves in terms of the R(ω), L(ω), G(ω) and C(ω) distributed-

parameter matrices.  The expressions are given in both standard and modal bases.  The table also

contains the matrix delay separation formulas.
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TABLE B.1

OPEN-LOOP TRANSMISSION-LINE TRANSFER FUNCTIONS

Function for Current Wavesa Function for Voltage Wavesa

Name of Function In Standard Basis In Modal Basis In Standard Basis In Modal Basis

Admittance and
impedance per unit
length

Modal
transformation
matrices

Characteristic
admittance and
impedance

Propagation
constantb

Propagation delayb

Propagation
functionb

Delayless
propagation
functionb

Transmission
coefficientc

Reflection
coefficientc

a Voltage and current functions are related via the following duality replacement rules: , , , .   

b Boldface  and  denote matrix squre root and matrix exponential, respectively.   
c For a Thevenin’s termination .   

Y(ω) = G(ω) + jωC(ω)

= MI (ω) Ym (ω) MV
−1(ω)

Ym (ω)

= MI
−1(ω) Y(ω) MV (ω)

Z(ω) = R(ω) + jω L(ω)

= MV (ω) Zm (ω) MI
−1(ω)

Zm (ω)

= MV
−1(ω) Z(ω) MI (ω)

MI (ω)

= Eigenvectors Y(ω) Z(ω)( ),
M̂I = MI (∞)

= Eigenvectors C(∞) L(∞)( )

MI
−1(ω) = MV

T (ω),

M̂I
−1 = M̂V

T

MV (ω)

= Eigenvectors Z(ω) Y(ω)( ),
M̂V = MV (∞)

= Eigenvectors L(∞) C(∞)( )

MV
−1(ω) = MI

T(ω),

M̂V
−1 = M̂I

T

Yc (ω) = KI (ω) Z−1(ω)

= KI
−1(ω) Y(ω) = Zc

−1(ω)

= MI (ω) Ycm (ω) MV
−1(ω)

Ycm (ω) = Zm
−1(ω) Ym (ω)( )

1

2

= KIm
−1 (ω)Ym (ω)= Zcm

−1 (ω)

= MI
−1(ω) Yc (ω) MV (ω)

Zc (ω) = KV (ω) Y−1(ω)

= KV
−1(ω) Z(ω) = Yc

−1(ω)

= MV (ω) Zcm (ω) MI
−1(ω)

Zcm (ω) = Ym
−1(ω) Zm (ω)( )

1

2

= KVm
−1 (ω) Zm (ω) = Ycm

−1 (ω)

= MV
−1(ω) Zc (ω) MI (ω)

KI (ω) = Y(ω) Z(ω)( )
1
2

= Y(ω) Yc
−1(ω)

= MI (ω) KIm (ω) MI
−1(ω)

KIm (ω) = Ym (ω) Zm (ω)( )
1

2

= Ym (ω) Ycm
−1 (ω)

= Eigenvalues KI (ω)( )
= MI

−1(ω) KI (ω) MI (ω)

= KVm (ω)

KV (ω) = Z(ω) Y(ω)( )
1
2

= Z(ω) Zc
−1(ω)

= MV (ω) Km (ω) MV
−1(ω)

KVm (ω) = Zm (ω) Ym (ω)( )
1

2

= Zm (ω) Zcm
−1 (ω)

= Eigenvalues KV (ω)( )
= MV

−1(ω) KV (ω) MV (ω) =
= KIm (ω)

Τ I = C(∞) L(∞)( )
1
2 l

= KI (∞) l = M̂I Τ Im M̂I
−1

Τ Im = KIm (∞) l

= Eigenvalues Τ I( )
= M̂I

−1 Τ I M̂I = ΤVm

ΤV = L(∞) C(∞)( )
1
2 l

= KV (∞) l = M̂V ΤVm M̂V
−1

ΤVm = KVm (∞) l

= Eigenvalues ΤV( )
= M̂V

−1 ΤV M̂V = Τ Im

WI (ω) = e−K I (ω ) l

= MI (ω) WIm (ω) MI
−1(ω)

= Yc (ω) WV (ω) Zc (ω)

= ŴI (ω) e− jωTI

= ŴI (ω) M̂I e− jωTIm M̂I
−1

WIm (ω) = e−KIm (ω ) l

= MI
−1(ω) WI (ω) MI (ω)

= WVm (ω)

WV (ω) = e−K V (ω ) l

= MV (ω) WVm (ω) MV
−1(ω)

= Zc (ω) WI (ω) Yc (ω)

= ŴV (ω) e− jωTV

= ŴV (ω) M̂V e− jωTVm M̂V
−1

WVm (ω) = e−KVm (ω ) l

= MV
−1(ω) WV (ω) MV (ω)

= WIm (ω)

ŴI (ω) = WI (ω) e jωTI ŴV (ω) = WV (ω) e jωTV

TI (ω) = I + Yt (ω) Zc (ω)( )−1

= Yc (ω) TV (ω) Zt (ω)

TV (ω) = I + Zt (ω) Yc (ω)( )−1

= Zc (ω) TI (ω) Yt (ω)

Γ I (ω) = I + Yt (ω) Zc (ω)( )−1

⋅ I − Yt (ω) Zc (ω)( )
= Yc (ω) ΓV (ω) Zc (ω)

ΓV (ω) = Zt (ω) Yc (ω) + I( )−1

⋅ Zt (ω) Yc (ω) − I( )
= Zc (ω) Γ I (ω) Yc (ω)

V ↔ I Z ↔ Y R ↔ G L ↔ C

(.)
1
2 e(.)

Zt (ω)
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APPENDIX C.  FUNDAMENTAL TIME-
DOMAIN OPEN-LOOP RESPONSES OF

TWO-CONDUCTOR LINES

Table C.1 presents a set of expressions for the transient characteristics (unit-step responses) and

impulse characteristics (δ-impulse responses) corresponding to the open-loop transmission-line

transfer functions.  The expressions are for two-conductor constant-parameter lossy lines.  The

table also gives simple and accurate approximate expressions for the responses of propagation

functions with G=0.  The expressions are based on the asymptotic approximation of the modified

Bessel function, and are within 1% accurate within the full time range from zero to infinity.
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TABLE C.1

FUNDAMENTAL TIME-DOMAIN OPEN-LOOP RESPONSES OF TWO-CONDUCTOR LINES

Name of
Function

G Transient Characteristic, Impulse Characteristic, 

Propagation
function,

a  

Arbitrary
G

hW(t) = (e–α +  a ⌡
⌠

τ

t

 e–β t  I1(b t2 – τ2 )
 t2 – τ2

 dt) u(t – τ) gW(t) = e–α δ(t) +  a e–β t  I1(b t2 – τ2 )
 t2 – τ2

  u(t – τ)

hW(t) ≈  
⎝⎜
⎛

⎠⎟
⎞1 –  

2a

2πb(t + d)
  u(t  – τ)b gW(t) ≈ e –α δ(t) +  

a

( )2πb(t + d) 3/2
 u(t  – τ)b

Characteristic
admittance,

c

Arbitrary
G hY(t) = Y0 (e–β t I0(bt) +  

G
C ∫

0

t

e–β τ I0(bτ) dτ ) gY(t) = Y0   
⎩
⎨
⎧

⎭
⎬
⎫

δ(t) + e–β t 

⎣
⎡

⎦
⎤

⎝
⎛

⎠
⎞G

C – β  I0(bt) + b I1(bt)

hY(t) = Y 0 e–β t I0(βt) gY(t)  = Y0  { }δ(t) + β e–β t[ ]I1(βt) – I0(βt)

Transmission
coefficient for
voltage waves,

c, d

Arbitrary
G hT(t) =  

Z0  

R
2
t  – Z

2
0
  

⎩
⎨
⎧
 – Z0 ⎣

⎡
⎦
⎤R

cL + 
⎝
⎛

⎠
⎞1 –  

R
cL  e–ct

+ Rt  ⎣
⎢
⎡
e–β tI0(bt) + (2β – c)e–ct ⌡

⌠
0

t

e–(β    –c)τ I0(bτ) dτ 

⎭⎪
⎬
⎪⎫

⎦
⎥
⎤

+ 
RG
LC ⌡

⌠
τ′=0

t

e–cτ′ ⌡
⌠

τ=0

τ′

e–(β    –c)τ I0(bτ) dτ dτ′  

gT(t) = 
Z0

Rt + Z0
  δ(t) +   

Z0  

R
2
t  – Z

2
0
  

⎩
⎨
⎧
 Z 0 ⎝

⎛
⎠
⎞c –  

R
L  e–ct

+  Rt [e–β t[ ](β – c)I0(bt) + b I1(bt)   

+ 
⎭⎪
⎬
⎪⎫

⎦
⎥
⎤

⎝
⎛

⎠
⎞c(c – 2β) +  

RG
LC   e–ct ⌡

⌠
0

t

e–(β    –c)τ I0(bτ) dτ 

hT(t) =   
Z0  

R
2
t  – Z

2
0
  

⎩
⎨
⎧
 –Z0 ⎣

⎡
⎦
⎤R

cL + 
⎝
⎛

⎠
⎞1 –  

R
cL  e–ct

+  
⎭⎪
⎬
⎪⎫

Rt ⎣
⎢
⎡

⎦
⎥
⎤

e–β tI0(bt) + (2β – c) e–ct
⌡
⌠
0

t

e–(β    –c)τ I0(bτ) dτ  

gT(t) = 
Z0

Rt + Z0
  δ(t) +   

Z0  

R
2
t  – Z

2
0
  

⎩
⎨
⎧
 Z 0 ⎝

⎛
⎠
⎞c –  

R
L  e–ct

+  Rt [e–β t[ ](β – c)I0(bt) + b I1(bt)   

⎭⎪
⎬
⎪⎫

⎦
⎥
⎤

+ c(c – 2β) e–ct ⌡
⌠

0

t

e–(β    –c)τ I0(bτ) dτ  

Reflection coe-
fficient, a  

hΓ(t) = 1 – 2hT(t) gΓ(t) = δ(t) – 2gT(t)

N o t e :    is the unit-step function,  α =  
1
2  

⎝
⎛

⎠
⎞GZ0 +  

R
Z 0

 l,  a =  
1
2  

⎪
⎪

⎪
⎪GZ0 –  

R
Z0

l,  β =  
1
2  

⎝
⎛

⎠
⎞G

C
 + 

R
L 

 ,  b =  
1
2  

⎪
⎪

⎪
⎪G

C
 – 

R
L 

,   

c =  –  
R
L  

Z2
0

R
2
t  – Z

2
0
 ,   d =  

4a2

2πb(1 – e–a)2
 ,  τ =  CL l ,  Y0 =  

C
L  ,  and  Z0 =  

L
C  .  For :  α = a =  

Rl
2Z0

  and  β = b =  
R
2L .   

a In the case of two-conductor lines, these functions are the same for both voltage and current waves.   

b Approximation based on the asymptotic expansion of the modified Bessel function .  The accuracy is within 1% in the full
time range.   
c Expressions for the corresponding dual (voltage/current) functions can be obtained via the duality replacement rules (see Appendix
B).   
d For a Thevenin’s termination .   

h(t) g(t)

W(ω)

G = 0

Yc (ω)

G = 0

TV (ω)

G = 0

Γ(ω)

u(t)

G = 0

I1(x)

Rt
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APPENDIX D.  OPEN-LOOP TRANSFER
FUNCTIONS OF PARABOLICALLY

TAPERED LINES

Table D.1 gives frequency-domain expressions for the open-loop functions of Parabolically

tapered multiconductor lines:  Z(x,  ω) = (1 + ax)2 Z(ω), Y(x,  ω) = (1 + ax)−2 Y(ω).  The

expressions are given the open-loop functions for both voltage and current waves.  The table also

contains the matrix delay separation formulas.
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TABLE D.1

OPEN-LOOP TRANSFER FUNCTIONS OF PARABOLICALLY TAPERED LINES

Name of Function Function for Current Waves Function for Voltage Waves

Immittance per
unit length

Propagation
constant

Propagation delay

Propagation
function

Delayless
propagation
function

Characteristic
immittance

,

,

,

,

,

,

N o t e :  The subscripts “f”, “b”, “V”, “I”, “1” and “2” refer to the forward and backward voltage and current waves at the near and
far-end terminals, respectively.   

Y(ω) = G(ω) + jωC(ω) Z(ω) = R(ω) + jω L(ω)

KI (ω) = Y(ω)KV (ω)Y−1(ω) = Y(ω) Z(ω)[ ]
1
2 KV (ω) = Z(ω)KI (ω)Z−1(ω) = Z(ω) Y(ω)[ ]

1
2

Τ I = C(∞) L(∞)[ ]
1
2 l ΤV = L(∞) C(∞)[ ]

1
2 l

WIf (ω) = Yf 2 (ω) WVf (ω) Zf 1(ω) = ŴIf (ω) e− jωTI

= 1
1 + al

e−KI (ω ) l ,

WIb(ω) = Yb1(ω) WVb(ω) Zb2 (ω) = ŴIb(ω) e− jωTI

= 1 + al( )e−KI (ω ) l

WVf (ω) = Zf 2 (ω) WIf (ω) Yf 1(ω) = ŴVf (ω) e− jωTV

= I + 1 + al

a
KV (ω)⎡

⎣⎢
⎤
⎦⎥

I + 1
a

KV (ω)⎡
⎣⎢

⎤
⎦⎥
eKV (ω ) l⎧

⎨
⎩

⎫
⎬
⎭

−1

,

WVb(ω) = Zb1(ω) WIb(ω) Yb2 (ω) = ŴVb(ω) e− jωTV

= I − 1
a

KV (ω)⎡
⎣⎢

⎤
⎦⎥

I − 1 + al

a
KV (ω)⎡

⎣⎢
⎤
⎦⎥
eKV (ω ) l⎧

⎨
⎩

⎫
⎬
⎭

−1

ŴIf (ω) = WIf (ω) e jωTI , ŴIb(ω) = WIb(ω) e jωTI ŴVf (ω) = WVf (ω) e jωTV , ŴVb(ω) = WVb(ω) e jωTV

Yf 1(ω) = Zf 1
−1(ω) = KI (ω) + aI( )−1

Y(ω)

Yb1(ω) = Zb1
−1 (ω) = KI (ω) − aI( )−1

Y(ω)

Yf 2 (ω) = Zf 2
−1(ω) = 1

1 + al
1 + al( )KI (ω) + aI[ ]−1

Y(ω)

Yb2 (ω) = Zb2
−1 (ω) = 1

1 + al
1 + al( )KI (ω) − aI[ ]−1

Y(ω)

Zf 1(ω) = Yf 1
−1(ω) = KV (ω) + aI( )Y−1(ω)

Zb1(ω) = Yb1
−1 (ω) = KV (ω) − aI( )Y−1(ω)

Zf 2 (ω) = Yf 2
−1(ω) = 1 + al( ) 1 + al( )KV (ω) + aI[ ]Y−1(ω)

Zb2 (ω) = Yb2
−1 (ω) = 1 + al( ) 1 + al( )KV (ω) − aI[ ]Y−1(ω)
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APPENDIX E.  EXPRESSIONS FOR
OPEN-LOOP INTERNAL-REFLECTION

FUNCTIONS IN TERMS OF OPEN-LOOP
FUNCTIONS

Table E.1 gives frequency-domain expressions for open-loop internal-reflection transmission-

line functions in terms of the open-loop functions.  The expressions are for arbitrary nonuniform

multiconductor lossy lines.  The table gives expressions for the functions for both voltage and

current waves.
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TABLE E.1

EXPRESSIONS FOR OPEN-LOOP INTERNAL-REFLECTION FUNCTIONS IN TERMS OF OPEN-LOOP

FUNCTIONS

Name of Function Function for Current Waves Function for Voltage Waves

Propagation
function

Internal reflection
coefficient

Characteristic
immittance

Transmission
coefficient

,

,

,

,

,

,

Reflection
coefficient ,

,

,

,

,

,

W̃If (ω) = Yc2 (ω)W̃Vf (ω)Zc1(ω) = Τ I22 (ω)WIf (ω)

⋅ I − Γ I12 (ω)WIb(ω)Γ I22 (ω)WIf (ω)[ ]−1 Τ I11(ω),

W̃Ib(ω) = Yc1(ω)W̃Vb(ω)Zc2 (ω) = Τ I12 (ω)WIb(ω)

⋅ I − Γ I22 (ω)WIf (ω)Γ I12 (ω)WIb(ω)[ ]−1 Τ I21(ω)

W̃Vf (ω) = Zc2 (ω)W̃If (ω)Yc1(ω) = ΤV22 (ω)WVf (ω)

⋅ I − ΓV12 (ω)WVb(ω)ΓV22 (ω)WVf (ω)[ ]−1 ΤV11(ω),

W̃Vb(ω) = Zc1(ω)W̃Ib(ω)Yc2 (ω) = ΤV12 (ω)WVb(ω)

⋅ I − ΓV22 (ω)WVf (ω)ΓV12 (ω)WVb(ω)[ ]−1 ΤV21(ω)

RI1(ω) = Yc1(ω)RV1(ω)Zc1(ω)

= Γ I11(ω) + Τ I12 (ω)WIb(ω)Γ I22 (ω)WIf (ω)

⋅ I − Γ I12 (ω)WIb(ω)Γ I22 (ω)WIf (ω)[ ]−1 Τ I11(ω),

RI2 (ω) = Yc2 (ω)RV2 (ω)Zc2 (ω)

= Γ I21(ω) + Τ I22 (ω)WIf (ω)Γ I12 (ω)WIb(ω)

⋅ I − Γ I22 (ω)WIf (ω)Γ I12 (ω)WIb(ω)[ ]−1 Τ I21(ω)

RV1(ω) = Zc1(ω)RI1(ω)Yc1(ω)

= ΓV11(ω) + ΤV12 (ω)WVb(ω)ΓV22 (ω)WVf (ω)

⋅ I − ΓV12 (ω)WVb(ω)ΓV22 (ω)WVf (ω)[ ]−1 ΤV11(ω),

RV2 (ω) = Zc2 (ω)RI2 (ω)Yc2 (ω)

= ΓV21(ω) + ΤV22 (ω)WVf (ω)ΓV12 (ω)WVb(ω)

⋅ I − ΓV22 (ω)WVf (ω)ΓV12 (ω)WVb(ω)[ ]−1 ΤV21(ω)

Yc1(ω) = Zc1
−1(ω) = Y(0, ω)Z(0, ω)[ ]

1
2 Z−1(0, ω),

Yc2 (ω) = Zc2
−1 (ω) = Y(l, ω)Z(l, ω)[ ]

1
2 Z−1(l, ω)

Zc1(ω) = Yc1
−1(ω) = Z(0, ω)Y(0, ω)[ ]

1
2 Y−1(0, ω),

Zc2 (ω) = Yc2
−1 (ω) = Z(l, ω)Y(l, ω)[ ]

1
2 Y−1(l, ω)

Τ I11(ω) = 2 I + Yc1(ω)Zf 1(ω)[ ]−1

Τ I12 (ω) = I + Yf 1(ω)Zc1(ω)[ ]−1
I + Yf 1(ω)Zb1(ω)[ ]

Τ I21(ω) = 2 I + Yc2 (ω)Zb2 (ω)[ ]−1

Τ I22 (ω) = I + Yb2 (ω)Zc2 (ω)[ ]−1
I + Yb2 (ω)Zf 2 (ω)[ ]

ΤV11(ω) = 2 I + Zc1(ω)Yf 1(ω)[ ]−1

ΤV12 (ω) = I + Zf 1(ω)Yc1(ω)[ ]−1
I + Zf 1(ω)Yb1(ω)[ ]

ΤV21(ω) = 2 I + Zc2 (ω)Yb2 (ω)[ ]−1

ΤV22 (ω) = I + Zb2 (ω)Yc2 (ω)[ ]−1
I + Zb2 (ω)Yf 2 (ω)[ ]

Γ I11(ω) = I + Yf 1(ω)Zc1(ω)[ ]−1
I − Yf 1(ω)Zc1(ω)[ ]

Γ I12 (ω) = I + Yc1(ω)Zf 1(ω)[ ]−1
I − Yc1(ω)Zb1(ω)[ ]

Γ I21(ω) = I + Yb2 (ω)Zc2 (ω)[ ]−1
I − Yb2 (ω)Zc2 (ω)[ ]

Γ I22 (ω) = I + Yc2 (ω)Zb2 (ω)[ ]−1
I − Yc2 (ω)Zf 2 (ω)[ ]

ΓV11(ω) = I + Zf 1(ω)Yc1(ω)[ ]−1
Zf 1(ω)Yc1(ω) − I[ ]

ΓV12 (ω) = I + Zc1(ω)Yf 1(ω)[ ]−1
Zc1(ω)Yb1(ω) − I[ ]

ΓV21(ω) = I + Zb2 (ω)Yc2 (ω)[ ]−1
Zb2 (ω)Yc2 (ω) − I[ ]

ΓV22 (ω) = I + Zc2 (ω)Yb2 (ω)[ ]−1
Zc2 (ω)Yf 2 (ω) − I[ ]
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