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CHAPTER 1  

INTRODUCTION 
 
 
 

1.1  Overview 
       

Since the first CPU, there has been a continuing demand for faster, more powerful 

processors.  This demand forces designers to develop larger processors running at faster 

speeds.  At these higher speeds, interconnects on chips connecting logic elements, bus 

structures, and clock trees require more accurate modeling at higher frequencies.  This 

improved modeling will hopefully enable new designs and allow problem detection in the 

simulation stage of future designs.  Such problems are not limited to chip design, but are 

also faced by system or board level designers. 

 

1.2  Organization of Thesis 

 

The chapters which follow address model-order reduction techniques and 

interconnect design.  Chapter 2 reviews some of the design issues that interconnect 

development faces.  Chapter 3 documents work in the area of S-domain reduced-order 

modeling.  Chapter 4 covers asymptotic waveform evaluation, another method of reduced 

order modeling.  Finally, a conclusion is given in Chapter 5. 

 



 2

CHAPTER 2  

ELECTRICAL PERFORMANCE OF INTERCONNECTS 
 

 

 

2.1 Performance Factors 

 

This chapter offers a brief review of factors that influence signaling.  This context 

should enable the reader to appreciate both the relevance of the line of inquiry that this 

thesis follows and the importance of this area of research. 

 

The ability of a new interconnect system to handle higher data rates is influenced 

by many factors.  These factors are generally classified into three areas: timing, noise 

issues, and electromagnetic interference (EMI). Excessive delay degrades performance 

when a computer architecture grows in size and complexity.  The timing margin may be 

exceeded, resulting in loss synchronization between the data stream and the clock.  Noise 

issues include many sources: waveform distortion along signal transmission systems, 

signal crosstalk, and noise in power and ground distribution systems.  Simultaneous 

switching noise, ground bounce, and IR drop lead to noise issues in power and ground 

distribution systems.  Noise coupled along ground planes and power planes due to 

signaling components fed by and drained to these lines is one of the most complex issues 
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to simulate properly.  Designers often attack these problems with intuition and 

experimentation to combat the shortfalls of the simulator. 

  

2.2 Clocking, Rise-Time, and Bandwidth 

 

To understand interconnect technologies, a few rules of thumb are used to 

estimate signal bandwidth and rise-time when high-frequency effects become relevant.  

The fundamentally important relationship between bandwidth and the 10 to 90% rise-

time is often approximated using 

 

 

Digital interconnects are sometimes characterized with a 3-dB frequency.  This 

corresponds to the frequency at which a 20% drop in voltage amplitude occurs.  This 

characteristic is often used in analog systems where its usefulness is more obvious than in 

a digital system.  A pulse will be smoothed, and the resulting rise-time will be degraded 

when higher frequencies are attenuated.  In digital signaling, such as with 1-V emitter-

coupled logic, a 15% voltage margin exists.  It is therefore reasonable to consider this 3-

dB margin in digital systems as well, especially when we consider that the signal will 

encounter other issues that cover the entire spectrum of the pulse, such as ground bounce 

and coupling. 

 

riset
BW

35.0
 (2.1) 
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When a clock rate is specified, we can use the following rule of thumb to estimate 

the rise-time. 

 

From this we can estimate the bandwidth (BW) of the clock: 

 

For designs with 1-GHz clocks, we must consider the fifth harmonic when designing 

interconnects carrying this clock.  Terminations are fundamentally important in 

transmission line design.  These terminations are generally driver and receive circuits.  

There are always trade-offs when companies release technical documentation on their 

drivers and other circuits to promote sales.  The reluctance to fully describe the drive and 

receive circuits results in rules of thumb like these often being used by board designers.  

Industry pressures have resulted in a standardization of I/O models know as input/output 

buffer information specification (IBIS).  However these models are very simple and still 

leave many engineers complaining. 

 

2.3  Quasi-Static Approximations 

 

 As a digital signal travels, the leading edge has a spatial and temporal description.  

The leading edge is spread with the spatial extent: 

clock
clockrise F

tt
07.0

07.0  (2.2) 

clockclockclock FFBW 5
07.0

35.0
 (2.3) 
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This dimension is very relevant as we consider how interconnects will interact with the 

signal.  A general rule of thumb is that when the length of interconnects is greater than 

half of the leading edge spatial extent, the interconnects will act like transmission lines.  

For very small interconnects one often limits the simulation model to a resistor-capacitor 

elements which accounts for the losses and delay.  As an example, we can consider a  

1-Ghz clock carrying line.  Using the above equations we conclude that in FR-4 a length 

greater than 0.2-inches require transmission line modeling.  Transmission lines are often 

referred to as long if the time required for the signal to travel to the far-end, reflect, and 

travel back takes longer than the rise-time.   

 

When the spatial extent of the rise time is greater than half of the length of the 

interconnect, standard RLGC transmission lines provide a good model.  Where the RLGC 

model consists of a resistor and inductor in series and a resistor and capacitor in shunt.  A 

coupling capacitor can be added to account for the electric field coupling.  In addition a 

mutual inductance term provides useful modeling of the magnetic coupling.  These 

coupling values can be determined using quasi-static solvers such as the ones described 

in [2.1] and [2.2].  When the spatial extent of the rise-time is much less than half the 

length of the interconnect radiation effects become much more apparent.  At this point 

computational field solvers provide the best model for the interconnect.  Some 

appropriate simulation techniques for this class of interconnects are described in [2.3] and 

r

riseedge

nin
vtL


sec/12

 (2.4) 
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[2.4].   The transfer functions generated by full-wave field solvers are often complex and 

do not lead to simple models.  The exploration of ways to simplify these transfer 

functions is the general area of research into which this thesis delves.  

 

Other important effects not fully covered in this cursory treatment of high-speed 

design include skin-effect and dielectric loss.  Skin depth refers to the tendency of 

support currents to be contained in smaller cross-sectional areas as frequencies increase.  

This results in higher resistive losses.  The frequency dependent nature of these effects 

contribute to difficulty in obtaining simple circuit based models for high frequency or 

high data rate interconnects.  The high resistivity (500-1000 /cm) of on-chip 

interconnects allow us to ignore dielectric loss, but skin effect must still be modeled.  

Board level designs have higher conductivity, and both effects need to be taken into 

account. 

 

2.4   Delta I Noise 

 

Another important effect that limits data rates is delta I noise.  This is also referred to as 

simultaneous switching noise.  The following equation is used to model this effect [2.5]: 

 

 

 

dt

dI
NLV effI 

(2.5) 
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The term N represents the number of switching drivers with current draw I, and Leff 

models the inductive nature of the ground structure.  Because multiple circuits 

simultaneously draw from the same power supply, the total current draw can be quite 

large.  These charging currents are very short-term and are susceptible to these inductive 

effects.  Delta I noise is worse when the rise time is the fastest and the voltage swing is 

the largest.  The designer must be able to quantify the effect of this and understand the 

trade-offs.  For instance, lowering the peak voltage may increase the susceptibility to 

thermal and crosstalk noise, but reduce delta I noise.  Differential signaling can be used 

to combat the effects of delta I noise, at the cost of increased complexity.  In a simulation 

variations in driver and receiver processing must be taken into account.  In a typical 

digital design 65-70% of the driver output swing may be expected at the receiver input.  

This tolerance allows for DC drop and processing and power supply limitations.  About 

5%  tolerance would be allowed for receiver switching variation.  15% is allocated to 

cross talk variations and 15% to Delta I noise [2.5]. 
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CHAPTER 3  

REDUCED-ORDER MODEL DEVELOPMENT 

 

 

 

3.1   Introduction  

 

This chapter will examine reduced-order modeling of a transmission line structure 

using behavioral equations.  These equations and their reduced-order models are relevant 

as we consider simulation of such transmission lines and other issues currently relevant in 

signal integrity modeling such as the use of computational electromagnetics.  These 

computational methods such as finite-difference time-domain (FDTD), finite element 

method (FEM), and method of moments (MoM) produce transfer function descriptions of 

I/O relationships.  Due to increased data rates in development efforts, the frequencies of 

interest continue to increase.  At high frequencies, one must use full-wave computational 

formulations, which take into account radiation effects such as coupling.  These 

formulations do not lead to simple physical coupling models as was the case in the quasi-

static domain.  Taking these complex transfer functions reducing their complexity while 

maintaining a minimum level of approximation based distortion/error is the general area 

in which this thesis delves.  
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In the research described in this thesis the problem is further limited to transmission 

line interconnects with equation transfer functions.  Such equation-based descriptors are 

not generally the case in the application area described above.   The general application 

of partial-fraction-expansion-based reduced-order modeling applies to the more general 

problem.  The research- exploiting characteristics of the transfer function equations is 

less general.  Another method applicable to S-parameter reduced-order modeling was 

shown in [3.1], which partitions the frequency and develops a reduced-order model for 

each frequency range. 

  

3.2   Partial Fraction Iterative Algorithm 

 

The transfer function for transmission lines can be approximated using partial fraction 

expansions or pole-residue models.  This simplifies inversion to the time domain.  The 

following iterative algorithm can be used to generate such a model.  The equation 

g(w)=Real[e-l] can be approximated using the following expansion: 

 

 

The following relationship enables transform to the time domain:   

 


 


L

i

ci

i

w

w

a
Awg

1

2

2

1

)(
(3.1) 

tae
a

a 
 22

2


(3.2) 
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The output from such a transfer function can then be determined using recursive 

convolution with the sum of exponentials described above. 

 

3.3   Transfer Function Approximations 

 

The transfer function of a transmission line (TL) includes periodic behavior.  This 

is displayed in Figure 3.1.  In this plot, Real[e-l] is plotted versus frequency(R = 1 G = 1 

L/max = 20/8 C/max = 1/8).  Initially, there is asymptotic behavior, then the function 

follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Transmission line transfer function versus frequency. 

     asReal LCjL ee (3.3) 
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Such periodic behavior is not well suited to approximation by Equation (3.1).  When we 

multiply e-l by e-j  sqrt(LC)  this periodic behavior is removed.  To demonstrate this, a plot 

of Real[e-l e-j sqrt(LC)] versus frequency is shown in Figure 3.2.  Multiplication by  

e-j  sqrt(LC)  presumes knowledge of L and C or the ability to extract these parameters from 

a transfer function.  The factor of e-j  sqrt(LC) allows use of the shift property of the Fourier 

transform: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Approximation to transfer function versus frequency. 

 

 

LCjeFLCtf   )()( (3.4) 
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We can transform our approximation to the time domain, and apply the shift property to 

obtain an approximation of the time domain response.  It should be stressed that the 

multiplication of e-l by e-j  sqrt(LC) is valid for high frequencies.  Multiplying by this 

factor introduces error, especially at low frequencies.  The benefit of this method is that 

we do not need to reduce our model to the lossless case in order to improve the 

computational efficiency for a SPICE simulator. 

 

3.4 Partial Fraction Iterative Algorithm Development 

 

 

 The ai and ci terms in Equation 1 can be determined using the following algorithm.  

It should be noted that these terms could also be solved for through matrix inversion, as 

has been demonstrated in various forms [3.2].  One benefit of the iterative method is that 

it avoids the problems that may arise due to ill-conditioned or sparse matrices in this 

application.     

 

 The first step in the algorithm is to choose 2L + 1 frequency points, where L is the 

number of elements in the summation of Equation (3.5).  In the work done in this 

research f=fmax[i/2L]7 was used to determine the frequencies used.  Initially the variables 

were set as ai=0 and ci=1.  The following equations were used to updates these 

variables: 

 



 


L

ij

j

cj

i

i
i

a

1

2

2
2

2

1




(3.5) 
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Where A is defined as the following: 

 

 

The constant A is the dc response of the system at each step of the iteration. 

  

 

In these equations g(f) is the original function we are approximating. 

 



 






L

ij

j

cj

i

j
i

a

1

2

2
12

12

1





    Aig ii  22 2 
(3.7) 

    Aig ii   1212 12  (3.8) 

   
   iiii

iiiiii
cj

212

2
1212

2
222


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







 (3.10) 

  



L

j
jagA

1

0 (3.9) 

               (3.6) 
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 The derivation of these equations is quite straightforward and is demonstrated in the 

following steps.  quations (3.7) and (3.8) defined above provide the following 

quantities: 

 

 

 

 

 

By equating the values for ai we can solve for wcj obtaining Equation (3.10) above.  We 

can then use this solution for wcj to find ai using Equation (3.11) or (3.12).  

 

3.5  Application of Algorithm to S-Parameters 

 

 Given a transfer function X= e-l for a transmission line and terminations for that 

transmission line, we can generate an S-parameter model using the equations given 

below.  We will then consider methods to simplify this S-parameter model for more 

computationally efficient use in a time domain simulator.  The system shown in Figure 

3.3 was considered.  This corresponds to a system that has a potentially lossy 

transmission line structure  embedded in a reference system.  This could be a model used 

 
2

2
2

2

1
cj

i

i
i

a








(3.11) 

(3.12) 
 

2

2
12

12

1
cj

i

i
i

a










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for a signal line connecting a driver and receiver that have approximately the same input 

and output impedance.  In timing and signal integrity analysis this is often the case.  The 

impedance may be as simple as a shunt capacitive load.   

 

 

 

Figure 3.3 Transmission line flow graph. 

 

Applying Mason’s rule or tiling of S-parameters to this signal flow diagram yields the 

following relationship: 

 

   

Equation (3.13) can be simplified to the following when we consider 2+T2 = 1 since the 

reference system is lossless: 

 
22

2222

11 1

1

X

XTX
S




 (3.13) 
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We can also obtain a formula for the resultant S21 using Mason’s rule. 

 

If we apply 2+T2=1 once more, we obtain the following: 

 

where 

 

The term  is the reflection coefficient looking in to the transmission line.  This is 

calculated using the following: 

 

 

As the characteristic impedance of sqrt(L/C) was chosen to minimize the reflection 

coefficient at higher frequencies.  This can also be expressed in the following limit. 

 

LeX  (3.17) 

C

L
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LjR
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 As in Section 1.2 we want to reduce periodicity.  In this case we want to reduce the 

periodicity of the S-parameters in order to make them more easily approximated by 

partial fraction expansions or other simplified models. This is demonstrated in Figure 3.4. 

The reduced model development is shown in Equation (3.20) and (3.21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 S21 and reduced S21 versus frequency. 
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where  

 

 

 In Section 2.4 a partial fraction iterative algorithm was discussed which can now be 

applied to the simplified S21.  With five terms in the series given in Equation (3.5) and 

using the algorithm decribed in Section 2.4 running through five iterations, Figure 3.5 

was generated.  As can be seen, the partial fraction expansion-based approximation is 

virtually indistinguishable from the original function.   

 

 We next consider approximations for S11.  In what follows in this section and the next 

few sections are various methods that attempt to reduce the asymptotic periodicity of S11.  

If in Equation (3.14) we approximate the (1 - X2) factor with the expression for the 

lossless case: X = e-jl the following equation results: 

 

 

The remaining terms in the approximation all account for a lossy system.  The following 

approximation was considered.  

 

Lj
o eX  1 (3.21) 
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Figure 3.5 Reduced S21 and partial fraction approximation versus frequency. 

 

We want to see if this would reduce the effect of the sinc(l) term, thereby counteracting 

the impact of the (1-X2) term in the numerator of Equation (3.14).  If  is sufficiently 

small, then the periodicity caused by the denominator will be much less than that of the 

numerator in Equation (3.14).  Unfortunately use of the sinc(l) term causes singularities 

when used in a lossy system as is shown in Figure 3.6.   
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Figure 3.6 Real component of S11 approximation versus frequency. 

 

 The plot shown in Figure 3.6 is an approximation to the S11 curve shown in Figure 

3.7.  This was generated for a nearly lossless case where R = .0001 G = .2 L = 

418 nH, and C = 93 pF.   

 

3.6 Clipped Cotangent Function Based Approximation 
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 The relationship below can be derived from Equation (3.14) above assuming a 

lossless transmission line,   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Real component of S11 versus frequency. 

 

 

We can multiply S11 by the following 

 

  
   

 
    ljl

lj

XXe

lj
S

lj 


 sincos

sin2

11

sin2
222211 







 (3.24) 

    
    lj

lj

ljl 



cot15.0

sin2

sincos



(3.25) 

0 1 2 3 4 5 6 7 8 9 10

x 10
9

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

re
a

l(
S

1
1

a
)

Angular Frequency (Hz)



 23

 

For a lossless S11 this would cancel one term which causes asymptotically periodic 

behavior.  Small numerical inaccuracies could lead to infinite S11 values, due to the 

cotangent term.  If we want to apply this to the case of lossy transmission lines we are 

almost guaranteed to run into this problem.  A logical conclusion might be to limit the 

maximum values the cotangent introduces.  This is shown in Figure 3.8 below. 

 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 3.8 Cotangent and clipped cotangent versus frequency. 
 

 A modified transfer function using this method is plotted in Figure 3.9 for a lossless 

transmission line.  It can be seen that this method does successfully reduce the periodic 
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behavior.  For the case of a lossless transmission line, we also do not need to limit the 

values the cotangent function can take. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Lossless S11 and reduced lossless S11 versus frequency.  

 

 When we consider a lossy transmission line the goal of reducing the periodic 

behavior is not met as demonstrated in Figure 3.10.  This is at least partially because the 
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line.  Also the values taken at the minimum of this quasi-periodicity are not zero, unlike 

for the lossless case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Real component of S11 and approximated S11 versus frequency. 

 

3.7 Geometric Series Approximation 

 

Equation (3.14) can be recast as a geometric series approximation: 
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For the S11 curve considered earlier, Figure 3.7, it takes only two terms in the summation 

to provide a good approximation.  This is shown in the Figure 3.11, and was also found to 

generally be the case.   
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Figure 3.11 Real component of S11 and two approximations versus frequency. 
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The term  is a constant in the quasi-static approximation where characteristic 

impedance is constant. The factor 2X2 can then be approximated using lossless 

transmission line conditions that allow us to use the shift property of the Fourier 

transform described in Equation (3.4) to simplify inversion to the time domain.  
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 By inspection we can see that Equation (3.26) corresponds to the following in the 

time domain: 

 

 

As an approximation we can use the lossless X again.  In a marching-on-time based 

simulator, a convolution would occur with this transfer function to determine the 

backward-travelling pulse.  As long as  is sufficiently small, the effect of neglecting loss 

in the transfer function X could be negligible, and computation cost could be saved by 

using the shift property once more.  This time applying it to the first term in Equation 

(3.27).  This method was found to produce erroneous transfer functions in some cases.  

This method can be applied in some cases and a variation of this method may prove to be 

suitable for general usage. 
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CHAPTER 4 

ASYMPTOTIC WAVEFORM EVALUATION 

 

 

 

 4.1 Introduction 

 

Asymptotic waveform evaluation (AWE) is a simulation method well suited for 

time-delay analysis at a chip and board level.  This chapter will give an overview of 

AWE and models that are used in this analysis.  AWE is a form of Padé approximation, 

which uses moment matching to determine the dominant poles and zeroes of a network. 

AWE has been used to enable fast frequency sweep capability to commercial FEM tools 

since 1993 [4.1].  Asymptotic waveform evaluation is so named because the 

approximation generated approaches the response of the original function asymptotically 

with time. 

 

The Padé approximation is accomplished by matching the first 2q coefficients of 

the Maclauren series expansion of  the actual transfer function with a reduced order 

model of order q.  This approximation is used because for many large, physical systems, 

it is easier to obtain the series expansion than a closed form solution of the transfer 

function [4.2].  The AWE approximation generally involves an approximation at zero and 
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infinite frequencies.  To increase accuracy at frequencies of interest, the method of 

complex frequency hopping (CFH) was developed, which involves hopping to multiple 

points for expansions.  CFH is well documented in [4.3] and [4.4]. 

 

This chapter will first look at a state space formulation of the AWE 

approximation.  Then the modified nodal admittance (MNA) matrix will be considered 

and applied to a formulation applicable to uniform lossy coupled transmission lines will 

be considered.  Stability issues will be discussed as well as a methodology for increasing 

the stability of AWE.  CFH will be considered as an efficient means of increasing the 

accuracy of the AWE approximation.  Lastly, some limitations of AWE will be noted. 

 

4.2 State Space Formulation of AWE Approximations 

 

The AWE approximation can be most easily described in terms of a state space 

formulation [4.2].   Another formulation is the modified nodal admittance formulation.  

This method is described in the next section.  The differential state equation for a lumped, 

linear, time invariant circuit is: 

 

The term x is an n-dimensional state vector.  Given a pulse excitation  
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Where the u’s are m-dimensional vectors.  A particular solution to this differential state 

equation can be found.  This procedure is not limited to pulse excitation but can be 

applied to other inputs.  For the pulse excitation the differential state equation is satisfied 

by the following equation: 

 

 

If we limit the state equation to the homogenous form, Bu = 0 and we can easily show 

that the Laplace Transform of the homogeneous form is given by 

 

 

 

Where xh can be derived from the solution to the unhomogeneous differential state 

equation by setting t = 0.  To begin approximating this function we expand Xh(s) in a 

Maclauren series.   This takes the form of 
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The coefficients of the powers of s are often referred to as the moments.  These will be 

used to approximate the expansion by a lower-order model.  The method of moment 

matching is loosely based upon the Laplace transform. 

 

  

 

Where the moments follow as  

 

 

 

Where it is interesting to note that X’(0) = -Td , which is the Elmore delay. The Elmore 

expression is a method of approximating the time delay for a step response to reach 50 % 

of its final value, which is used in timing analysis for lower frequency circuits.  It is 

useful to have the transfer function expressed in the form  

 

 

 

This allows simple transform to the time domain using the properties of the Laplace 

transform.  For example, the time domain response due to a single pole is  
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Expressions for Laplace tranforms of multiple poles, and complex conjugate poles also 

exist and aid in a simple transform to the time domain.  This then allows the time domain 

impulse response to be represented in the form of a partial fraction expansion: 

 

 

This time domain representation enables the inclusion of the interconnect model in a 

network that includes both linear and nonlinear elements.  In a complex interconnect 

system, such as with VLSI, a signal passes through many levels of interconnects, 

including on-chip, packaging, and board-level interconnects.  These all must be taken 

into account, and they all will increase the complexity of the structure.   These 

interconnects can often be modeled with passive distributed circuit models; however, the 

time domain models cannot.  Therefore, time-domain modeling must always be 

addressed when developing an interconnect modeling system.    

 

To determine the poles and zeroes of the approximating function, one can expand 

each of the terms of the partial fraction expansion in a series about the origin.  For each 

element in the vector x, this expansion yields a set of equations of the form  
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For each element in the vector x, this expansion can then be expressed in the matrix 

equation  

 

and 

 

 

The matrix V is the Vandermonde matrix, and the matrix -1 is a diagonal matrix of the 

reciprocals of the poles.  The Vandermonde matrix is shown in Equation (4.14): 

 

 

 

The nature of the Vandermonde matrix makes it ill-conditioned.  This is especially true 

for large poles.  Another significant problem is that the Vandermonde matrix is singular 

for repeated roots.  A generalized approach to dealing with r-order repeated roots is given 

in [4.2].     
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What remains in the formualtion of the AWE problem is to solve for the poles and 

zeroes.  The zeroes can be obtained by a matrix inversion and multiplication.  To find the 

poles, the zeroes are used along with further matrix manipulation detailed in [4.3] and 

[4.4].  An improvement upon the Padé approximation described above can be made by 

including an approximation about s = infinity.  Using a Laurent series to approximate the 

transfer function is documented in [4.4] and [4.8]. 

 

4.3 MNA Formulation of AWE 

 

In order to consider the application of AWE to uniform lossy-coupled 

transmission lines, we will first consider the MNA formulation of a linear subnetwork.  

This formulation can be found with more detail in [4.4] and [4.6].  If we consider a 

subnetwork that contains Nt transmission lines, and nk coupled conductors in transmission 

line set k.  There are N nodal variables internal to the subnetwork.  The MNA matrix can 

then be formulated as 

 

  

Where v(t)  is the vector describing the subnetwork which include node voltages 

waveforms appended by independent voltage source current, linear inductor current, 

nonlinear capacitor charge and nonlinear inductor flux waveforms.  The term C is a 

matrix that describes the memory elements of the network.  The term G is a matrix 

containing the memoryless elements.  The function e(t) describes the vector of source 
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waveforms.  The term Dk = [di,j] with elements di,j which equal zero or one, i = {1, 2, 3, 

…., N}, j = {1, 2, …., 2nk }.  The matrix Dk has a maximum of one nonzero element in 

each row or column.   This matrix maps the currents entering the subnetwork to the node 

space of the network. 

 

If there are no transmission lines in the network, then the formulation can be 

reduced to three terms by dropping the summation term.   To represent the frequency 

domain equation of the transmission line subnetwork in a general way, we use the 

following: 

 

 

Taking the Laplace Transform of the MNA matrix equation and the using the expression 

above leads to the following matrix equation: 

 

   

Or 

 

)1(

0)()(

t

kkkk

Nk

sIBsVA






























































 

0

0

)(

)(

)(

0

00

0 1111




 E

sI

sI

sV

B

D

DA

BDA

GGsC

tt

t

NN

N

T
NN

T

EsVsY )()(

(4.16) 

(4.17) 

(4.18) 



 36

When there no distributed components Equation (4.18) reduces to  

 

It is interesting to note that the solution to the matrix equation is described by all values 

that satisfy  

 

 

From Equation (4.20), one can see how the number of poles could become very large as 

the Y matrix grows.  Therefore, the AWE approximation can be used to find the lower-

order poles in a very complex system.  As in the previous section on the state space 

formulation, the matrix equation can be expanded in a Maclauren series to produce a 

reduced order model this formulation is shown in [4.4]. 

 

4.4 Application of AWE to Lossy Coupled Transmission Lines 

 

Lossy-coupled transmission lines are often modeled through use of the 

telegrapher’s equations.  In the S-domain the telegrapher’s equations can be combined to 

produce  
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Where Zp = R + sL and Yp = G + sC.  The terms R, S, L, C are all matrices where the 

diagonal elements describe selfvalues, and the off diagonal elements at location i, j 

represent the mutual values between transmission line i and j. 

 

To perform the AWE approximation, one needs an expansion of the s-domain 

telegrapher’s equation.   The main concern remains in finding the most computationally 

efficient method to produce this expansion.  In [4.4] and [4.6], modal expansions were 

considered.  These involve describing the transfer in the following manner: 

 

 

This method exploits the fact that the solution for the modal voltages and currents are of 

the form 

 

 

These can be substituted into the telegrapher’s equations above to obtain the following: 
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The details of this analysis are rather long and involved, so the reader should see [4.4] 

and [4.6] for the details and the final solution.  One efficient aspect of this method is that 

a recursive scheme can be applied to determine the necessary derivatives.   This 

significantly increases the efficiency of this method. 

  

4.5 Improvements upon the Basic AWE Algorithm and Stability Issues 

 

Within the AWE method one must be concerned with two types of instability: 

numerical and inherent.  Numercal instability may occur when the frequency range of 

interest compels the model to include higher frequency poles.   Inclusion of these higher-

frequency poles results in numerical issues, such as ill conditioning.  It is easy to see that 

the Vandermonde matrix becomes ill conditioned as the poles become larger.  Within 

computer precision large poles could result in singular matrices.  Singular matrices 

prevent the algorithms presented above from being used since they all depend upon 

matrix inversion. 

 

Large magnitude poles typically do not have large influence on the response of 

interconnects.  However these large-order poles do affect the accuracy of the lower-order 

moments.  This is referred to as an inherent instability.  This effect is interpreted as noise 

in the lower order moments and can at times cause unstable AWE approximations.   

02  ppm YZI (4.24) 
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Anastasakis et al. [4.7] suggest an improvement on the basic AWE method to 

increase stability and accuracy of interconnect models when the signal includes higher-

frequency components.  They suggest that the poles included in an approximation should 

be limited by considering the frequency of the excitation.  If the majority of the power in 

a signal is contained below a certain frequency, the AWE approximation could be limited 

to include only the frequency range of interest.  They also suggest a reformulation of the 

moment equations.  If one considers the Laplace transform of a step input: s or a ramp s-2.    

The S-domain response of an interconnect circuit can be obtained by multiplying the 

transfer function by the Laplace transform of the input.  The response due to a ramp can 

be considered as follows: 

 

 

If one considers the moment matching technique applied to this or generalized to a 

Laplace domain function of  p-j, then the moment matching equation for the i + j  moment 

is as follows (i = 0, 1, 2, …): 
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Where the new residues related to the residues of H(s) are as follows (r = 1, 2, 3, …): 

 

 

This new formulation retains the same poles but the residues are changed.  Further the 

larger poles will correspondingly reduce in magnitude by a greater factor than the smaller 

poles.   This general method can also be likened to a shifting of the approximation to a 

lower-frequency model.  As was described above, the lower-frequency models tend to be 

more stable than the higher-frequency counterparts. 

 

4.6 Complex Frequency Hopping  

 

The complex frequency hopping (CFH) algorithm is based upon the fact that Padé 

approximations are most accurate near the point of expansion.   This method is well 

documented in [4.3].  The method involves forming Taylor expansions about frequency 

points such as p = a + jb rather than zero or infinity, as was considered above.  This will 

result in a new approximation given below: 

 

One could then follow a similar approach as above in determining the matrix equation 

formulations.  The authors of [4.3] maintain that this is not the best way to perform CFH.  

They describe a new formulation based upon the following: 
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Using a series expansion in this situation may result in An growing faster than n! for the 

first few terms. The series expansion of e(A+sB)d will converge quicker for smaller values 

of A and B.  To avoid the first problem and exploit this quick convergence, the authors 

subdivide the transmission line by using the property eAd = eAd/2 eAd/2.  This of course can 

be repeated ad infinitum.  The series approximations to eAd/n are then raised to the power 

n to obtain an approximation to eAd.   

 

These expansions can be generated at any frequency points.   And the poles and 

residues can be compared to those produced at zero and other frequencies.  The method 

of how one decides what frequency points to consider is less scientific than the rigorous 

derivations generally associated with AWE.  The following three constraints will aid 

developing an efficient CFH algorithm:  (1) CFH should only be applied in the upper left 

half of the complex plane   (stable systems contain poles only in this region);  (2)  CFH 

should be constrained to on or near the imaginary axis  (these are the poles most critical 

to the frequency response); and  (3)  CFH should be constrained to frequencies below the 

highest expected operating frequency of the circuit. 
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4.7 Limitations of AWE 

 

When considering the benefits of a particular algorithm, one would be lax to not 

consider its limitations as well.  AWE is based upon a Padé approximation, which is 

known have stability and sensitivity problems.  Also there are no a priori methods for 

determining an appropriate order for the approximation to achieve a desired accuracy or 

tolerance.  The Routh and Padé –Hurwitz method is an attempt to guarantee stability but 

at the cost of a worse approximation to the original system [4.5].  However, the Routh 

and Padé –Hurwitz method is successful in many situations and can be used to reduce run 

time of interconnect modeling tools. 
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CHAPTER 5 

CONCLUSION 
 
 
 
 

The methods in Chapter 3 showed that geometric-series-based approximations combined 

with the iterative algorithm may help us develop simplified S-parameter models.  The 

benefits of this inquiry may be realized for multiline coupled systems.  As the AWE 

discussion showed, well-developed model-order reduction techniques exist.  Further 

research should draw from this substantive body of work.  

 

As we continue to consider signal integrity issues, we always face trade-offs between 

simulation time and accuracy.   Application of an algorithm like the iterative algorithm 

described in Section 2.4 is limited by our ablility to quantify the error introduced. 
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