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CHAPTER 1 
INTRODUCTION 

 
1.1 Overview 

  

 Constant progress in integrated technology has occurred in recent years, involving 

extremely high numbers of transistors and interconnects and also improved performance [1]. 

Signal rise time and cycle time have decreased: consequently, the delay due to interconnects 

can no longer be neglected.  

 

 Interconnections may be found at the chip, package, and board levels, as well as at the 

assembly level, implying large differences of their density and size [2]. At the chip level, 

transmission lines connect an increasing number of gates depending on the scale of 

integration: small (SSI), medium (MSI), large (LSI), or very large (VLSI). The lossy coupled 

metal interconnects have width and height of about 4 and 3 m, respectively. At the package 

level, interconnections link the chip to the board as well as chips to eachother (for multichip 

modules MCM) using tape-automated bonding (TAB), pin grid array (PGA), ball grid array 

(BGA) or dual in-line packaging (DIP). The low-loss coupled metal lines are 1-10 mil wide 

and spaced at about 2-12 mil. Packaging needs to follow adequate guidelines to get short 

delays, high bandwith, and a large I/O count with a dense wiring and a compact size. 

Consequently, the high density creates signal integrity problems, including cross-talk, 

attenuation, distortion, reflections, dispersion, and radiation. The bandwidth limitations are 

also due to the skin effect, the non-TEM propagation, and propagation of higher order modes 

and parasitics.  

 

 For example, with current technology, both the CPU and the whole cache system may 

be included on one single microprocessor chip working at a high clock rate (up to 300 Mhz), 

involving, according to [3], from 4 to 9 million transistors and thus high-density wiring. 

Those transistors may be interconnected through a structure of between three and five layers. 

The high density implies also that interconnects have very small width and spacing (less than 

1e-6 m), and therefore high resistance (35 to 500 /cm).The interconnects between the 

processor and the cache including clock lines, control lines, and data lines may be of very 

long length (up to 1-2 cm). The resulting delay cannot be neglected since the line length is 

comparable to the signal wavelength (1.8 to 2.5 cm). Moreover, the fast switching speed and 

high density [1] create increased signal distortion, coupling between transmission lines, and 

electromagnetic interference (EMI). The use of computer-aided tools [4] for predicting those 
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losses in signal integrity linked to interconnects has become essential to understand the 

behavior of high-speed digital circuits. The simple model of capacitive load [3] may not be 

sufficient anymore for a transmission line of long length and high resistance. The entire 

distributed RLGC model (resistance, inductance, conductance, and capacitance) needs to be 

considered, involving the full electromagnetic properties of transmission lines. The terminal 

voltages and currents can be deduced accurately from this model. Moreover, transmission 

lines may present discontinuities like open-end terminations, bends, junctions, and vias [5], 

[6], especially in MCMs where the interconnects are often very closely packed.  

 

 The prototyping [2] of package interconnections involves the network extraction 

followed by electromagnetic modeling, determination of the circuit parameters, and lastly the 

definition of adequate simulation algorithms. The circuit can then be simulated with a 

software like SPICE or MDS. The modeling methods that can be used to characterize an 

interconnect are the finite element method (FEM), the partial element equivalent circuit 

method (PEEC), the finite difference time domain method (FDTD), and the method of 

moments (MoM). The simulation methods can employ scattering parameters [7], [8], model 

order reduction, or a difference model. Finally, optimization can be obtained using neural 

networks, genetic algorithms, or simulated annealing. 

 

 The circuit modeling [2] may be static (d/dt = 0) or dynamic (d/dt ‹› 0). The static 

analysis of a physical model considering the integral form of Maxwell’s equations implies the 

use of either Green’s function (in spectral domain or in closed form) or the PEEC method, in 

conjunction with solvers like MoM, the conjugate gradient method (CGM), or the fast 

multipole method. The charge distribution and the RLGC model can be deduced from there. 

However, if the static analysis considers the differential form of the Maxwell’s equations, 

then the method applied is the static FEM or the Method of Line (MoL), in conjunction with a 

matrix solver (sparse or full matrix technique). The potential distribution and the RLGC 

model are then deduced. The dynamic analysis may be done in time domain or in frequency 

domain. In frequency domain, the full-wave techniques yield E(f), H(f), which are the 

respective Fourier transforms of E(t), H(t). The dynamic circuit model R(f), L(f), C(f), G(f) 

can then be deduced. This model can be found similarly in time domain once the FDTD or 

TLM (transmission line method) yields to E(t), H(t). 

 

 The transmission line simulation [2] implies consideration of the telegrapher’s 

equations, the eigen analysis (E, H, m ), and determination of propagation parameters (Zm , 

Zc , Vm ). Three different methods can then be applied: the transform approach, the Green’s 
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function approach, or the open loop numerical integration method. Proficient transient 

simulation of transmission lines has been studied in the past [9]-[15]. It has been seen that the 

optimal approach [10] may be found by considering closely the formulation, the line 

characterization, the line model, and the transient simulation method used. The resulting 

optimal method [10] applies the ‘time-only formulation’ with terminal voltages and currents 

only, the open loop characterization, the device model (which can be directly incorporated 

into a circuit simulator as opposed to noncircuit models like scattering parameters), and 

transient simulation based on indirect numerical integration. This optimal simulation method 

has been applied to uniform [10] and nonuniform lines [16], [17]. 

 

 This thesis focuses on the actual modeling of transmission lines through the R, L, G, 

and C parameters. The complex geometries involved in the VLSI system [18] can be modeled 

in two dimensions as long as the cross-section of the conductors stays constant for a 

comparatively large distance. The four parameters R, L, G, C of quasi-TEM lines may also be 

computed statically with good accuracy because the transverse distribution of the fields at any 

time t will be nearly identical to that computed by static analysis. Consequently, XRLGC 

models the transmission lines statically, using the MoM method in conjunction with the 

closed-form Green’s function. The 2-D quasistatic modeling tool XRLGC can therefore  

compute accurately the electrical parameters of multilayered, multiconductor structures using 

those computationally efficient algorithms.  

 

1.2 The 2-D Quasistatic Modeling Tool XRLGC 
 

 The XRLGC package models a 2-D multiconductor transmission line in a multilayered 

dielectric medium by computing the four transmission line parameters R (resistance), L 

(inductance), G (conductance), and C (capacitance), as well as the charge and the potential 

distributions in this structure. The cross-section of the conductors may be strip-like, 

rectangular, or circular. It is assumed that the length of the conductors is long compared to the 

constant cross-section. The microstrip case as well as the stripline case may be handled by 

using the ground options accordingly (no ground, bottom ground only, or both top and bottom 

grounds). The output of XRLGC can also be used as an input to another program deducing 

voltages and currents along the transmission line [2]. 

 

 The 2-D quasistatic tool XRLGC uses the MoM in conjunction with the closed-form 

instead of the classical Green’s function. The long computation involved in determining the 

classical Green’s function in the spatial domain [18] is thereby avoided. Only one electrostatic 
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problem is solved in order to compute the capacitance matrix. The inductance matrix L is 

deduced from the equivalent capacitance problem. In addition, the charge distribution 

obtained during the computation of the capacitance matrix C and the inductance matrix L is 

used to deduce the resistance matrix R and conductance matrix G. 

 

 The original RLGC  package written by K. S. Oh in 1995 applies the same methods to 

model a multilayered, multiconductor transmission line. However, RLGC is made of three 

different programs: Mesh2D, V2D, and RLGC. Mesh2D creates the mesh file for a given 

conductor, V2D computes the potential distibution, and RLGC computes the R, L, G, and C 

parameters and the charge distribution of the structure considered. Consequently, the design 

of any structure with the package RLGC implies the multiple use of these three different 

programs. For example, Mesh2D needs to be called for each conductor of the structure. 

Similarly, a complex  input file needs to be completed for each structure considered, 

containing the detailed geometry and characteristic of each element, layer or conductor. The 

use of the package RLGC is therefore difficult and time consuming. 

 

  However, the program XRLGC presented in this thesis links the three programs 

together using a graphical user interface (GUI). This GUI has one main goal: to provide the 

user a way to use easily the very sophisticated modeling tool described above. The design 

[19] of GUIs for electromagnetic simulation tools results not only in user-friendliness, but 

also involves a significant increase in user productivity. First, the input data files don’t need to 

be typed by the user. They are automatically extracted from the drafting tool, which results in 

important time savings. The simulation is also usefully documented by the precise drawing 

involved in the design of the multilayered, multiconductor structure considered. Finally, the 

GUI allows the user to interactively run simulations and analyze the simulation results 

without concern for lower-level computer processing. XRLGC can therefore be used without 

any computer expertise. 

 

1.3  Structure of the Thesis 
 

 The ease of learning a GUI-based program makes it more accessible to new users. 

However, the accuracy of the results obtained through the interface is fixed by the simulation 

tool itself. In other words, the description of a GUI would be incomplete [19] without a 

detailed portrait of the electromagnetic tool involved, including capacities, limits, and 

reliability. Consequently, before getting deeper into the use of the graphical user interface 

itself, Chapter 2 will briefly present the methods implemented by K. S. Oh in his 2-D 



 

5

quasistatic modeling tool RLGC.  

  

  Among other important criteria [19], the GUI should be easy to use; it should comply 

to industry standards like X-Windows, thus escaping any hardware or software needs and/or 

compatibility problems; and it should involve online help on useful topics. The interface 

presented here possesses all these features. Nevertheless, without a good user manual, the user 

may occasionally be unsure of various technical details. Chapter 3 gives a quick overview of 

the essential topics, including the installation of XRLGC, the online help, the various menu 

options, and directions for the design of any interconnect structure. These guidelines may then 

be applied using the examples given in Chapter 4. 

 

 Because integrated circuit technology develops and changes rapidly, computer aided 

design (CAD) tools need to be capable of adapting quickly and efficiently to the future needs 

of the user. The comments and notes embedded in the source code might not always be 

sufficient to explain the whole program structure so that it can be proficiently improved. 

Consequently, Chapter 5 documents in detail the structure of the program XRLGC so that a 

C-developer can modify the source code adequately. 
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CHAPTER 2 
BACKGROUND 

 
2.1 Methods Implemented 

 

 The interconnects considered by XRLGC have a complex 2-D structure involving up 

to 20 layers and up to 20 conductors of small cross-section compared to their length. The 

cross-section shapes available for the conductor in XRLGC are the strip, the rectangle, and 

the circle. The limits given to the number of layers and conductors implied in the structure 

may be easily changed in the resource file. The XRLGC program may also be extended to any 

polygon-shaped conductor (cf. Section 5). 

 

 The RLGC parameters of an interconnect are computed accurately in the XRLGC 

program by using the following methods [18], [20]. Capacitance C is determined using the 

MoM associated with the closed-form Green’s function, avoiding the use of numerical 

integration or nested infinite sum involved in the classical, full Green’s function. Inductance L 

is deduced from the equivalent capacitance problem. The charge distribution obtained during 

the computation of C and L is used to deduce resistance R and conductance G. In other words, 

no additional electrostatic problem is solved in the process. The model of the diagonal 

resistance matrix has been chosen because it is not as sensitive to the choice of the current 

excitation as is the usual nondiagonal resistance matrix. Both losses on conductors and ground 

planes are taken into account in the computation of R. MoM will be briefly explained, and its 

application to the capacitance computation presented. The methods used for the computation 

of the three other matrices L, G, and R will then be introduced succinctly. Finally, the 

closed-form version of the Green’s function used in MoM will be defined in the last section. 

 

2.2 Method of Moments  
 

2.2.1 Basics 

 

 MoM [2] basically consists of solving 

 

  L á f é g          (1) 

where L is an integral or differential operation, f is an unknown function, and g is a known  

function. We will see how this problem exactly fits the electrostatic field problem, where L is 

the Green’s function G, f is the charge distribution p, and g is the potential . 
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 The first step in MoM involves expanding the function f in a set of basis functions Bn, 

which leads to 

 

  
f 3  

n 

n B n 

         

  (2a) 

  
3  
n 

n L á B n é g 
        

  (2b)   

 

 In addition, the inner product of Equation (2b) with a set of test functionsTm  

develops into 

 

  
3  
n 

n T m , L á B n é  T m , g 
       

 (3) 

 

 Equation (3) may also be understood as the matrix equation  

 

  l mn n  g m         

 (4a) 

 

where lmn  and gmn  are defined by 

 

  l mn  T m , L á B n é         (4b) 

  g m  T m , g          (4c) 

 

 The unknown parameters [m ] may be obtained by inverting the known [lmn ] matrix 

and taking its product with the known vector [gm ]. However, the computationally expensive 

matrix inversion may be avoided by using alternate methods [21]. 

 

 Moreover, both the matrix [lmn ] and the vector [gm ] depend of the sets of basis and 

test functions, which in general are chosen to be equal. Examples of commonly used functions 

are given in  

  

x n 1 x n 

B n á x é 
:  
; 
< 

= = = 

= = = 

1          x
n 
 

2 
x   x

n 
 

2 
 

0                        Otherwise        (5a) 
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B n á x é 

:  
; 
< 

= 
= = 

1  x          x
n 
x  x

n 


0                        Otherwise        (5b) 

 

 

where (xn ) is an array of real number. Once the sets of basis and test functions have been 

chosen, the matrix Equation (4a) may be solved, and the unknown function f is easily deduced 

from Equation (2a). 

 

2.2.2 Application to a simple electrostatic field problem  

 

  If we apply MoM to a 1-D electrostatic field problem [2], we get 

  œ A D q          (6a) 

  E œ A          (6b) 

 

which leads to 

  
œ 2 A 

q 
          

 (6c) 

  
I  G á x | x ' é q á x ' é dx'

       (6d) 

 

 In Equation (6d), the Green’s function G(x,x’) and total potential  are known, while 

the charge distribution q(x’) is unknown. This is equivalent to Equation (1), where L is the 

Green’s function G, f is the charge distribution q, and g is the potential . 

 

2.3 Capacitance Matrix 

 

 For the sake of simplicity, the MoM documented in Section 2.2 was only applied to 

1-D electrostatic field problems, the unknown charge distribution being only a function of x. 

If the charge distribution considered was two or three dimensional, the principle would stay 

the same. For instance, in the 2-D domain [18], the relationship between the potential (r) 

applied on a conductor and the charge q() accumulating on the surface of the conductor is 

given by  

 

  
á r é I  


G 2 D ( | ' ) q ( ' ) dr'  G 2D, q 

     (7)
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where  is the contour of all the conductors, ground excluded, and G is the closed-form 

Green’s function. Consequently, the generic form of integrations involved in the construction 

of the moment matrix for the 2-D electrostatic problem  is  

 

  
I  


t 

I  


s 

T á é G 
2 D 

á | s é B á s é d 
s 
d 

      (8) 

 The functions T and B are the testing and basis functions which have been seen in the 

above 1-D MoM. The segments ls  and lt  correspond to the source line and the testing line, 

respectively. The double integration is then reduced to a single integration using the method 

of collocation with pulse-type basis functions and a testing point pc  located at the center of 

the testing segment: 

 

  
I  


s 

G 2 D 
á c | s é d s 

        (9)

  

 Now, according to [18], if we apply MoM to the integral equation (7) by 

approximating each conductor with a polygon and by expanding the charge density in a set of 

basis functions, we obtain 

   

  

V P 
1 

V P 
2 

C 

V P 
N 

c 



M 1 , 1  M 1 , 2   C  M 1 , N 
c 

M 2 , 1  M 2 , 2   C  M 2 , N 
c 

M N 
c 
, 1  M N 

c 
, 2   C  M N 

c 
, N 

c 

q P 1 

q P 2 

C 

q P N 
c                

(10a)  

where: 

  

V P 
i  V i   þ   V i 

T 
á length N i é 

q P i  q i 1   þ   q i N 
i 

T 

á length N i é 

M i , j p , q 
I  

j 
q  

G 2 D á i , p 
c | s é d s á size N i xN j é

              
(10b)  

 Here, Nc  is the number of conductors considered in the structure. For a given 

conductor i, Ni  is its number of basis functions, Vi  is its voltage relative to the ground, qij  

is the coefficient of qi  according to the jth  basis function, iq  corresponds to the qth  line 

segment, and i,jc  is the center point of the jth  basis function used in the point matching 
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technique.   

 

 The charge distribution can then be deduced by solving Equation (10). Consequently, 

the total charge Qi  of the conductor i may be expressed as a function of the length and the 

charge density of each line segment: 

 

  
Q i 

N 
i 

3  
j 1 

l i j q i j 
         (11) 

 The capacitance matrix is then deduced immediately by solving 

  

  

C 

V 1 

C 

V N 
c 



Q 1 

C 

Q N 
c         (12)

  

 where Vi  is the voltage of the conductor i relative to the ground. 

 

2.4 Inductance Matrix 

 

 The MoM applied to a 2-D electrostatic problem gave in Section 2.3 the charge 

distribution q(), from which was deduced the total charge Qi  for each conductor and, 

therefore, the capacitance matrix C. According to [18], the solution of 2-D magnetostatic 

problems (Equation (13)) can often be found by considering the equivalent electrostatic 

problem with V =  where i  is the magnetic flux difference between the ith  signal 

conductor and the reference conductor. 

 

  L I 1 

         (13)

  

 

 If Qeq  and Ceq  are the charge and capacitance matrices found in (11) and (12) as a 

solution to the equivalent electrostatic problem defined above, the inductance matrix L can 

easily be computed by solving  

 

  

I c 2 Q eq   

L 
1 

c 2 C 1 
eq

         (14)
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2.5 Conductance Matrix 

 

 Because conductance matrix G models losses due to the dielectric, it can be computed 

by applying N voltage excitations to the multilayered, multiconductor system, where N is the 

number of modes, and by observing the resulting shunt current [18]. 

  

 If we consider N independent voltage excitations Vj and the corresponding matrix V, 

the conductance matrix G can be computed by solving  

 

  

G I s V 1 

I s 
i , j I  

c 
i 

q j á ' é á ' é á ' é d '
      (15) 

where Ii,j  is the shunt current created by Vj  on the ith conductor. 

 

 The charge distribution qi (’) of the lossy system can be approximated by the charge 

distribution of a lossless system defined in part 2.3; therefore, no additional electrostatic 

problem needs to be solved. The shunt current Ii,j  may be deduced from the charge 

distribution, and Equation (15) leads immediately to the conductance matrix G. 

 

 

2.6 Resistance Matrix 
 

 For low frequencies, the diagonal resistance matrix is obtained simply by considering 

the inverse of the conductivity multiplied by the cross-section of each conductor. However, 

both edge and proximity effect appear at high frequency, resulting in a nonuniform current 

distribution on each conductor and in an increased complexity for the resistance matrix R 

[18]. 

 

 Nevertheless, even for high frequency, the resistance matrix is assumed to be diagonal 

[18]. This diagonal matrix does not model power losses as accurately as the nondiagonal 

matrix, but it is less sensitive to the current distribution considered and therefore more 

adapted to the calculation of the resistance matrix R. Losses due to the ground planes as well 

as to the conductors are taken into account in this matrix. 

 

 If we consider the total power loss Pi  due to the serie of conduction current vectors 
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Ici in the multiconductor structure, the diagonal resitance matrix R is given by  

 

  á I P c 
i é R I P c 

i P i          (16)

  

 
where Rs,j  is the surface resistivity of the jth  conductor and the conduction vector and 

power loss are given by 

 

  

I P c 
i j 
I  

c 
j 

J c 
i á ' é d ' 

P i 
N 

3  
j 1 

I  
c 

j 

R s , j J c 
i á ' é 

2 
d '

R s , j 
f 
j        (17)

  

 Once the power loss and the conduction current vector are known, the diagonal 

resistance matrix R may then be deduced from Equation (16). Nevertheless, according to [18], 

this last equation may still be simplified by noting that R is a diagonal matrix and that it may 

be replaced by a vector containing the diagonal element of R only. 

  

2.7 Closed-Form Green’s Function 

 

 The program XRLGC uses the closed-form Green’s function [18] instead of the 

traditional Green’s function, in order to avoid the numerical integration of a nested infinite 

sum involved in using an integral equation with the classical Green’s function [22]-[25]. An 

additional simplification is performed by considering real instead of complex exponential 

functions [26] in order to approximate the real Green’s function in the spectral domain. If the 

Green’s function is replaced by its closed-form version in Equation (8) in Section 2.3, we get 

the closed-form integration formula used in XRLGC for the construction of the moment 

matrix.  

 

 The closed-form Green’s function for a multilayered dielectric medium is obtained by 

approximating the spectral-domain Green’s function with real exponential functions, and by 

inverting it analytically to the space domain. Because MoM is already an approximate way of 

solving an integral equation, it is not necessary to have perfect precision for the Green’s 
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function G, and a moderate number of exponential functions (5 to 7) was generally sufficient 

to solve most problems. The method used by K. S. Oh [18] to get the expression of the 

closed-form Green’s function is summarized below. 

 

 As shown in Fig. 2.1, the coordinates (xo ,yo ,zo ) indicate the position of the source in 

the mth  layer, and the coordinates (x,y,z) indicate the point of computation of the Green’s 

function in the nth  layer. The length dn  corresponds to the distance between the top of the 

nth  layer and the optional bottom ground plane, and n corresponds to the permittivity of the 

nth  layer. 

 

 We will first consider the simple case involving a multilayered structure with no 

ground or one bottom ground only. In this case, the exponential approximation may be 

directly applied to the spectral domain expression of the Green’s function, leading to 

 

  

G ˜ ( , y | r o ) 
1 

2 
m 
á K 1 á , m , n é e 

( y y 
o 
2 d 

n 
) 
K 2 á , m , n é e 

( y y 
o 
2 ( d 

m 1 
d 

n 
) ) é 

          1 
2 

m 


ä 
ã K 3 á , m , n é e 

( y y 
o 

) 

K 4 á , m , n é e 
( y y 

o 
2 d 

m 1 
) ë 
í 

 
  (18)  

 for y > yo. The expression found for the case y < yo is similar. 
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Fig 2.1: Multilayered dielectric medium 
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  The four coefficient functions  Ki, i = 1 to 4 (m,n,) of the spectral-domain Green’s 

function can be approximated by the exponential form given in 
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 (19)  

where m and n correspond to the layer where the source is located and to the layer where G2D  

is being evaluated, respectively, and Nm,n,i is the number of exponential functions used in the 

approximation. For more details concerning the evaluation of the coefficient functions, refer 

to [18]. 

 

 Once Equation (18) of the spectral-domain Green’s function is analytically inverted 

into the space domain, the final expression obtained for the closed-form Green’s function is 

given by  
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where for i = 1, 
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 Similar expressions for the functions fi+/-  with i = 2, 3, and 4 may be found easily.  

 

 When there is both top and bottom ground, the expression for the spectral-domain 

Green’s function will be similar except that the four coefficient functions Ki+/- (,m,n) have a 

pole at = 0 that must be extracted before the approximation through real exponential 

functions [18]. The spectral-domain Green’s function may hence be written as the sum of two 

terms:  
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where G’ corresponds to the case of no ground or only one bottom ground, which has been 

seen previously, and Gh  corresponds to an homogeneous medium between the top and 

bottom grounds. According to [18], Gh  is given by  
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 The closed-form Green’s function has therefore been evaluated for all cases involving 

no ground, only one bottom ground, or both bottom and top grounds. 
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CHAPTER 3 
OVERVIEW OF XRLGC 

 

 This overview will help the user to manipulate the program XRLGC easily and 

efficiently. The first section will document the installation of XRLGC . The second section 

will then describe the use of the online help dialog. The third section will go into more detail 

about the different options given by the menu, including file managing in the file menu, units, 

quality and scale options in the edit menu, and finally displaying the results through the view 

menu. The design of a multilayered, multiconductor structure with the help of the interface 

will also be studied in the last section.   

 

3.1 Compiling and Running XRLGC 
 

 The program XRLGC may be compiled by following the subsequent instructions. 

First, in order to unzip the file, the user needs to type  

 

>gzip -d XRLGC.tar.gz 

>tar -xvf XRLGC.tar  

or:  

>tar -zxvf XRLGC.tar.gz. 

 

 Second, in order to compile the program on an HP workstation, the user will type 

these additional commands. 

 

>make -f Makefile_HP  

or:  

>cp Makefile_HP Makefile 

>make  

 

 Third, in order to run the program, the user may simply type 

 

>XRLGC&. 

3.2 Using the Help Dialog 
 

 Once the program XRLGC is successfully compiled and running, the next important 
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step is to look at the help menu, which gives the option to use either an index or a context 

sensitive help dialog. In order to use the latter, the user may press the ‘Context Sensitive 

Help’ option of the help menu. The mouse arrow will take the shape of a question mark. The 

user may then use the mouse to click on the desired element (a pushbutton, a menu option, 

etc.). The help dialog will open and tell the user more about this particular element.  

 

 In Fig. 3.1 one can see for example some instructions about the command ‘Exit’: 

according to the help dialog, the option ‘Exit’ in the file menu allows the user to quit the 

program. The help dialog also advises the user to save every modification in the circuit before 

using the command. Such information is available on every option available through the menu 

or through any other element (action buttons like ‘Clear,’ ‘Plot,’ ‘New Conductor,’ the 

drawing area itself, and more). When the user is done reading the corresponding instructions, 

the ‘dismiss’ button will close the help window. 

Dismiss

Help Dialog

Menubar 
File 
--- New 
--- Open 
--- Save 
--- Mesh 
--- Solve 
 
--- Exit

Help on 
    --- Exit 
 
Basic Information: 
 
    The option ‘Exit’ in the File Menu  
allows the user to quit the program. The 
 user should save any modification in the  
circuit before using this command.                     

 
 

Fig. 3.1: Help dialog 

 In order to use the index, the ‘Using Help’ option of the help menu should be selected. 

The same window as for the ‘Context Sensitive Help’ will appear on the screen. The user just 

needs to choose the desired element in the left-hand list. The corresponding information 

should appear on the right-hand side of the dialog. 

 

3.3  Using the Menu 

 

3.3.1 Introduction 

 

 After getting more familiar with the XRLGC program and the different options 
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through the help dialog described above, the user may try to look at the menubar located at 

the top of the GUI. The menubar shown on Fig. 3.2 includes the file, edit, view, and help 

menus. The help menu has already been seen in detail in the preceding section, so we will 

concentrate here on the three first menus: file, edit, and view. 

New Units

File Edit View Help

Open

Mesh

Solve

Exit

Save

Context Sensitive Help

Using Help

Product Information

RLGC

Quality

Scale

 
 

Fig. 3.2 : XRLGC menubar 

 

3.3.2 File menu 

 

 The file menu allows the user to create, open, or save a file, or to run a simulation on 

the data implied.  The option ‘New’ in the file menu allows the user to create a new circuit. 

For a circuit called ‘Example,’ five files may be created using options ‘Save’ and ‘Solve’: 

‘Example’ contains the structure of the circuit (layers and transmission lines); ‘Example.in’ 

contains the input file for RLGC; and ‘Example.out,’ ‘Example.Q2D,’ and ‘Example.V2D’ 

contain the result of the solving process (RLGC matrix, Charge and Voltage distribution). 

Moreover, mesh files containing the mesh for each conductor inside of the structure may be 

created. In order to simplify the notations, this paper will always use the name ‘Example’ for 

the circuit considered, unless otherwise indicated. 

 

 The option ‘Open’ in the file menu allows the user to open a circuit that was originally 

created with the program XRLGC. Only the file ‘Example’ is needed to open a circuit. If this 

circuit has already been simulated, the files ‘Example.out,’ ‘Example.Q2D,’ and 

‘Example.V2D’ will also be available to the program, and the user may view the 

corresponding RLGC matrices through the menu ‘View-RLGC.’ If desired, the circuit can be 

simulated again with other options, increasing for example the number of basis functions and 

therefore the quality of the simulation, or simply by modifying the multilayered, 



 

20

multiconductor structure.  

 

  The option ‘Save’ in the file menu allows one to save the circuit currently being 

worked on in the ‘Example’ format. This command can only be used after having either 

created a new file or opened an already-existing file. The user does not need to save the 

circuit displayed on the drawing area except to keep it for future use: once the circuit is saved, 

it may be opened and modified any time using the option ‘Open’ in the file menu. 

 

 The option ‘Mesh’ in the file menu enables the user to create the mesh files for all the 

conductors of the circuit. However, the number of basis functions per side has to be defined 

first in the menu ‘Edit-Quality’ (cf. Section 3.4.2).  Once the quality of the simulation has 

been defined, the user may start the mesh creation using the ‘Mesh’ option in the file menu. 

An information window will warn the user when the mesh creation is done. There are three 

types of mesh files: strip.mesh, rect.mesh, and circle.mesh, depending on the shape of the 

conductor. One file will be created for each conductor involved in the structure. For example, 

if the structure includes two rectangular conductors and one circular conductor, the files 

created will be ‘rect1.mesh,’ ‘rect2.mesh,’ and ‘circle3.mesh.’ 

 

  The option ‘Solve’ in the file menu allows the user to run the simulation on the circuit. 

It will use as an input the circuit displayed in the drawing area and the mesh files created by 

the option ‘Mesh.’ Consequently, the mesh creation should be done before running the 

simulation with ‘Solve.’ Once the option ‘Solve’ has been chosen, the program XRLGC will 

start to compute the R, L, G, and C parameters of the structure considered. As soon as the 

RLGC simulation is done, a new custom dialog will appear on the screen. This dialog allows 

the user to specify the window used for the potential simulation. The user will also decide 

which conductor should be excited, and the number of points that should be used in the x and 

y directions. Having typed in the corresponding information, the user may click on the button 

‘OK’ of the potential simulation dialog. This allows the program XRLGC to complete the full 

simulation. However, if instead the button ‘Cancel’ is chosen, then the potential distribution 

will not be computed. Once the simulation is done, an information window will warn the user 

that the circuit has been solved. Charge and potential distribution will then be available in the 

files ‘Example.Q2D’ and ‘Example.V2D.’ The RLGC matrix will be available in the file 

‘Example.out,’ but it may also be displayed using the command ‘View-RLGC’ on the menu. 

 

 The option ‘Exit’ in the file menu allows the user to quit the program. The user should 

save any modification in the circuit using the option ‘File-Save’ before using this command. 
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Any modification of the circuit that has not been solved using ‘File-Save’ will be lost once the 

user exits the application. 

 

3.3.3  Edit menu 

 

 The edit menu enables the user to modify some important parameters, like the units 

used as reference, the scale of the drawing area, and the precision of the simulation. The 

option ‘Units’ in the edit menu allows the user to modify the units used as reference 

concerning length, capacitance, inductance, and resistance. The default length units are 

millimeters. If the length unit is modified, absolutely all the distances used in the circuit will 

be changed to those new units—the distance defined for the structure before as well as after 

this modification. Obviously, the circuit displayed on the drawing area will not change 

because proportions are maintained. 

 

  The option ‘Quality’ in the edit menu allows the user to modify the speed of the 

simulation and therefore its precision. The user determines the number of basis functions used 

for the mesh construction. This number is valid for all the conductors involved in the 

structure. The minimum and maximum numbers that may be considered are five and one 

hundred basis functions per side, the default value being five basis functions per side. This 

number defines the quality and speed of the simulation. The higher the number, the slower 

and more precise the simulation. The lower the number, the quicker and more imprecise the 

simulation. Obviously, this choice should be done before the mesh is created. 

 

  The option ‘Scale’ in the edit menu allows the user to zoom in on the lower left part 

of the drawing area by choosing the size of the window. The default value Xmax  = Ymax  = 

100 (default unit: mm) may be modified through the scale dialog. 

 

3.3.4  View menu 

 

 The view menu enables the user to display the result of the simulation. The option 

‘RLGC’ in the view menu opens a window that displays the RLGC matrix of the circuit. This 

menu may be improved by adding two options: charge and potential distribution. For now, 

those results are only available through the ‘Example.Q2D’ and ‘Example.V2D’ files. 

  

3.4 Design of a Multilayered, Multiconductor Structure 
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3.4.1 Introduction  

 

 Now that each option of the menu has been clearly identified, it is time to see how to 

use XRLGC to actually design a multilayered, multiconductor structure. We will consider the 

different design options below, then see actual examples in Section 4.  

 

 The interface is divided into four main parts: the menu on the top part, the drawing 

area on the right and two adjacent columns on the left part. The first column on the left, called 

the ‘layer’ column, is used to design the dielectric layers of the structure considered. The 

second column, called the ‘conductor’ column, is used to add the conductors to this structure. 

These two columns allow the user to specify diverse characteristics for both layers and 

conductors: shape, as well as material, size, and position. They also allow the user to create 

new conductors and layers, to display or ‘plot’ them, to erase them, or to modify them.  

 

 The layer and conductor columns on the left of the interface have a very similar 

structure, including analog options and design techniques. Multiple buttons—like ‘Plot,’ 

‘Erase,’ ‘<—,’ or ‘—>’—are included in both columns, and they act the same in both 

columns, except that the buttons on the layer column deal only with dielectric layers while the 

buttons on the conductor column deal only with the conductors. There may be some slight 

differences between them, which will be explained in detail in the paragraphs below. We may 

now consider in more detail all the different options that will allow the user to design the final 

multilayered, multiconductor structure.  

 

3.4.2 Design options 

 

 The option ‘New Conductor’ located on the conductor column allows the user to 

create a new conductor of the shape chosen beforehand (strip, rectangle, or circle). ‘Strip’ is 

the default value. Once the user has created this new conductor, the right characteristics can 

be inserted in the proper places (width, height, and origin (x,y)). The conductor can then be 

displayed using the pushbutton ‘Plot.’ The user can also draw with the mouse directly on the 

drawing area. Similarly, the option ‘New Layer’ located on the layer column allows the user 

to create a new layer. Afterwards, the user should insert the corresponding characteristics in 

the layer column (width, height, origin (x,y), relative permittivity and resistivity ). The 

dielectric will be displayed on the drawing area using the Pushbutton ‘Plot.’ The user can also 

draw with the mouse directly on the drawing area. However, the different dielectrics will 

always lie on top of each other.  
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 Once the conductor (or the layer) is displayed on the screen, it is always possible to 

modify it again by correcting the corresponding data on the interface (dimensions, shape, 

origin, or other characteristics) and pressing ‘Plot’ again. However, if other conductors (or 

layers) have been created using ‘New Conductor’ (or ‘New Layer’), it is possible to go back 

to this first conductor (or layer) by using the arrows, and then correct the desired data as 

described above. The corrected conductor (or layer) will be displayed by pressing ‘Plot’ once 

again. In other words, the user has permanent access to the whole structure. The left arrow 

‘<—’ on the conductor column will allow the user to go back to the conductors of the same 

shape (strip, rectangular, or circular) that have already been displayed and to modify their 

main characteristics including their width, height, and location (x,y). Similarly, the 

pushbutton ‘<—’ on the layer column allows the user to go back to already-created layers and 

to modify their characteristics (width, height, location (x,y), resistivity, and permittivity). The 

right arrow ‘—>’ allows the user to go forward again, assuming that the pushbutton backward 

‘<—’ has already been used.  

 

 For conductors, the combination of these two functions in the conductor column 

(‘—>’ and ‘<—’) allows the user to go back and forth between the different conductors of the 

same shape (strip, rectangular or circular) and to modify their characteristics (width, height, 

and location (x,y)). Similarly, the combination of these two functions on the layer column 

allows the user to go back and forth between the different layers displayed and to modify their 

characteristics (width, height, location (x,y), resistivity, and permittivity). 

 

 The pushbutton ‘Plot’ allows the user to display the conductors/layers in the drawing 

area. Once the characteristics of a conductor/layer have been modified using the left and right 

arrows, the user may push ‘Plot’ to see those modifications on the screen. The pushbutton 

‘Erase’ allows the user to erase one conductor (or layer) in the drawing area. The user should 

use the left and right arrows to select the right conductor (or layer).  

 

 

3.4.3 Using the mouse 

 

 The Drawing area will display layers and conductors of different shapes (strip, 

rectangular or circular) according to the wishes of the user. Two methods may be used: (1) 

The conductors and the layers may be drawn directly on the screen with the mouse (press 

‘New Conductor’ or ‘New Layer’ to go back and forth between both, and choose the shape of 



 

24

the conductor as desired). (2) They can also be automatically drawn according to the 

parameters given by the user on the left of the drawing area. After choosing width, height, and 

position of the element, just press ‘Plot.’ 
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 CHAPTER 4 

EXAMPLES OF APPLICATION 
 

 The third chapter presented a quick overview of XRLGC. Those guidelines may now 

be successfully applied with a few hands-on examples given in this chapter. We assume in 

these examples that the program has already been compiled according to the instructions in 

Section 3.2. Note that this interface saves more time as the structure considered gets more 

complex. In the first example we will consider a very simple structure: a single layer with a 

single microstrip line. In the second example we will consider a slightly more complex 

structure involving two layers and three identical rectangular conductors. Finally, the third 

example shows useful options including file management and modification of a given 

structure. 

 
4.1 Starting XRLGC 
 

 Once the program is compiling, XRLGC may be started by typing in the command 

line 

 

> XRLGC&. 

  

 A small window should appear on the screen, describing succinctly the program (see 

Fig. 4.1). Once the information is displayed, click ‘OK’ to get to the main program. The main 

window will then appear on the screen (see Fig. 4.2). Note the presence of a drawing area on 

the right-hand side, where the simple structure will be drawn. The left part of the interface is 

divided into the layer column and the conductor column, as shown in Chapter 3. Those two 

columns are essential to the design of the multilayered, multiconductor structure. 

 

4.2  A Single Microstrip Line 
 

4.2.1 Hypothesis and geometry considered 

 

 We consider the structure shown in Fig. 4.3. It is assumed that the line is infinitely thin 

and the number of basis function is 50.  
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Introduction

Introduction to RLGC Program
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Last Modification July 97

 
 

Fig 4.1: Introduction window 
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Fig 4.2: Main window 
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   Fig. 4.3: A single microstrip line 

 

 

 The following description should be done for every structure considered: 

 
Geometry and material : 
 
 one conductor: 
  strip, width: w = 3 mm, material: Fe 
  (x,y) = (15,5) 
 one dielectric layer: 
  height: h = 5 mm, material: Fr4 ( permittivity = 4.3 o, conductivity = 0) 

  

 This is a very good way to summarize the main characteristics of a given interconnect. 

The geometry and the material of each conductor and of each layer should be included when 

there is more than one conductor and more than one layer. The coordinates (x,y) of the 

lower-left corner of each conductor should be included as well. In the case of the strip, the 

value given to x is arbitrary because it is the first conductor. The value of y is deduced from 

the height of the first layer: y = h = 5 mm. Once this description is done, the design of the 

structure itself with the program XRLGC should be extremely simple. 

 

4.2.2 Creating a new file 

 

 The option ‘New’ in the file menu allows the user to create a new file with the help of 

a custom dialog (Fig. 4.4). Once the dialog appears on the screen, the user may type the name 

of the file to create, for example, ‘Microstrip’ and then choose ‘OK’ to close the window. 

Another option would be to open an already existing file using the option ‘Open’ in the file 

menu. This will be seen in Section 4.5. 

Ok Cancel Help

Name of new File:

New File

Microstrip
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Fig. 4.4: New file window 

 

4.2.3 Drawing the structure 

 

 In this example, the structure has only one bottom ground, so the option ‘bottom 

ground only’ on the layer column (Fig. 4.5), which is located on the left-hand side of the 

interface, should be chosen. Next, the unique layer will be created by selecting ‘New Layer.’ 

In order to get layers lying on top of each other, the (x,y) coordinates of the dielectric layer are 

automatically completed for each new layer created. Consequently, this first layer has 

coordinates (0,0). Second, the characteristics of the bottom layer (h = 5 mm, Fr4) should be 

completed on the form located towards the bottom of the layer column (Fig. 4.5). The user 

should select the option ‘Fr4’ among the various material located at the top of the layer 

column. The permittivity and conductivity of Fr4 (1 = 4.3o, = 0) will be automatically 

completed by the program on the form located at the bottom of the layer column. The user 

should then 
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Fig. 4.5 
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manually complete the dielectric height value in this same form. The button ‘Plot’ allows the 

user to see the new layer displayed on the drawing area. 

 

 The conductor column (Fig. 4.5) will be used next in order to design the strip itself. 

This part of the interface is located on the left of the drawing area and towards the center of 

the interface. First, the shape of the conductor is chosen among the four possibilities (strip, 

rectangle, circle, polygon) at the top of the conductor column. In our case, a microstrip line is 

a strip conductor placed on top of the dielectric; therefore we choose the shape ‘Strip.’ Once 

this is done, the new strip may be created by selecting ‘New Conductor.’ In order to draw a 

strip, some information about this conductor is needed: its position (x,y), its dimensions 

(width), and the material used. In Example 1, the width of the conductor is w = 3 mm, the 

position (x,y) = (15 mm, 5 mm), and the material is iron. Once this information is given, the 

user may click on ‘Plot’ to see the strip appear on the drawing area. Now that the structure is 

completely drawn on the screen, one can go to the next step: saving and starting the 

simulation. 

 

4.2.4 Saving changes and creating the mesh files 

 

 First of all, the option ‘Save’ in the file menu should be selected in order to save the 

new file ‘Microstrip.’ Then, before starting the simulation, the user should select ‘Quality’ 

from the edit menu and indicate 50 basis functions (Fig. 4.6). The mesh file for the strip will 

then be created, according to the number of basis functions chosen, by selecting the option 

‘Mesh Creation’ in the file menu. Shortly thereafter, the user will see a small window stating 

that the mesh has been created (Fig. 4.7). This working window may be closed by simply 

pressing ‘OK.’ Two new files have been created: ‘Microstrip’ and ‘strip1.mesh.’ 

 

4.2.5 Starting the simulation and looking at the results 

 

 The user may now choose the option ‘Solve’ from the file menu to simulate our single 

microstrip structure. Both RLGC parameters and potential distribution will be determined 

through this simulation. Once the RLGC simulation is finished, the potential simulation will 

begin. A new custom dialog will open, asking for the window coordinates used in the voltage 

simulation, the number of points in each direction, and the excited conductor number (see Fig. 

4.8).
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Ok Cancel Help

Specify the Quality of the Simulation

The Simulation may run faster or be more precise 
 according to the desire of the user.  
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create the Meshfiles 
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Quality of the Simulation
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 Fig. 4.6: Quality of the simulation 

  

  

 

Ok Cancel Help

Working Dialog

Mesh Created

 
 

Fig. 4.7: Mesh creation window 
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 If the user does not want to consider this second simulation but would prefere to look 

at the RLGC simulation results right away, it is possible to skip this part by pressing ‘Cancel’ 

instead of ‘OK’ in the voltage window. In the example given in Fig. 4.8, the bottom left 

corner of the simulation window is (0,0) and the top right corner is (10,10). The number of 

points in each direction is equal to 10. Furthermore, the microstrip is chosen to be the excited 

conductor. The conductor number corresponds to the order in which it has been created and 

displayed on the drawing area. The microstrip has been created first, and it is the only 

conductor present in the structure, so the conductor number of the microstrip is simply 1. 

 

 Once the necessary data is filled, the user shall click ‘OK.’ The simulation will then 

begin. Shortly thereafter, the user will see a small window stating that the simulation is done. 

The main results can be seen by choosing the option ‘RLGC’ in the view menu. A new 

window will then display the four matrices R, L, G and C (see Fig. 4.9). The potential 

distribution may be read in a separate file, ‘Microstrip.V2D.’ Refer to Section 5.1.3 for more 

information about the format of the ‘.V2D’ output files.  

 

 

 



 

34

x y0 0

1010
yx

Bottom Left

Top Right

Window Coordinates

Nx 10

Ny

x direction

y direction

Number of Points

10

1

Excited Conductor Number

N

Window used for the V2D Simulation

Ok Cancel Help

Voltage

 
 

Fig. 4.8: V2D simulation dialog 
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Ok Cancel Help

Capacitance Matrix (pF/m)

Inductance Matrix (nH/m)

Conductance matrix (S/m)

Resistance matrix (ohm/m)

RLGC matrix

5.20862e+02

0.00000e+00

6.43547e+01

1e+09  0.00000e+00

 
 

Fig. 4.9: RLGC custom dialog for the microstrip case. 

 

4.3 Three Conductors in a Layered Medium 
 

4.3.1 Hypothesis and geometry considered 

 

 Example 1 with one layer and one conductor showed the basic features of the GUI. 

This example will study the design of multilayered and multiconductor structures. We 

consider the structure shown in Fig. 4.10. We assume that the three rectangular conductors are 

identical, and the number of basis functions per side is chosen equal to 50 for each conductor. 
The coordinates (xi ,yi ) of the three conductors can easily be deduced from Fig. 4.10, as will 

be seen in Section 4.3.3.  
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Fig. 4.10: Three rectangular conductors in a two-layer structure 

 

 

The structure may be described as in Example 1 in Section 4.2.1: 

 
Geometry and material: 
 
 three identical conductors: 
  width: w = 10 m, height: h = 3 m, spacing: s = 5 m, and material: Cu 
  (x1,y1) = (0,10) m 
  (x2,y2) = (15,10) m 
  (x3,y3) = (30,20) m 
 two dielectric layers 
  first layer: height h1 = 10 m, material Fr4 (1 = 4.3o, = 0) 
  second layer: height h2 = 10 m, material Si (2 = 3.9o and = 0.0016) 

 

4.3.2 Starting  

 

 The user may start as described in Section 4.2. However, if XRLGC is already loaded 

and a different circuit is displayed on the drawing area, three steps must be carried out. First, 

save this circuit by selecting ‘File-Save’. Then, clear the drawing area by clicking on the 

‘clear’ button located towards the bottom of the interface. Finally, create a new circuit by 

selecting ‘File-New’ and naming the circuit—for our purposes, ‘ThreeRect.’  

 

4.3.3 Designing the circuit 

 

 The first modification that needs to be done in this circuit is as follows. The user 
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changes the default length units to microns instead of millimeters. The user selects the option 

‘Edit-Unit’ from the menu to open the corresponding dialog (see Fig. 4.11). Once the unit 

window is open, the user selects ‘Um’ for the length unit (‘Um’ stands for microns) and clicks 

OK. All the dimensions appearing in the GUI will then be microns by default.  

 

 In this example, the structure has only one bottom ground, so the option ‘bottom 

ground only’ should be chosen. Next, two layers will be created by using the layer column on 

the left-hand side of the interface. First, the user should select ‘New Layer’ to create the 

bottom layer. The user may note that the (x,y) coordinates of the dielectric layer are 

automatically completed for each new layer created, in order to get layers to lie on top of each 

other. Consequently, the first layer has coordinates (0,0), the second layer has coordinates 

(0,h1 ), and the nth  layer (0,n_hi ), where hi  is the height of the ith  layer. XRLGC 

cannot compute the parameters of interconnects involving a more complex dielectric 

structure. In order to have a successful simulation, the user should therefore not change the 

coordinate values (x,y) located at the bottom of the layer column. 

 

 Second, the characteristics of the bottom layer (h1  = 10, Fr4) should be completed 

accordingly. The user should select the option ‘Fr4’ from the material located at the top of the 

layer column. The permittivity and the conductivity of Fr4 (1 = 4.3o , = 0) will be 

automatically completed by the program on the form located at the bottom of the layer 

column. The user should then manually complete the dielectric height value in this same 

form. The button ‘Plot’ allows the user to see the new layer displayed on the drawing area 

(Step 1 of Fig. 4.12).  

 

 

 K MResistance

Units

pH nH HInductance

Um mils mmLength

pF nF FResistance

m

Ok Cancel Help
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Fig. 4:11: Units dialog 

 

 The user follows similar directions to create the top layer (Step 2 of Fig. 4.12), with 
the parameters (h2 = 10, Si). The other parameters—including position of the layer (x,y), 

permittivity, and conductivity—are filled automatically once the material is chosen. One layer 

is now positioned on top of the other. 

 

 Similarly, the conductor column is used to add the three rectangular conductors to the 

circuit. This process is easy and it only needs a short preliminary analysis of the structure 

considered; the user should be able to give the origin (lower left corner) and dimensions of 

each conductor. In this example, the width and height of each rectangular conductor are 10 

m and 3 m. For the first conductor, x = 0 m, y = h1 = 10 m; for the second conductor, x = 

w + s = 15 m, y = h1 = 10 m; for the third conductor x = 2 (w + s) = 30 m, y = h1 + h2 = 

20 m.  

  

 Once this is known, it is very easy to design the structure in the following way. The 

user chooses the rectangular shape (represented by a rectangle) on the top part of the 

conductor column and then clicks on ‘New Conductor.’  
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Fig. 4.12: Layer design 
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  The material ‘Cu’ may then be chosen and the other parameters completed (x, y, 

width, height) according to the calculation done above for the first conductor. This conductor 

will then be displayed by clicking on ‘Plot’ towards the bottom of the conductor column. The 

user may repeat those steps for each rectangular conductor (see Fig. 4.13). In case an error is 

committed, it is possible to use the arrows to go back to the corresponding conductor. Once 

the error is corrected, the user may press ‘Plot’ again.  

 

4.3.4 Saving and solving the circuit 

 

 The user may follow the guidelines given in Section 4.1: the file is saved using the 

option ‘File-Save’ from the menubar, the quality of simulation is chosen from the 

‘Edit-Quality’ menu (50 for every conductor), and the mesh construction is started by 

selecting ‘Mesh Construction’ from the file menu. Once this is done, four files have been 

created: ‘ThreeRect,’ and the mesh files ‘Rect1.mesh,’ ‘Rect2.mesh,’ and ‘Rect3.mesh.’  

These files do not need to be saved for future use. 

 

 The user may then simulate the structure by selecting the option ‘File-Solve’ on the 

menubar and completing the potential simulation dialog. Four additional files have been 

created in the process: ‘ThreeRect.in,’ ‘ThreeRect.out,’ ‘ThreeRect.Q2D,’ and 

‘ThreeRect.V2D.’ The resulting matrices may be displayed by selecting the option ‘RLGC’ 

from the view menu. The L, G, and C matrices will be of dimension 3H 3 because there were 

three conductors considered in the structure. If this structure was to be viewed or modified 

again in the future, only the file ‘ThreeRect,’ which contains the geometry of the interconnect, 

is required. However, the files ‘ThreeRect.out’ and ‘ThreeRect.V2D,’ which contain the 

RLGC matrices and the potential distribution, would be necessary in order to see the results of 

the last simulation. 

 

4.4 Four Conductors in a Layered Medium 
 

4.4.1 Hypothesis and geometry considered 

 

 We consider the structure shown in Fig. 4.14. We assume that the four rectangular 

conductors are identical and that the number of basis functions per side is 50 for each 

conductor. 
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Fig. 4.13: Conductor design 
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Fig. 4.14: Four rectangular conductors in a two-layer structure 

 

The structure may again be described like Example 1 seen in Section 4.2.1: 

 
Geometry and material: 
 
 four identical conductors: 
  width: w = 10 m, height: h = 3 m, spacing: s = 20 m, and material: Cu 
  (x1,y1) = (0,h1) = (0,10) m 
  (x2,y2) = (w + s,h1) = (30,10) m 
  (x3,y3) = (w + s,h1 + h2) = (30,20) m 
  (x4,y4) = (0,h1 + h2) = (0,20) m 
 two dielectric layers 
  first layer: height h1 = 10 m, material Fr4 (1 = 4.3o, = 0) 
  second layer: height h2 = 10 m, material Si (2 = 3.9o and = 0.0016) 

 

4.4.2 Starting  

 

 It would be possible to design and simulate this third example in a way similar to the 

two preceding examples. This would imply creating from scratch a new file and designing the 

two layers and the four conductors. However, a better solution will be exposed in this section.  

 

 The structure considered is similar to the three-conductor example solved in Section 

4.3.  First, the layered structure is absolutely identical. Second, two of the conductors are the 

same and the two others have the same dimensions but different coordinates. Therefore, this 

interconnect may be easily designed by slightly modifying the file ‘ThreeRect’ created in 

Section 4.3. The design of the structure may therefore be started by opening the file 
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‘ThreeRect.’ The window shown in Fig. 4.15 will appear on the screen once the option 

‘Open’ in the file menu has been chosen. The user may select the file ‘ThreeRect’ and then 

close the window with ‘OK.’ 

 

 The next step involves opening a new file under the name of ‘FourRect.’ The user may 

select the option ‘New’ from the file menu, type in FourRect and select ‘OK’ to close the 

window. The drawing area still contains the structure of the file ‘threerect’ with the two layers 

and the three conductors. In order to save this structure under the name ‘FourRect,’ the user 

may then select the option ‘Save’ from the file menu. 

 

4.4.3 Designing the Circuit 

 
 For now, the file ‘FourRect’ contains the two layers and the three conductors that were 

involved in the structure of ‘ThreeRect.’ The goal of this section is to design the 

four-conductors structure given in Fig. 4.14, starting from this three-conductors structure. 

Obviously, the default length units should be changed to microns instead of millimiters (see 

Section 4.3.3). The geometry of the dielectric layers has not changed, so no modification is 

needed. However, the geometry of the conductors is similar but not identical. Conductors 1 

and 3 are identical (see Fig. 4.16), but Conductor 2 has different coordinates: (25,10) instead 

of (10,10). Moreover, Conductor 4 needs to be completely designed. 

 

 The user will therefore check each conductor successively with the help of the arrows 

located at the bottom of the conductor column, starting with Conductor 1. The geometry of 

Conductor 1 (w = 10 m, h = 3 m, x = 0, y = 10 m) is adequate, the length unit being now 

set to microns. Consequently, the conductor 1 is not modified, and the right arrow may be 

used to look at the second conductor.  
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Fig. 4.15: Open file window 

  



 

45

Substrate 
Fr4

Bottom Ground Plane

h2 = 10  m

h1 = 10  m

h = 3  m

w = 10  m

Substrate 
Si

Free Space 
Eo

s = 5  m
Substrate 
Fr4

Bottom Ground Plane

h2 = 10  m

h1 = 10  m

h = 3  m

w = 10 m

Substrate 
Si

Free Space 
Eo

s = 5  ms

Cond 1 Cond 2

Cond 3 Cond 4 Cond 3

Cond 1 Cond 2

ThreeRect FourRect 

 

 

Fig. 4.16: Comparing the structures of ThreeRect and FourRect 
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 The second conductor has the right width and height (w = 10 m, h = 3 m), but the 

coordinates (x,y) need to be changed from (15,10) to (30,10). Once those new coordinates are 

typed in and the button ‘Plot’ located on the conductor column is pressed, the modified 

second conductor will appear on the screen. The right arrow may be used again to check the 

correctness of Conductor 3. The geometry  of Conductor 3 (w = 10 m, h = 3 m, x = 30 m, 

y = 20 m) being adequate, the next step is to create the fourth conductor. In order to design 

this last conductor, the user selects ‘New Conductor,’ types in the four parameters (w = 10 

m, h = 3 m, x = 0, y = 20 m), and presses ‘Plot.’  

 
4.4.4 Saving and solving the circuit 

 

 The four conductors are now displayed on the drawing area according to the structure 

shown in Fig. 4.14. This structure may be saved by selecting the option ‘Save’ from the file 

menu. The mesh file construction and simulation are done quite similarly to Section 4.3.2, and 

they result in the creation of nine files: ‘FourRect,’ ‘FourRect.in,’ ‘FourRect.out,’ 

‘FourRect.Q2D,’ ‘FourRect.V2D,’ and the mesh files ‘Rect1.mesh,’ ‘Rect2.mesh,’ 

‘Rect3.mesh,’ and ‘Rect4.mesh.’  

 

 The R, L, G, and C matrices are obtained by selecting the option ‘RLGC’ in the view 

menu. The L, G and C matrices will be of dimension 4H4 because there were four conductors 

considered in the structure. If this structure was to be viewed or modified again in the future, 

only the file ‘FourRect’ (containing the geometry of the interconnect) and optionally the files 

‘FourRect.out’ and ‘FourRect.V2D’ (containing the results of the last simulation) would be 

required. 

 
4.5 Conclusion 
 
 Various structures have been discussed in this chapter, involving different types of 

conductors and dielectrics. The first example, including one conductor and one layer only, 

gave a quick insight on the basic use of XRLGC. The second example extended the use of 

XRLGC to a more complex structure involving multiple layers and multiple conductors. 

Finally, the third example showed how an already existing structure may be modified to easily 

obtain another structure. These three examples implied the use of strips and rectangular 

conductors, but the use of circular conductors would be identical. It is only essential to know 

that the shape of the conductor should be chosen before the new conductor in that particular 

shape is created. Moreover, the arrows may only be used to go back and forth among 
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conductors of the same shape, strip, rectangle, or circle. If, for example, a conductor of 

circular shape needs to be modified, the circular shape should be selected first. Then the 

arrows may be used accordingly. Similarly, a layer may be modified by using the arrows 

located in the layer column. Unfortunately, if the user modifies the height of a layer, the layer 

coordinates (x,y) are no longer completed automatically in order to get layers lying on top of 

each other. Consequently, those coordinates have to be completed by the user. 
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CHAPTER 5 
STRUCTURE OF XRLGC 

 

 This section will discuss the original program RLGC written by K. S. Oh before 

adding the interesting elements inherent to XRLGC and its GUI. The RLGC package is made 

out of three main programs. First, Mesh2D creates a mesh file for one conductor, given its 

geometry and the number of basis functions considered. This program is called for each 

conductor of the structure and the output is a ‘.mesh’ file. The second program, RLGC, 

computes the RLGC matrix and the charge distribution for the multiconductor, multilayer 

structure described in an input file (‘.in’). Those results are stored in two separate files ‘.out’ 

and ‘.Q2D.’ The input file is manually completed by the user. The third program, V2D,  

computes the potential distribution given the same input file (‘.in’) and the charge distribution 

(‘.Q2D’).  

 

 The program XRLGC presented in this thesis links the three programs using a GUI. 

The circuit is displayed on a drawing-area and can be easily modified by the user. The 

processing of the transmission line parameters is done in two steps: mesh generation for each 

conductor (menu: ‘File-Mesh’) and solving (menu: ‘File-Solving’). Solving involves, first, 

automatic creation of the input file containing all the information about layers and conductors 

that have been collected by the interface and, second, computing the RLGC matrix, charge 

distribution, and potential distribution.  

 

 With the file menu, the user can also create a new file, open an already existing file, 

and save the changes made to the circuit (‘File-New’/‘Open’/‘Save’ options). The file 

contains the geometry of the multilayered, multiconductor structure created. With the edit 

menu, the user can choose the different units (distance, inductance, capacitance, resistance), 

determine the quality of simulation (number of basis functions used), and choose some 

parameters used for potential computation.  

 

 The RLGC matrix obtained through the simulation may also be displayed using the 

option ‘View-RLGC.’ The potential and charge distributions are obtained in separate files that 

will be eventually displayed by the GUI. With the help menu, the user has an index and 

contextual help available. 

 

5.1 Structure of RLGC 
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5.1.1 Overview 

 

 The files included in the source of RLGC are following: 

C-source: RLGC.c, Mesh2D.c, V2D.c, appx.c, intg.c, lu.c, aux.c 

H-files: RLGC.h, aux.h, ansi_compat.h 

 

 The original makefile (see Fig. 5.1) compiles separately the three different programs: 

Mesh2D, RLGC, and V2D. These three programs are then used consecutively to get the 

RLGC parameters and the charge and voltage distributions. 

 
# Original makefile (RLGC) 
# You need to change this path 
BIN_DIR = /mnt/users_decwd/ksoh/bin 
default: 
        cc -g -o RLGC RLGC.c lu.c appx.c intg.c aux.c -lm 
        mv RLGC $(BIN_DIR) 
        cc -o Mesh2D Mesh2D.c aux.o -lm 
        mv Mesh2D $(BIN_DIR) 
        cc -o V2D V2D.c appx.o aux.o intg.o -lm 
        mv V2D $(BIN_DIR) 
clean: 
        rm *.o 

 
Fig. 5.1: Original makefile for the RLGC package. 
 
5.1.2 Constructing the mesh files and input file of RLGC 
 
 In order to construct the mesh files, the Mesh2D program is called once for each 
conductor of different shape and size. A sample running of Mesh2D and the resulting mesh 
file are given in Figs. 5.2 and 5.3. The program asks for the type of conductor desired, the 
name of the file to create, the dimensions of the conductor, and the precision of the simulation 
measured by the number of basis functions. In the example given here, the conductor is 
rectangular, of width 5 mm, height 5 mm, and only 5 basis functions on each side (poor 
precision). The mesh file of Fig. 5.3  contains the coordinates of points evenly spaced on the 
four borders of the rectangular conductor. The points are considered two by two, starting from 
(0,0) (0,1), 
 
> Mesh Construction 
       1) Strip 
       2) Rectangular 
       3) Polygon 
       4) Circle 
       5) quit 
 
> Enter the Selection: 2 
> Enter the mesh file name to be created: rect.mesh 
> Enter width and height of line in [mm]: 5 5 
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> Enter # of basis functions for width and height: 5 5 

 
Fig. 5.2: Sample running of Mesh2D 
 
moving along each border, and turning clockwise around the rectangular conductor. There are 
five points per side according to the number of basis functions chosen. The structure of mesh 
files for strips or circular conductors is similar. 
 
 This program needs to be called a few times to get all the mesh files for the structure 
considered. Once the mesh files for each conductor are created, the next step is to manually 
fill out the input file of the second program, RLGC. This input file contains the overall 
structure of the multiconductor multilayered transmission line. The user carefully completes 
the number and dimensions of the conductors and layers, according to certain standards 
defined at the beginning of the template file (see Fig. 5.4).  
 

 The example given in Fig. 5.4 considers one circular conductor of resistivity 1.73e-8   

H mm, radius 0.5 mm, located at (x,y) = (0,3 mm), and included in a single layer of relative 

permittivity 4 and conductivity 2.67e-5 S/m. The structure has only one bottom ground. 
 

 

5.1.3 Running the simulation 

 

 Once the input file ‘circuit.in’ is completed and all the mesh files are constructed, the 

simulation is executed by running RLGC and V2D successively. First, RLGC is started by 

typing 
 

> RLGC circuit.in. 
 

 The program RLGC computes the four parameters resistance, inductance, 
conductance, and capacitance of the structure included in the input file (Fig. 5.4). Those 
parameters are given in the output file ‘circuit.out’ (Fig. 5.5). 
 
 
Rect.mesh: 
UnitFactor 1000 
NumberOfBasisFns 20 
MeshType Rectangular 5.00000e+00 5.00000e+00 
0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 
0.00000e+00 1.00000e+00 0.00000e+00 2.00000e+00 
0.00000e+00 2.00000e+00 0.00000e+00 3.00000e+00 
0.00000e+00 3.00000e+00 0.00000e+00 4.00000e+00 
0.00000e+00 4.00000e+00 0.00000e+00 5.00000e+00 
0.00000e+00 5.00000e+00 1.00000e+00 5.00000e+00 
1.00000e+00 5.00000e+00 2.00000e+00 5.00000e+00 
2.00000e+00 5.00000e+00 3.00000e+00 5.00000e+00 
3.00000e+00 5.00000e+00 4.00000e+00 5.00000e+00 
4.00000e+00 5.00000e+00 5.00000e+00 5.00000e+00 
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5.00000e+00 5.00000e+00 5.00000e+00 4.00000e+00 
5.00000e+00 4.00000e+00 5.00000e+00 3.00000e+00 
5.00000e+00 3.00000e+00 5.00000e+00 2.00000e+00 
5.00000e+00 2.00000e+00 5.00000e+00 1.00000e+00 
5.00000e+00 1.00000e+00 5.00000e+00 0.00000e+00 
5.00000e+00 0.00000e+00 4.00000e+00 0.00000e+00 
4.00000e+00 0.00000e+00 3.00000e+00 0.00000e+00 
3.00000e+00 0.00000e+00 2.00000e+00 0.00000e+00 
2.00000e+00 0.00000e+00 1.00000e+00 0.00000e+00 
1.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 

 
Fig. 5.3 : Sample output file of Mesh2D (‘rect.mesh’) 
  
 RLGC also determines the charge distribution included in the ‘circuit.Q2D’ file. The 
charge distribution is given in the following format: for each pair of points (x1,y1), (x2,y2) 
defined in the mesh file, the value of the charge q12 is determined. This result is used by the 

next program V2D to compute the potential distribution. The program V2D is started by 
typing 
 

> V2D circuit.in. 
 
 V2D will ask for certain parameters as well: size of the window considered, number of 
points in each direction, and index of the excited conductor. A simple running of V2D is 
given in Fig. 5.6  The resulting file ‘circuit.V2D’ contains the potential distribution according 
to the format given in Fig. 5.7.
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*----------------- Template for the main input file ----------------------- 
*                                                          Kyung S. Oh 
*                                                          3/24/94 
*-------------------------------------------------------------------------- 
*  Convention Used: 
*     o  x y coordinates are used in the program. 
*     o  If there is ground plane at the bottom, it is at y=0. 
*     o  The conductor numbers used in the program are ordered as listed 
*        in this file. 
*     o  The dielectric number is assigned from bottom to top. 
*     o  Conductivity Unit S/m 
*     o  Resistivity Unit ohm*mm 
*     o  All parameters associated with length are in mm. 
*-------------------------------------------------------------------------- 
*  Number_of_conductors    N 
*      mesh_file_name1     Resistivity x  y 
*      mesh_file_name2     Resistivity x  y 
*      mesh_file_nameN     Resistivity x  y 
*  Note: The mesh file names do not have to be distinct. 
*  x,y is the global coordinate of the local origin for each mesh file. 
Nconductors        1 
circle.mesh       1.73611111e-8 0.0 3.0 
*-------------------------------------------------------------------------- 
*  Number of layers without ground planes 
Nlayers           1 
*-------------------------------------------------------------------------- 
*  Ground plane options: 
*       0 for no ground plane 
*       1 at the bottom layer only 
*       2 for ground planes  at top and bottom 
*  GND    GND_option  Resistivities(iff any) 
*  (ex)   GND  0        GND 1 Rvalue    GND 2 Rvalue_lower Rvalue_upper 
GND               1  0 
*-------------------------------------------------------------------------- 
*  The dielectric constants of the layers 
Er                4.0 
*-------------------------------------------------------------------------- 
*  The conductivity of the layers 
Conductivity      2.67e-5 
*-------------------------------------------------------------------------- 
*  ds are the distances from the ground plane to dielectric interfaces. 
*    The bottom ground plane is assumed to be at y=0. 
*    The value of the last entry is the location of the top ground plane. 
*    If there is no top ground plane, enter an arbitrary number. 
ds(mm)             1e10 
*-------------------------------------------------------------------------- 
* frequency : fstart fstop fstep 
Frequency 0.1e9 0.1e9 0.1e9 
*-------------------------------------------------------------------------- 
 

Fig. 5.4: Template for the input file of RLGC (‘circuit.in’) 
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#circuit.out 
Capacitance Matrix (pF/m) 
 8.97505e+01 
Inductance Matrix (nH/m) 
 4.95211e+02 
Conductance Matrix (S/m) 
 6.76611e-05 
Resistance Matrix (ohm/m) 
1e+08 8.44559e-04 

 

Fig. 5.5: Sample of an output file of RLGC (‘circuit.out’) 
 
>V2D circuit.in 
> Enter X,Y coord of the BOTTOM LEFT corner of window(mm): 0 0 
> Enter X,Y coord of the TOP RIGHT corner of window(mm): 10 10 
> Enter number of point in x and y direction: 10 10 
> Enter the excitated conductor number: 1 

 
Fig. 5.6: Sample running of V2D 
 
0 Nx Ny Dx Dy Xstart Ystart Xstop Ystop 
V(x(1),y(1)) V(x(2),y(1)) .... V(x(Nx),y(1))  
V(x(1),y(2)) V(x(2),y(2)) .... V(x(Nx),y(2))  
... 
V(x(1),y(Ny)) V(x(2),y(Ny)) .... V(x(Nx),y(Ny))  

 

Fig. 5.7: Format of an output file of V2D (‘circuit.V2D’) 

 
5.1.4 Technical file description 
 
 

 Now that we have seen how the three programs work and how they interact to 

compute the final results, it is interesting to look at the corresponding files one by one. 

‘RLGC.c,’ ‘Mesh2D.c,’ and ‘V2D.c’ are, respectively, the main routines for the three 

programs described above. The four additional C-files contain a set of tools useful to those 

main programs. ‘Appx.c’ generates the closed-form Green’s function. ‘Intg.c’ is a set of 

integration routines. ‘Lu.c’ includes the LU factorization and forward and backward routines. 

‘Aux.c’ contains the utility functions to create the vectors and matrices. The Mesh2D program 

basically uses ‘Mesh2D.c’ and ‘aux.c’; the V2D program uses ‘V2D.c,’ ‘aux.c,’ ‘appx.c,’ and 

‘intg.c’; and the RLGC program uses ‘RLGC.c’ and all four additional C-files:  ‘aux.c,’ 

‘appx.c,’ ‘intg.c,’ and ‘lu.c.’ The resource file ‘aux.h,’ defining some structures and declaring 

the functions included in ‘aux.c,’ is used in the three programs Mesh2D, RLGC, and V2D. 
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The resource file ‘RLGC.h’—declaring the functions included in  ‘RLGC.c,’ ‘V2D.c,’ 

‘appx.c,’ ‘lu.c,’ and ‘intg.c’—is only used in RLGC and V2D. 

 

 The package RLGC including these three main programs was therefore rather difficult 

to use. The user often needed to run them more than once before getting any satisfying results.  

If the user wished to make even minor changes in the shape or size of the conductors and 

layers, all three programs had to be run all over again, wasting time. The user also needed to 

generate the mesh for each conductor, sometimes by running Mesh2D many times. Moreover, 

the use of RLGC implied manually changing the input file, changing units adequately before 

filling in the geometry of the structure. The slightest error in this manual input would 

automatically lead to wrong results at the output. 

 
5.2 XRLGC New Features 

 

5.2.1 Overview 

 

 The files included in the source of XRLGC are the following: 

 

C-source: RLGC1.c, Mesh2D.c, V2D.c, appx.c, intg.c, lu.c, aux.c  

  frontend14.c, graphtool6.c, manageform.c,  cond_call.c,  

  layer_call.c, apply.c, cust_dialog3.c, help_dialog.c, toolbar.c 

 

H-files: RLGC.h, aux.h, ansi_compat.h, 

  apply.h, cond_call.h, layer_call.h, math.h,  

  graphtool.h, manageform.h, mytool.h 

 

 The makefile (see Fig. 5.8) compiles one unique program, XRLGC, which will 

compute the RLGC parameters and the charge and voltage distributions, according to the 

detailed description of the multilayered and multiconductor structure that has been collected 

by the interface.  

 

 

 
# Makefile (XRLGC) 
 
SOURCES=frontend14.c mytool.c graphtool6.c manageform.c cond_call.c 
layer_call.c RLGC1.c lu.c appx.c intg.c aux.c apply.c cust_dialog3.c 
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help_dialog.c toolbar.c V2D.c 
OBJECTS=frontend14.o mytool.o graphtool6.o manageform.o cond_call.o 
layer_call.o RLGC1.o lu.o appx.o intg.o aux.o apply.o cust_dialog3.o 
help_dialog.o toolbar.o V2D.o 
CC=gcc 
CFLAGS=-g -I. 
LFLAGS=-lXm -lXt -lX11 -lm 
PRODUCT=XRLGC 
all:result 
result: $(OBJECTS) 
        $(CC) $(CFLAGS) -o $(PRODUCT) $(OBJECTS) $(LFLAGS) 
clean: rm *.o 

 
Fig. 5.8 : Makefile for XRLGC 
 
5.2.2 Technical file description 
 
 Sources of XRLGC include files that were part of the original RLGC package. Those 
files have been slightly modified in order to communicate with the interface during the 
simulation and to give some warning to the user if some data are missing and the simulation 
could not be fulfilled. Besides those small changes, the files ‘RLGC.c,’ ‘V2D.c,’ ‘Mesh2D.c,’ 
‘aux.c,’ ‘appx.c,’ ‘lu.c,’ and ‘intg.c’ are basically the same as in the original package.  
 

 The description of each C-file and H-file that is linked to the interface itself follows. 

The variables and functions used in XRLGC are all defined in the file ‘graphtool.h.’ The file 

‘frontend14.c’ contains the resources (colors, fonts, label ) of all the C-Motif widgets and the 

main function called by XRLGC.  The main function defines the interface and most of the 

widgets associated with it. However, ‘graphtool6.c’ helps to unload the main function of 

‘frontend14.c’ by taking care of the creation of certain complex forms and their children 

widget—for example, the form containing the drawing area or the form displaying the four 

different shapes of conductors (strip, rectangular, circular, polygonal). 

 

 The functions included in ‘manageform.c’ manage the adequate form depending on 

the type of conductor chosen (strip, rectangular or circular). This form asks for the dimensions 

(width, height, radius) and position (x,y) of the conductor. In the case of the strip, the width 

and position (x,y) are sufficient to model the conductor. Similarly, the rectangular conductor 

is characterized by its width, height, and coordinates (x,y), while a circular conductor is 

characterized by its radius and coordinates (x,y). 

 

 The file ‘cond_call.c’ is only concerned with the conductors—creating and erasing a 

conductor, and going back and forth between conductors to modify them. Similarly, the file 
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‘layer_call.c’ deals only with the layers—creating and erasing a layer, and going back and 

forth between the layers to modify them.  

 

 The functions included in ‘apply.c’ run all the different parts of the simulation: mesh 

construction (formerly Mesh2D), computation of the R, L, G, and C parameters (formerly 

RLGC), and estimation of the potential distribution (formerly V2D). This file constitutes the 

main link between the GUI and the original RLGC.  

 

 The file ‘cust_dialog3.c’ creates all the custom dialogs, except the help dialog: 

introduction dialog, units dialog, quality dialog, RLGC dialog, and voltage dialog. These 

complex dialogs have been designed specifically for this program. The more simple dialogs 

like the working dialogs or the prompt dialogs are already partially implemented by Motif. 

The file ‘help_dialog.c’ creates the help dialog and associated functions. Finally, ‘toolbar.c’ 

put adequate bitmaps on pushbuttons, including the strip, rectangle, circle, and polygon, 

representing the possible cross-sections for a conductor. This file also inserts the arrows to go 

back and forth between conductors and layers. 

 

 A more detailed description of those different files and the functions included is given 

inside the sources themselves. The goal of each function is given in the form of commentaries 

embedded inside the C-files. 

 

5.2.3 File interaction 

 

 In the preceding section, each file has been described in detail. In this section, the 

interaction between those files will be clarified through a simple example. The first example 

seen in Section 4.2 will be considered to explore how each widget included in the interface 

does its task. Fig. 5.9 includes all the action performed by the user. In the layer column, the 

option ‘bottom ground only’ has first been selected, calling the function ‘toggleCB’ in the file 

‘frontend.c’ and basically updating the variable ‘ground’ to the Value 1.  The Value 0 means 

no
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Fig. 5.9
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ground, the Value 1 means a bottom ground, and finally the Value 2 means both bottom and 

top ground. This value is automatically recorded by the interface. 

 

 Then, a new layer has been created by clicking on ‘New Layer,’ consequently calling 

the function ‘New_Layer_callback’ in the file ‘layer_call.c.’ This function updates the counter 

‘compteur_layer’ and the total number of layers ‘nombre_layer’ while it completes the form 

located at the bottom of the layer column in order to get layers located on top of eachother. 

The counter is useful when the user decides to move from one layer to the other with the 

arrows ‘—>’ and ‘<—.’ The counter tells the interface at which index it should look inside 

the layer arrays to find the right layer (see below). 

 

 Thereafter, the type of layer ‘Fr4’ may be selected at the top of the layer column. The 

function ‘toggleCB’ in ‘frontend.c’ is called again, setting the variable ‘current_type_layer’ to 

3 and completing the form located at the bottom of the layer column to get a relative 

permittivity of 4.3. The user may then complete the height of the new layer (h = 5 m) and 

click on ‘Plot.’ This push-button will then call the callback function ‘store_data_layer’ in 

‘frontend.c.’ This function is a rather complex procedure that involves updating many 

variables and the display of the new layer on the drawing area. The function 

‘store_data_layer’ updates the layer arrays ‘Width_layer[],’ ‘Height_layer[],’ ‘x_layer[],’ 

‘y_layer[],’ ‘e_layer[],’ and ‘s_layer[]’ accordingly at the index ‘compteur_layer.’ In case the 

button ‘New_layer’ had not been called, the layer located at this index simply would have 

been erased and replaced by this new layer with its new characteristics. In order to display the 

new set of layers, the full window is cleared and everything is drawn again.  In this example, 

this set of actions led to the display of the layer in the drawing area. 

 

 Now, the microstrip is added to the structure in the following way. The selection of the 

strip shape calls the function ‘manage_strip’ in the file ‘manageform.c.’ This function 

manages the correct form ‘form_data_strip’ located at the bottom of the layer column, so that 

it asks for the coordinate (x,y) and width of the strip only. The three forms ‘form_data_strip,’ 

‘form_data_rect,’ and ‘form_data_circle’ are already created when XRLGC is started, and 

they are managed or unmanaged as needed.  

 

 

 

 This form asks for the dimensions (width, height, radius) and position (x,y) of the 

conductor. In case of the strip, the width and position (x,y) are sufficient to model the 
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conductor. Similarly, the rectangular conductor is characterized by its width, height, and 

coordinates (x,y), while a circular conductor is characterized by its radius and coordinates 

(x,y). 

 

  The new strip is then created by selecting ‘New Conductor.’ This push-button calls 

the function ‘New_Cond_callback’ in the file ‘cond_call.c.’ This function updates the 

conductor counter ‘compteur’ and the total number of conductors ‘nombre_conducteur’ while 

it completes the form located at the bottom of the conductor column with zeros. The counter 

tells the interface at which index it should look inside the conductors arrays to find the right 

conductor (see below). The selection of the material ‘Fe’ calls again the function ‘toggleCB’ 

in frontend.c and updates the variable ‘current_material_cond’ to the value 3. Each material is 

recorded with a different value so that the interface can record which material has been 

chosen for that specific conductor.  

 

 Once the values (x,y) and width are completed, the user may select ‘Plot’ to display 

the conductor. This push-button will then call the callback function ‘store_data’ in 

‘frontend.c,’ which is very similar to ‘store_data_layer’ except that it is dealing with 

conductors instead of layers and that there are three types of conductors to consider: strip, 

rectangular, and circular. The function ‘store_data’ updates the arrays ‘Width[],’ ‘Height[],’ 

‘x[],’ ‘y[],’ ‘resistivity[],’ and the ‘indice[]’ accordingly at the index ‘compteur.’ The array 

‘indice[]’ indicates what kind of conductor is considered—strip, rectangular, or circular. The 

color of the displayed conductor is directly linked to the material and is stored in the array 

‘FillColor[]’ at the index ‘compteur.’ This function also updates the three counters 

‘compteur_s,’ ‘compteur_r,’ and ‘compteur_c’ for each kind of conductor. These counters are 

essential when the user wants to go back and forth between conductors of the same shape. The 

microstrip should be now displayed on the drawing area as well as the layer.  

 

 The completed structure may now be saved through the file menu. The user will first 

select the option ‘New’ in the file menu, leading to the opening of a simple prompt dialog 

asking for the name of the new file. The function ‘NewFile’ in ‘frontend.c’ records the name 

of the new file ‘circuit.’ Second, the selection of the option ‘Save’ in the file menu will call 

the function ‘Save_File’ in frontend.c and thus create the file named ‘circuit’ according to 

precise rules given in Fig. 5.10. The full geometry of the structure will be saved in this file, so 

that the structure may be opened again in the future: by selecting the option ‘Open’ in the file 

menu, the user is calling the functions ‘OpenFile’ and indirectly ‘read_file’ in ‘frontend.c.’ 

This last function will read the file created above and display the corresponding structure. It 
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will also update all the arrays for the conductors and the layers that have been defined earlier. 

 
Ground options: 
GND 0,1 or 2 
 
For each conductor i: 
Width[i], Height[i], x[i], y[i], indice[i], resistivity[i], FillColor[i], 
material_cond[i] 
 
For each layer i: 
Width_layer[i], Height_layer[i], x_layer[i], y_layer[i], e_layer[i], 
s_layer[i], FillLayer[i] 

  

Fig. 5.10: Sample for the ‘circuit’ file 

 

5.2.4 Callback functions 

 

 It would be too extensive to describe all the possibilities given by the interface. 

Nevertheless, the principle described above is always valid. Each button pressed, each menu 

option selected, each action on the drawing area (resize, draw), will call an adequate callback 

function. This function will record some data, open additional windows if necessary, or 

update the structure on the drawing area. In order to determine which callback function is 

linked to which widget, the C-developer may look at the definition of the corresponding 

widget. Each object or widget is defined with certain characteristics including size, 

parameters, and callback function. The definition of a widget may be found in any of the 

following files.  

 

 The ‘main’ function of ‘frontend.c’ defines most of the widgets including all the menu 

options and all the toggle buttons. The file ‘graphtool.c’ contains the definition of the three 

forms located at the bottom of the layer column and the conductor column: ‘form_data_layer,’ 

‘form_data_strip,’ ‘form_data_rect,’ and ’form_data_circle.’ It also defines the main drawing 

area and the forms ‘form_button’ and ‘form_button2’ including the four push-buttons ‘Plot,’ 

‘Erase,’ ‘—>,’ and ‘<—’ for both conductors and layers. Finally, it includes the definition of 

the form ‘form_shape’ containing the four different shapes (strip, rectangle, circle, and 

polygon). The file ‘cust_dialog.c’ contains the definition of all the complex dialog windows 

except the help dialog, which is included in ’help_dialog.c.’  

 

 Once the name of the callback is defined, it is sufficient to look at the resource file 

‘graphtool.h’ (see Appendix A), which contains all the functions of XRLGC ordered by file. 
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All the arrays and variables used in XRLGC are summarized in ‘graphtool.h’ as well. The 

C-file containing the callback function is hence easily found. For example, we shall consider 

the button ‘Erase’ located towards the bottom of the layer column. This button is part of the 

form ‘form_button2’ defined in the file ‘graphtool.c,’ more precisely in the function 

create_form_button2(). The definition of the button ‘Erase’ is given in Fig. 5.11. According to 

this definition, the callback of the button ‘Erase’ is the function ‘Erase_layer.’ However, this 

function does not ask any specific input (NULL). Nevertheless, if this button was selected 

with the help of the ‘context-sensitive help,’ the function ‘helpCB’ would be called with the 

input ‘---Erase.’ 
 
button4_l= XtVaCreateManagedWidget("Erase", 
                                   xmPushButtonWidgetClass,form_button2, 
                                   XmNtopAttachment,XmATTACH_WIDGET, 
                                   XmNtopWidget, button3_l, 
                                   XmNbottomAttachment,XmATTACH_FORM, 
                                   XmNrightAttachment,XmATTACH_FORM, 
 
                                   XmNleftAttachment,XmATTACH_FORM, 
                                   NULL); 
 
XtAddCallback(button4_l,XmNactivateCallback,Erase_layer,NULL); 
XtAddCallback(button4_l,XmNhelpCallback,(XtCallbackProc)helpCB, 
(XtPointer)"---Erase"); 

 

Fig. 5.11: Definition of a widget 

 

 In this example, the function ‘Erase_layer’ may be found in the resource file 

‘graphtool.h’ (Appendix A). It is labeled as a function included in the file ‘layer_call.c.’ This 

function may therefore be easily found. Moreover, each function is preceded by a short 

overview of the content of the function in the form of comments embedded in the source. This 

method should be very useful for the C-developer in order to understand better and then 

improve the behavior of any widget.  

 

5.3 Conclusion 
 

 This thesis has presented the program XRLGC at every level. First it includes the 

technical background and the methods adopted for the EM specialist. Second, its user guide is 

adapted for the beginner as well as for the computer expert. Finally, it includes an overview of 

the structure of XRLGC containing guidelines on how to approach and improve this complex 

program with relative ease. Ideally, this program should be preserved and adapted by 
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engineers who combine both the technical EM background and the ease of the good 

programmer. 

 

 Technical improvements to this program may involve the extension of the GUI to 

include another program that would perform the transient simulation of the multilayered, 

multiconductor structure with the input parameters R, L, G and C. An example of such a 

program and its user guide is given in [27]. Another possibility would be the addition of an 

optimization program involving for example neural networks. Moreover, the XRLGC 

program is implemented in C-Motif, complying to the industry standard X-Windows, thus 

escaping any hardware or software needs as well as any compatibility problems. However, a 

better choice might be to use the modern programing language Java, which is platform 

independent and may be called easily through the World Wide Web.  
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APPENDIX A 

RESOURCE FILE OF XRLGC 

  

 The following file is the main resource file of XRLGC. It contains the definition of all 

the functions, arrays and variables used for the GUI.  

 
/* ********************************************************************* * 
 * 
 *  graphtool.h 
 * 
 *  Headfile of XRLGC: Declarations of functions and variables 
 * 
 * ********************************************************************* */ 
 
 
/*-------------------------------------------------------------------------
-*/ 
/*--- Last Modified: Claire Lestrade, February 97         --*/ 
/*-------------------------------------------------------------------------
-*/ 
 
 
  
/****************************/ 
/* Declaration of Functions */ 
/****************************/ 
 
 
/* functions included in frontend.c */ 
 
void  Clear_drawing (Widget widget,XtPointer client_data, XtPointer 
call_data); 
void DrawShapes (Display* display, Window window,GC gc,int width,int height); 
void drawCB(Widget widget,XtPointer client_data, XtPointer call_data); 
void Exit_mesh(Widget w, XtPointer client_data, XtPointer call_data); 
void store_data(Widget w, XtPointer client_data, XtPointer call_data); 
void NewFile(Widget w, int client_data, XmSelectionBoxCallbackStruct 
*call_data); 
void OpenFile(Widget w, int client_data, XmSelectionBoxCallbackStruct 
*call_data); 
void store_data_layer(Widget w, XtPointer client_data, XtPointer call_data); 
void toggleCB(Widget widget, 
              XtPointer client_data, 
              XtPointer call_data); 
void read_data(char *fname); 
void colour_call (int n,int p); 
void cancelCB(Widget w, XtPointer client_data, XtPointer call_data); 
void okCB(Widget w, XtPointer client_data, XtPointer call_data); 
void AddStdCallbacks(Widget widget, char* name); 
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/* functions included in manageform.c */ 
 
void manage_strip(Widget widget,XtPointer client_data, XtPointer call_data); 
void manage_rect(Widget widget,XtPointer client_data, XtPointer call_data); 
void manage_circle(Widget widget,XtPointer client_data, XtPointer call_data); 
 
/* functions included in graphtool.c */ 
 
void create_drawing_area(void); 
void  create_form_strip(void); 
void  create_form_circle(void); 
void create_form_rect(void); 
void create_form_button(void); 
void create_form_button2(void); 
void  create_type_frame(void); 
void  create_graphic_context(void); 
void  draw_cbk(Widget w, XButtonEvent *event,  
               String *args, int *num_args); 
void Equal (int i); 
 
 
/*functions included in cond_call.c*/ 
 
void Erase_conductor(Widget w, XtPointer client_data, XtPointer call_data); 
void New_conductor(Widget w, XtPointer client_data, XtPointer call_data); 
void go_forward(Widget w, XtPointer client_data, XtPointer call_data); 
void go_back(Widget w, XtPointer client_data, XtPointer call_data); 
 
 
/*functions included in layer_call.c*/ 
 
void New_Layer_callback(Widget w, XtPointer client_data, XtPointer call_data); 
void go_back_layer(Widget w, XtPointer client_data, XtPointer call_data); 
void Erase_layer(Widget w, XtPointer client_data, XtPointer call_data); 
void go_forward_layer(Widget w, XtPointer client_data, XtPointer call_data); 
 
 
/*functions included in RLGC.c*/ 
 
void RLGC_main(void); 
 
/*functions included in V2D.c*/ 
 
void V2D_main(double xb, double yb, double xt, double yt, int Nx, int Ny, int 
Ne); 
 
/*functions included in apply.c*/ 
 
void Solve(Widget w, XtPointer client_data, XtPointer call_data); 
void RunMesh(Widget w, XtPointer client_data, XtPointer call_data); 
void RunV2D(void); 
 
/*functions included in cust_dialog.c*/ 
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Widget CreateCustomDialog(Widget parent,char* name); 
Widget CreateCustDlg(Widget parent); 
Widget CreateMatrixDlg(Widget parent); 
Widget CreateUnityDlg(Widget parent); 
Widget CreateQualityDlg(Widget parent); 
Widget CreateScaleDlg(Widget parent); 
 
void scaleCB (Widget widget, XtPointer client_data, XtPointer call_data); 
 
void manageCust (Widget widget, XtPointer client_data,XtPointer call_data); 
void managematrix (Widget widget, XtPointer client_data,XtPointer call_data); 
void manageunity (Widget widget, XtPointer client_data,XtPointer call_data); 
void manageQuality (Widget widget, XtPointer client_data,XtPointer call_data); 
void manageScale (Widget widget, XtPointer client_data,XtPointer call_data); 
void manageVoltage (Widget widget, XtPointer client_data,XtPointer call_data); 
 
void  create_graphic_context_result(void); 
void DrawShapes2 (Display* display, Window window,GC gc,int width,int height); 
void drawCB2(Widget widget,XtPointer client_data, XtPointer call_data); 
void Get_Window_Callback(Widget widget, 
              XtPointer client_data, 
              XtPointer call_data); 
 
/*functions included in help_dialog.c*/ 
 
void manageIntro (Widget widget, XtPointer client_data,XtPointer call_data); 
Widget CreateIntroDlg(Widget parent); 
void manageHelp (Widget widget, XtPointer client_data,XtPointer call_data); 
Widget CreateIntroDlg(Widget parent); 
void HelpDlgShow(void); 
void HelpDlgCreate (Widget parent, 
                    XtCallbackProc topic_callback, 
                    XtPointer topic_data, 
                    XtCallbackProc help_callback, 
                    XtPointer help_text_data, 
                    XtPointer help_topic_data); 
void HelpDlgSetText(char* text); 
void HelpDlgAddTopic(char* topic); 
void HelpDlgDeleteAllTopics(void); 
void helpCB (Widget widget,XtPointer client_data,XtPointer call_data); 
void topicCB (Widget widget,XtPointer client_data,XtPointer call_data); 
Widget CreatePushbuttonWithHelp(Widget parent, 
                                char* name, 
                                XtCallbackProc callback, 
                                XtPointer client_data, 
                                XtCallbackProc help_callback, 
                                XtPointer help_data); 
void contextCB(Widget widget, XtPointer client_data, XtPointer call_data); 
 
 
/*functions included in toolbar.c*/ 
 
Pixmap CreatePixmapFromBitmap (Widget widget, 
                               int weight, 
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                               int height, 
                               Pixmap bitmap); 
Boolean LoadBitmapLabel (Widget widget,char* filename); 
Pixmap ReadBitmapFile(Widget widget, 
                      char* filename, 
                      int* width, 
                      int* height); 
void SetLabelPixmap(Widget widget, Pixmap pixmap); 
 
 
/************************************/ 
/* Global variables and constants */ 
/***********************************/ 
 
 
/*DEFINE*/ 
 
#define PI 3.141592653589793238462643 
#define BUFFERSIZE 800 
#define OK 1 
#define CANCEL 2 
#define MAXIMAL_NUMBER_SEGMENTS 20 
#define NC 20  /* Maximal number of conductors*/ 
#define NS 10 /* Maximal number of layers*/ 
#define N_E 5 /*number of edge: circle*/  
/*#define E 100  Scale (echelle)*/ 
                
 
/* Global variables*/ 
 
int type, compteur_s,compteur_r,compteur_c,compteur,nombre_conducteur, 
compteur_local,type_local,compteur_local2; 
int nombre_layer,compteur_layer; 
int width_total,height_total;  
Arg al[10],args[10]; 
Cardinal ac; 
double size; 
double ind_unity,capa_unity,res_unity,length_unity; 
int no_exit,singular_matrix; 
int E; 
 
int Chosen_NB,N_F,N_F_w,N_F_h; 
 
 
Widget toplevel,mainbox,form_cond,form_button,frame,label1,label2,label_s, 
button1,button2,button3,labelx,labely,frame_shape,form_shape,label3, 
labelx2,labely2,textex2,textey2,texte3,labelx3,labely3,button4, 
label_layer,form_layer,form_common,Clear,Exit,menubar,menus,menus2,menus3, 
menus4,cascades,cascades2,cascades3,cascades4,buttons[9],buttons1[3], 
buttons2[5],buttons3[5],dialog1,dialog2,New,frame_cond,frame_layer, 
radio_box,radio_button1,radio_button2,radio_button3,radio_button4, 
frame_radio_box, radio_box2,radio_button12,radio_button22,radio_button32, 
radio_button42,frame_radio_box2,labele,textee,labels,textes,form_es, 
label1_s,texte1_s,label2_s,texte2_s,textex_s,textey_s,labelx_s,labely_s, 
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labele_s,labels_s,textee_s,textes_s,form_data_rect_s,New_layer, 
radio_box_g,radio_button1_g,radio_button2_g,radio_button3_g, 
radio_button4_g,frame_radio_box_g,cust,unity,RLGC,drawing_result, 
label_matrixC,label_matrixL,label_matrixR,label_matrixCo,label_RLGC,sep2, 
Intro,label_intro,title,warning,working,Quality,label_quality, 
title_quality,scale_quality,Scale,texte_scale,Voltage,frame_Voltage, 
label_Voltage,title_voltage,texte2_V,texte3_V,texte5_V,texte6_V,texte2_V2, 
texte5_V2,texte2_V3; 
 
 
XtAppContext app; 
int k, n,i,screen,screen2; 
int store_layer,store; 
char buffer[BUFFERSIZE]; 
double Width[NC], Height[NC], x[NC],y[NC],X[NC],Y[NC],resistivity[NC]; 
int indice[NC]; 
long int FillColor[NC],FillLayer[NS]; 
double Width_layer[NS], Height_layer[NS], 
x_layer[NS],y_layer[NS],e_layer[NS],s_layer[NS]; 
int current_type_layer; 
int type_layer[NS]; 
int current_material_cond, current_material_strip, current_material_rect, 
current_material_circle; 
int material_cond[NC]; 
int ground,new_file; 
char *name_file; 
char input_file[256]; 
char output_file[256]; 
char Q2D_file[256]; 
 
Widget texte1,texte2,texte4,label4, label, textex, textey, textex3, textey3, 
drawing; 
Widget form,form_data_rect,form_data_strip,form_data_circle; 
Widget strip,rectangle,polygon,circle; 
Widget button1_l,button2_l,button3_l,button4_l,form_button2; 
 
/*graphics*/ 
 
GC gc; 
Display *display; 
XGCValues xgcv; 
unsigned long gc_mask; 
Window window; 
long int fill_pixel,fill_layer; /* stores current colour  
                         of fill - black default */ 
Colormap cmap; 
XtActionsRec actions; 
int new; 
 
char colours[256][9]; 
 
 
/*graphics for the result (Potential distribution)*/ 
 



 

68

GC gc2; 
Display *display2; 
XGCValues xgcv2; 
unsigned long gc_mask2; 
Window window2; 
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