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ABSTRACT

Recent advances in the semiconductor industry and process technology scal-
ing have increased the demand for fast, robust computing. The thirst for
high-processing, low power ICs is ever increasing. This has pushed the de-
mand for high data rates in wireless and wireline communication systems in
the multi-Gbps range. With higher data rates, the 1/O links need to scale
proportionally. However, the I/O channel bandwidth has not scaled appro-
priately making it the biggest bottleneck in high-speed links. Parallel links
have not been able to match this increasing system performance due to issues
such as crosstalk, timing skew and packaging costs. Thus there is a need for
high-speed serial links. For high-speed transmission of data, there arises a
need for high-speed on chip clocking circuits making the use of Phase-Locked
Loops (PLLs) imperative.

This thesis includes an overview of high-speed links along with the need
for PLLs. An in-depth understanding of PLL theory, loop dynamics and
behavioral and transistor level simulation follows. Performance metrics such
as phase noise, random jitter and deterministic jitter are discussed. Finally,
this thesis concludes with an insight into All Digital Phase-Locked Loops
(ADPLLs).
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CHAPTER 1

INTRODUCTION

1.1  Motivation

A sudden advancement in the semiconductor industry has resulted in tech-
nology scaling which requires faster data rates and necessitates high-speed
clocks in the multi-GHz range. With the ever increasing data rates, the 1/0O
links need to scale appropriately. However, the I/O bandwidth has not scaled
proportionally and has created a bottleneck in the system performance. Par-
allel links have not been able to match up with the system performance with
issues such as packaging costs, data skew and crosstalk. The rising data rates
are pushing the tolerance boundaries for timing skew and crosstalk. Looking
at the recent trends, ethernet data rates are advancing from 100 Mbps to
10 Gbps. PCI Express 2 is going from 5 Gbps to 8 Gbps in PCI Express
3. Serial ATA has increased from 1.5 Gbps to 6 Gbps in computing appli-
cations. Thus there is a need to condense the parallel buses to serial buses.
The serial buses have less crosstalk, data and clock skew as well as packaging
costs. This gives rise to the importance of High-Speed Serial Links (HSSL).
HSSL are used in modern-day systems. An example is the conversion of the
parallel SCSI bus to Serially Attached SCSI (SAS).

With skyrocketing data-rate interfaces, the need for clock frequencies in
the multi-GHz range is paramount and requires the use of Phase-Locked
Loops (PLLs). PLLs have a wide variety of use in analog, digital and Radio
Frequency (RF) communication systems. PLLs are capable of generating
high-frequency, low-jitter clocks with minimal timing skew. Besides, PLLs
are also used in Clock and Data Recovery (CDR) circuits to reliably recover

the data sent from the transmitter.



1.2 Purpose

The purpose of this thesis is to provide an in-depth understanding of the
theory and working of PLLs. PLL theory will be discussed in detail be-
fore moving on to behavioral and transistor-level simulations using Cadence
Virtuoso. Finally, figures of merit of the PLL will be documented and a

discussion on design improvement will follow.

1.3 Outline

1. Chapter 1 provides an introduction to High-Speed Serial Links (HSSL).

2. Chapter 2 provides an overview of the HSSL along with the effects of
the channel with increasing data rates and use of serial links in modern-

day communication systems.

3. Chapter 3 presents an in-depth analysis of the theory of the different
building blocks of the PLL.

4. Chapter 4 describes the loop dynamics of the PLL along with a focus
on PLL noise. Finally, a design procedure is documented for calculat-
ing the loop parameters required for the PLL to lock with optimum
bandwidth (BW), phase margin and settling time.

5. Chapter 5 describes the topologies chosen for the different blocks of the
PLL.

6. Chapter 6 describes the procedure for behavioral-level modeling of the
PLL using VerilogAMS.

7. Chapter 7 describes the procedure for transistor-level modeling of the

PLL using Cadence Virtuoso.

8. Chapter 8 concludes the thesis with an emphasis on future work and
an insight into ADPLLs.



CHAPTER 2

HIGH-SPEED SERIAL LINKS

A high-speed serial link model is shown in figure 2.1 [1]. Parallel data comes
into the serializer converting it to serial data. This data is fed to the Trans-
mitter (TX). The PLL generates the master clock to drive the serializer and
the transmitter. The transmitter generates a series of pulses and sends the
encoded clock and data across the channel. To counteract the effects of the
lossy channel, there is an equalizer present on the receiver side. The received
data stream is sent to the Clock and Data Recovery (CDR) circuit. The CDR
recovers the clock sent from the TX side and uses that clock to resample and
recover the data. The resampled serial data is sent to the deserializer where

it is converted back to parallel data.
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Figure 2.1: HSSL Block Diagram
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Data rates are increasing with technology scaling, however the channel BW

has not scaled due to many effects. Figure 2.2 shows a roadmap of increasing



data rates and the target channel BW.
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Figure 2.2: Data Rates and Required Channel BW

A typical backplane channel is shown in figure 2.3. The channel is an
electrical path between the TX and RX and consists of vias, connectors and
PCB traces. The channel and its effects can be modeled by measuring its
S-parameters using a Vector Network Analyzer (VNA) or using a compu-
tational electromagnetic software such as Ansys HFSS. Once the channel is
modeled, there is a need for a high-fidelity, robust communication system
that can counteract the effects of the channel, such as crosstalk, substrate
loss and impedance mismatch between connectors. Besides, it needs to con-
sume low power and occupy the least possible area [1].
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Figure 2.3: Backplane Channel Interface

Figure 2.4 shows the channel response and eye diagrams for different data

rates.
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Figure 2.4: Channel Response and Eye Diagrams for Different Data Rates
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Figure 2.5: Timing Jitter

The attenuation caused due to the many effects in the channel increases
with increasing frequencies. Notice how the eye virtually closes for increasing
data rates. Thus the signal received after the channel has a lower Signal-to-
Noise Ratio (SNR) and higher timing jitter. Figure 2.5 explains the concept
of timing jitter. To minimize the degradation of signal quality, it is important
to design TX clocks with minimum timing skew and RX with minimum

sampling errors to recover the signal with maximum integrity.

Serial links eliminate the use of multiple pins and hence reduce the cost
which is an added burden in parallel links. Also, parallel links encounter
interference between adjacent channels when data is being transmitted. This
effect is called crosstalk and worsens as the data rate increases. Crosstalk can
lead to erroneous data reception and is a huge bottleneck for signal integrity.
This does not occur in serial links due to the absence of multiple channels.

Another effect known as data skew is eliminated in serial links. When data



is transmitted at high speeds across a parallel link interface, it is possible
that there arises a difference in the arrival time of the data at the receiver,

which potentially leads to data unreliability [2].

Figure 2.6 illustrates the widespread applications of serial links in the con-

sumer electronic industry. Some examples are provided in the following list

[1]:

e Processor-to-memory: RDRAM (1.6 Gbps), XDR DRAM (7.2 Gbps),
XDR2 DRAM (12.8 Gbps), GDDR5 (8 Gbps), DDR4 (3.2 Ghps)

e Processor-to-peripheral: PCle (2.5, 5, 8, 16 Gbps), Infiniband (2.5 - 25
Gbps), USB3.1 (10 Gbps)

e Processor-to-processor: Intel QPI (9.6 Gbps), AMD Hypertransport
(6.4 Gbps)

e Storage: SATA (16 Gbps), Fiber Channel (25 Gbps)

e Networks: LAN Ethernet (4 x 25 Gbps), WAN SONET (2.5, 10, 40
Gbps), Backplane Routers (2.5 - 25 Gbps)

0O

Figure 2.6: Serial Link Applications



CHAPTER 3

PHASE-LOCKED LOOP CIRCUITS

3.1 What Is a PLL?

VCOo
PFD | cp P

N ‘Ile.PF Vctrl ( :) OUT CLK

+N
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Figure 3.1: PLL Circuit

A Phase-Locked Loop (PLL) is a negative feedback control system that
generates a high-frequency output clock whose phase is related to the low-
frequency input clock. The need for PLLs is widespread as they find applica-
tion in analog, digital, RF and communication systems. The low-frequency
clock can be generated using a crystal with frequencies up to 200 MHz. Gen-
erating a high-frequency clock with high spectral purity is not possible with
a crystal and this is where PLLs come into play. They generate a high-

frequency clock with as low jitter as possible.

A simple PLL consists of a Phase and Frequency Detector (PFD), Charge
Pump (CP), Loop Filter (LF), Voltage Controlled Oscillator (VCO) and a
Divider. The operation of the PLL is as follows. The PFD tracks the phase
and frequency difference between the reference clock and the divided output
clock. The CP outputs a current that is proportional to this difference. These
current pulses are fed to the LF which generate a control voltage to be fed to
the VCO. The control voltage directs the VCO to generate a high-frequency
output clock which is divided through the divider and fed back to the PFD.



The loop is said to be locked when the reference frequency and the divided

output clock frequency are matched [3].

3.2 Building Blocks

The five main building blocks of the PLL are:

e Phase and Frequency Detector

Charge Pump

Loop Filter

Voltage Controlled Oscillator

Divider

3.2.1 Phase and Frequency Detector

The phase and frequency detector detects the phase and frequency difference
between the reference clock and the divided output clock and produces a
signal that is proportional to the difference between the two phases. This
error signal needs to remain constant with time for the loop to be locked.
Thus the PFD serves as an error detector to detect and minimize the error

as the lock state approaches.

A three-state PFD is required to track both phase and frequency due to
its asymmetrical transfer characteristics. A three-state PFD consists of an
UP, DN and RST state. When the reference signal is high, UP goes high.
When the divided signal is high, DN goes high. When both the reference
and divided signal are high, RST is activated, which resets the UP and DN
signal and both go low.



VDD

-
Q & UPp
REFE—)RST DIV High DIV High
VDD j REF High
—-— | RST
Q & DN REF High REF High
DIVE—]>

Figure 3.2: PFD Functionality
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Figure 3.3: PFD Operation

Figures 3.2 and 3.3 describe the operation of the PFD. When the reference
clock leads the divided output clock, UP is 1. When the divided output clock
leads the reference clock, DN is 1. When both UP and DN are 1, the reset
path is activated and pulls the UP and DN pulses to 0. The width of the UP
and DN pulses depends on the delay in the reset path. It is required to have
a minimum delay before resetting these pulses in order to avoid a condition
called “dead zone” which will be discussed in section 3.2.2.

VUP - VDN
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-“4n -2n

2n

v+
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Figure 3.4: PFD Transfer Function



Figure 3.4 shows the transfer function of the PFD with a linear range of
+27. The gain of the PFD is given by: Kppp =

2r”

3.2.2 Charge Pump

The charge pump converts the digital pulses from the UP and DN signals to

current pulses which are fed to the loop filter to generate the control voltage.
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Figure 3.5: Charge Pump PLL

Figure 3.5 shows a block diagram of a charge pump PLL. The charge pump
and capacitor C form an integrator. This introduces a pole which makes the
loop unstable. Hence the resistor is added to stabilize the loop by introducing

a proportional path.
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Figure 3.6: Charge Pump Operation
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Figure 3.6 shows the operation of the charge pump. When the UP signal

is high, V., will steadily increase.

The step increase in V. is given by:

I, e
AVt = %%T (3.1)
1

The average charge dumped per cycle is:

C . AV Iop "

Qctrl = T - o e

(3.2)

Thus the PFD and charge pump can be modeled together by the following

relation in the locked state:
Kprp = -2 (3.3)

T

When the UP and DN pulses have a small width i.e. when the phase error
is small, it is possible that the charge pump will not output any current
proportional to the phase error. This condition is called the dead zone and
is undesirable. This phase error appears as jitter at the output of the PLL.
Avoiding this condition requires adding a minimum delay in the reset path
of the PFD such that both the UP and DN pulse width is greater than the

turn on time of the CP. Figure 3.7 illustrates the dead zone condition.

Qe
A

1 ]
I Dead|Zone !
l——!
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Figure 3.7: Dead Zone Condition
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3.2.3 Loop Filter

The loop filter consists of a resistor in series with a capacitor. This combi-
nation is in parallel with another capacitor as shown in figure 3.8. Capacitor
C} adds an integrator path and introduces a pole. The resistor adds a pro-
portional path and introduces a zero. Thus the system is stable with the
addition of these two paths. Capacitor 'y is used to suppress the V., ripple;
however the addition of an additional capacitor comprises on the stability of
the PLL. The loop filter functions as a low-pass filter and rejects the input
high-frequency noise of the PLL and generates the control voltage to drive
the VCO.

R§ =G

G '-E'

Figure 3.8: Loop Filter

The transfer function of the loop filter is given as:

1
S+ rey

COys2(s+ rere)

LF(s) (3.4)

3.2.4 Voltage Controlled Oscillator

The voltage controlled oscillator outputs a clock based on the control voltage
supplied to it. VCOs have different architectures with two popular topologies
which are the ring oscillator and the LC tank oscillator. A VCO is the biggest
contributor of high-frequency noise at the output of the PLL. This translates
to jitter in the time domain, and hence efforts should be made to minimize
phase noise [4]. LC tank oscillators have lower phase noise; however LC tanks

consume a lot of on-chip area compared to ring oscillators.

The transfer function of the VCO in the Laplace domain is derived as

follows:

12



wOUt(t) = KVCOUctrl<t) (35)
Llwout (t)] = Ky covei(s) (3.6)

Pout(t) :/0 wout(T)dT:/o Kvcoven(T)dr (3.7)

(t)] _ wout(s) _ KVC’OUctrl(s)

L{¢ou 3.8

(G : : (33)
The transfer function of the VCO is given as:
oy, K

Hycols) = Pout () _ fveo (3.9)

Uetrl (S) S

where Ky oo is the VCO gain.

3.2.5 Divider

The VCO generates a high-frequency clock which when divided must be
matched in frequency to the reference clock in the locked state. The divider
divides the VCO clock using the same factor by which it is larger than the
reference clock. The log of this factor to the base 2 indicates the number of

stages to be used in the fractional-N divider circuit.

13



CHAPTER 4

PLL LOOP DYNAMICS

In this chapter we will analyze the loop dynamics of the PLL in the locked
state. The PLL has a particular order and type which are determined as
follows [5]:

1. The type of the PLL is determined by the number of integrators.

2. The order of the PLL is determined by the number of poles.

Every PLL must be of at least type 1 and order 1. This is because the
VCO has an in-built pole and addition of other poles can be in the system.
For the PLL designed, we have three poles in the system: one from the VCO
and two contributed from the loop filter. Thus, we see that the order of the
PLL can be determined by the number of poles in the system.

" PFD+CP 7,
i I
| ®.s) | Vo (5) \;:cu
Drer () B—5(4)>| Kep [ Fls) [ = =52 B ®oyr (S)

Figure 4.1: Linear Model of PLL

Figure 4.1 shows the linear model of the PLL.

The open-loop transfer function is:

K
LG(s) = Kpp - F(s) - 200 (4.1)
Kpp- K S+ 7 (4.2)

= PD VCO CQS2<S + glcjl_gz) .

14



On analyzing the transfer function, we get:

= w = Dy = 2 1.
RCy Wn =W = Ui = pa e (4:3)

Thus the phase margin is given as:

v =tan ! <w:gb) —tan™! <L:)uib) (4.4)
z p

where wy,g, is the unity gain bandwidth and w, < wyg.

In order to find the maximum value of the phase margin, we will differen-
tiate Eq. 4.4 with respect to w,g, and set the result to 0 [3]. On doing so,

we will obtain the following result [6]:

Cy
Wygh = Wy ?2 +1 (4.5)

On plugging this result back into Eq. 4.4 we get:

C 1
b1, = tan~ ( 51 + 1) — tan~! e (4.6)
2 /C_; +1

Figure 4.2 shows the sub-optimal and optimal phase margin required for
the stability of the PLL.

4 Sub-optimal phase margin f Optimal phase margin
ILG]| ILG|
i
g Wps Weo 3 Wagh  Wpso
N * =
\ ‘
A
~135° Bt _ By
Py \
—180° ! —180° ; \
v |l

LLG LLG

Figure 4.2: Magnitude and Phase Response
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4.1 Design Procedure and Parameter Calculation

We need to calculate the values of the capacitors and resistor in the loop
filter, the zeros and the poles in the system as well as the charge pump
current before implementing our design. This is done by first choosing the
unity-gain bandwidth, phase margin and resistor R.

Then K. which is the ratio of C] to (5 is calculated as:

C
K, = 51 = 2((tan®(dpr) + tan(pr)r/tan?(dar) + 1)) (4.7)
2

From Eq. 4.5 we have:

W, = —j“g” (4.8)
Ve +1
Thus,
1 G

01 - wz—}%, CQ - E (49)

Once all the above parameters are determined, the charge pump current is

calculated as:

2 2
27?'02 9 wpg + wugb

. wugb . 5
ugb

Iop = (4.10)

KVCO wg + w

4.2 PLL Bandwidth

In the previous sections, terms such as PLL bandwidth were used. It is
necessary to understand what this means. The PLL acts as a low-pass filter
with respect to the reference signal and rejects high-frequency noise whereas
it acts like a high-pass filter with respect to the VCO clock as seen in figure
4.3. Thus PLL bandwidth can be defined as the frequency at which the PLL
begins to lose lock with the changing reference signal (-3 dB) [7].

d)nu'ljd)ref j ¢nu1/¢wn

lower BW rejects
ref noise

higher BW rejects
VCO noise

-

.
-

log (frequency) log (frequency)

Figure 4.3: PLL Bandwidth
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Bandwidth also plays an important role in determining the lock time of the
PLL. The higher the BW, the lower is the lock time as a larger BW allows

for faster correction of any phase and frequency errors as seen in figure 4.4.

Figure 4.4: Lock Time vs. Bandwidth

4.3 PLL Locking Verification

It is important to check that the PLL will lock when a frequency step is

applied at its input. Let the input frequency step be w;, =

D;(s) = %. The closed-loop transfer function is given as:

LG(s)

Heiel) = 7760

The steady-state error transfer function is:

(I)error(s) - s) =1 — s) — 1
() = H.(s)=1— Hprr(s)

17

1+ LG(s)

and hence

(4.11)

(4.12)



Using the final value theorem,

Fstep _ 7; . . P.
o £1_r>%s H.(s) - ®in(s)

I 1 Aw
=lims ——— - —
s=0 14+ LG(s) s

[R010252 + (Cl + CQ)S]ACU

= lim

s—0 R016’283 + (Cl + 02)82 + choKpDS +1

0
1
=0

(4.13a)
(4.13b)
(4.13c)

(4.13d)
(4.13e)

Thus any steady-state phase error is eliminated and the PLL will achieve

lock.

4.4 PLL Noise Analysis

Each component of the PLL generates noise at the output. The noise transfer

functions can be derived to give overall noise of the PLL. Figure 4.5 shows

the noise model of the PLL.

BrerlS)

Figure 4.5: PLL Noise Model
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where,

. d UT(S) . NLG(S)
NTFin(s) = @OIN(S) 1+ LG(s)

NTFDjv(S) = NTF[N(S)

o 2
NTFop(s) = 20Ul _ 2T yopp )

icp(s) iop

NI = S = TG

Shown in figure 4.6 are NTF plots of each of the PLL blocks.
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Figure 4.6: PLL Output Referred Noise
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CHAPTER 5

PLL DESIGN CHOICES

5.1 PFD

A NAND PFD was chosen to implement in this thesis. Figure 5.1 shows the
topology of a NAND-based PFD.

D

REF :}
:}—Do—up
:}'RST
: [ —>o-on
DIV } }

Figure 5.1: NAND PFD

A NAND PFD is a three-state PFD with an UP, DN and RST state. The
NAND PFD must be carefully designed to avoid the dead zone problem. The
reset delay must be greater than the switch on-time of the transistors in the

charge pump. The delay is given by Trsr = 2Tvanp2 + Tnanps and the

20



maximum frequency of operation of the PFD is controlled by the reset delay

: 1
and is Fmax <m

5.2 Charge Pump

VDD
- Voo
:II |
I 1
— Vv
uP| |-UP o
' lep "'VlN—I I— Vin

DN |-pN

=

Figure 5.2: Bootstrapped Charge Pump

Figure 5.2 shows the topology of a bootstrapped charge pump. Matching the
up and down currents is required for the V,;,; range of operation. A mismatch
in these currents will contribute to jitter at the output. Taking this into
account, a bootstrapped charge pump was implemented. This charge pump
implements a unity gain amplifier which ensures that the same voltage is
maintained at the input and the output of the amplifier which allows the up
current to equal the down current. The bootstrap CP allows for differential

current steering and can operate with low swing UP/DN signals.

5.3 Loop Filter

The loop filter consists of a single resistor and two capacitors as shown in
figure 5.3. It effectively functions as a low-pass filter and filters out the

high-frequency noise at the input of the PLL.
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Figure 5.3: Loop Filter

5.4 Voltage Controlled Oscillator
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Figure 5.4: Differential VCO

Vc'trl

A differential VCO is implemented using the replica load technique as shown
in figure 5.4. The control voltage is replicated and fed to the differential
chain which consists of inverters and cross coupled latches. The output of
the chain is fed to a buffer which generates the differential output clocks. The
advantage of using a replica bias regulator is that it provides high bandwidth
(good high-frequency PSRR) and good stability. The differential VCO also

has lower phase noise compared to a single-ended VCO.
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5.5  Divider

The divider consists of five D Flip-Flops (DFFs) connected in the manner
shown in figure 5.5. Each DFF functions as a divide-by-2 divider. Hence
the entire chain performs a divide-by-32 operation. A factor of 32 is chosen
because the VCO clock is operating at 6.4 GHz and a reference clock of 200
MHz is being used. Each DFF employs a True-Single Phase Clock (T'SPC)

architecture which is fast and has low skew.

Incill

il

D Q DEJLDE—H—DE D Q
DFF DFF DFF DFF DFF
VCO CLKb—> a > a Q > a > af—DDIVCLK

Figure 5.5: Divider
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CHAPTER 6

BEHAVIORAL LEVEL SIMULATION

6.1 Behavioral Modeling

SPICE is the most popular simulation engine to simulate analog/mixed-
signal circuits. However, while simulating a large circuit the simulation time
can be extremely long. Also, it is difficult to predict the behavior of the
circuit until the transistor level structure is known. SPICE needs to be reg-
ularly updated with technology scaling and becomes obsolete very quickly.
For this reason, behavioral simulations of analog/mixed-signal circuits are
performed. Behavioral modeling allows a designer to predict the nature of
the circuit without the transistor level design, i.e. it is process independent.
Besides allowing the designer to accurately debug any bugs, it also cuts down
on simulation time. VerilogAMS (Verilog Analog-MixedSignal) is the most
popular Hardware Description Language (HDL) used to perform such simu-
lations. This chapter presents a detailed tutorial on simulating the different
building blocks of the PLL using VerilogAMS.

6.1.1 PFD+CP

1. Once virtuoso is loaded, click on Tools — Library Manager and the

Library Manager window will pop up as shown in figure 6.1.
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Figure 6.1: Library Manager Window

2. Create a new library by clicking on File — New — Library. Name the
library PLLBehavioral.

3. The next task is to create a cell view under the PLLBehavioral library.
Click on File — New — Cell View. Select the PLLBehavioral library.
Name the cell view pfd. Change the type to VerilogAMSText as shown
in figure 6.2.
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File

Library PLLEehavioral
Cell ptd

e wverllogams
Type WerilogAMSText
Application

Open with werilog-ams B

_ Always use this application for this type of file

Library path file
shome frushabh/ckteh fods. 1ib

Cancel Help
Figure 6.2: Opening a VerilogAMS Text Editor

4. Click on OK. The cell will show up in the corresponding library. A text
editor will open. Type the code for the PFD as shown in figure 6.3.
The PFD has two inputs: fref and fdiv and four outputs: up, dn, upb,
dnb. The upb and dnb outputs are inverted versions of up and dn. An
additional test output is created which is the reset signal. To account
for non-idealities in this design, a delay of 80 ps is added to the output
denoted by #8.
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//Verilog-AMS HDL for "PLLBehav", "pfd" "verilogams"

“include "constants.vams"
“include "disciplines.vams"
“timescale 18ps / 1ps

module pfd (up, dn, upb, dnb, fref, fdiv, test);

input fref;
input fdiv;
output up, upb, dn, dnb;

wire fv_rst, fr_rst;
wire reset;
reg g0, gql;

assign fr rst = reset | (q@ & gl);
assign fv rst = reset | (g0 & gl);
assign reset = fref & fdiv;

always @ (posedge fdiv or posedge fv rst) begin
if (fv rst) g8 <= #8 0; else g@ <= #8 1;

end

always @ (posedge fref or posedge fr rst) begin
if (fr_rst) gl <= #8 0; else gl <= #8 1;

end

assign up = gl;

assign dn = g®;

assign upb = ~q@;
assign dnb = ~ql;
assign test = reset;
endmodule

Figure 6.3: PFD VerilogAMS Code

5. Once the code is written, save and exit the text editor. On exiting, a
pop-up window will appear. Click on yes to generate the symbol for

the pfd. Figure 6.4 illustrates this process.

m Cellview symbol does not x

. Cellview pfd symbol does not exist.
[\:‘) Do you want to create it?

Yes Mo
S

Help

Figure 6.4: PFD Symbol

6. Go to the PLLBehavioral library and create a new cell view called

pfd_tb. Change the type to schematic as shown in figure 6.5.
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File

Library PLLEehavioral K@
Cell pfd_th

Wiy schematic|

Type schematic B
Application

Open with Schematics L i@

— Abways use this application for this type of file

Library path file
shome frushabh /ckteh fods. 1ib

_Sancel ;| Help
Figure 6.5: PFD Schematic

7. To set up the test bench for the PFD, we need the PFD, wires and
voltage sources. This can be done by creating an instance or pressing
I Import the symbol for the PFD from the pfd cell view and vpulse
sources from the analogLib library. These sources will be used as inputs
to the ref and div signals. Make sure that the two sources are slightly off
in frequency from one another and have a delay of 500 ps between them.
This can be done by selecting the sources, pressing () and inputting the
necessary values. Wires can be obtained by pressing W and connecting

the necessary nodes. Figure 6.6 shows the PFD test bench.

Figure 6.6: PFD Test Bench
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8. The next step is to create a config file whose job is to link the verilog
simulation engine and analog test bench sources together. Go to the
same cell view in which the pfd schematic is created i.e. pfd_tb. Change
the type to config. The pop-up window should look like the one in figure
6.7. Click OK and a new window will pop-up.

File

Library PLLEehaviaral n
Cell pfd_th

Wiey config

Tpe CLILCH -
Application

Open with Hierarchy Editaor

— Ahways use this application for this type of file

Likrary path file
Jhome frushabh/cktes fods. 1ib

Ok Cancel

Help
e ——— N —

Figure 6.7: PFD Config View

New Configuration

Top Cell
Library: |PLLBehaviaral n
Cell  |pfid_to B
View: | schematic [~ ]
Global Bindings
Likrary List: myLib
Wiew List: systemVerilog schematic veriloga vhdl vhdlams wreal
Stop List: spectre
Constraint List
i

-~ Description

Default config view template for 055-based and Cellview-based Verilog-
AkS netlisters in ADE.
Mote:

Flease remember to replace Top Cell Library, Cell, and View

fields with the actual names used by your design

Cancel

Figure 6.8: Config Setup
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9. Change the view to schematic. Click on Use Template and select AMS.
Once everything is done, your window should look similar to the one
in figure 6.8.
10. Click OK and the following window will appear as shown in figure 6.9.
Virtuoso® Hierarchy Editor Editing: (PLLBehavioral pfd_tb config)
File Edit Wiew Pluging Help cadence
Iy = |z $ | | &

Top Cell 7|8/ | Global Bindings 7%
Library: PLLBehavioral Library List my Lk w—
cell: pfd_th Wiews List: aga vhdl vhdlams wreal | ..

Wiew:  schematic i
Stop List: spectre —
_Open | (_Edit Constraint List:
Tahle View Tree Wiew
Cell Bindings
Library | Cell | “iew Found | Wiew To Use | Inherited View List |
FLLEehaviaral pfd verilogams spectre spice veril..
FLLEehavioral i _th schematic spectre spice veril..
analogLib vpulse spectre spectre spice veril...

11.

12.

13.

Figure 6.9: Config Setup

Click on Save and Open the schematic. The schematic will now look

similar to the one previously created but now it has config in the title.

Check and Save the schematic. Once that is done, go to Launch —
ADE L to open the ADE L window.

The ADE L window is the one where we will set up our anaylsis to be
performed on the PFD. Since we selected the template to be AMS, we
need to ensure that AMS is our simulator. To verify it, go to Setup —
Sitmulator and change the simulator to AMS. Once that is done, click
on OQutputs — To Be Plotted — Select On Schematic and select the
input and output signals. The final setup is the type of simulation to
be performed. Click on Analysis — Choose and select transient for a
stop time of 100 ns. The ADE L window should now look like the one
in figure 6.10.
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Figure 6.10: ADE L. Window

14. The PFD waveforms should now look like the one shown in figure 6.11.
Notice that the PFD is functioning correctly. When the ref signal is
leading the div signal, UP goes high. When div goes high, DN goes
high and the reset path is activated which pulls UP and DN to 0.

Transient Res]
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Figure 6.11: PFD Waveform

15. In a similar fashion, set up the test bench for the charge pump as shown
in figure 6.13. The verilog code for the CP is shown in figure 6.12. The
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current is set to 70 uA since that is the charge pump current required

in the PLL design.

//Verilog-AMS HDL for "PLLBehav", "cp" "verilogams"

“include "constants.vams"
“include "disciplines.vams"
“timescale 1@ps / 1lps

cp (pout, nout, up, dn);
parameter real cur = 70u; // output current (A)
input up, dn;
output pout, nout;
electrical pout, nout;
real out;
analog begin
@(initial step) out = 0.0;

if (dn && lup)
out = -cur;
else if (!dn && up)
out = cur;
else out = 8;
I(pout, nout) <+ -transition(out, ©.0, l@p, l@p);
end
endmodule

Figure 6.12: CP VerilogAMS Code

Figure 6.13: CP Test Bench

16. Although the charge pump current is set to 70 uA, it can always be
changed. This is done by selecting the CP symbol, pressing @), and

changing the current to the user’s choice as shown in figure 6.14.
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Figure 6.14: CP Current Setup

17. The waveform for the CP is shown in figure 6.15. Note that current is
defined negative in AMS. The CP is functioning corrctly. We get +70
uA when UP is high and -70 uA when DN is high. Thus in an ideal
setting, the UP and DN currents are matched.

Transient Response

iame g
="

. i @ 125 74 ----3 e
. et @ b : H
1.0 71 H 1
] H 1
i H
75 1t i H
1 H 1
. H 1
= N ' H
> 1 H i
1 n
' 1
s 41 H H
¥ 1
1 T
H ¥ !
0.0 qtemmecdeaioad -
-25
sn @ | ]
0
1
. fup ® | ] 1 | | | 1 1 | 1
. A1ipout @ 750 73
500 4
25.0
ERTEE
-25.0
50.0 4
5.0 - T T T T T
10.0 20.0 30.0 40.0 50,0

Figure 6.15: CP Waveform
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6.1.2 LF

A MATLAB script was written to generate the loop parameters. There is no
VerilogAMS code involved here.

6.1.3 VCO

1. The VCO is set up in a fashion similar to the other blocks of the PLL.
The verilog code for the differential VCO is shown in figure 6.16 and
figure 6.17. As the name suggests, we have two outputs. The phase
noise is manually entered according to the jitter specifications of the
PLL. A control voltage of 0.4 V is targeted.

//Verilog-AMS HDL for "Vmodels", "vco" "wverilogams®
/f WCO Behavioral Model (w/ phase noise)
/f by rmehta (83/11/16)

“define PI 3.14159265358079323846264338327050288419716930937511
“include "constan
“include *disciplin
“timescale 1ns/1fs

module dco(wco_outl, veo_out2, wetrl);
input wctrl;
electrical vctrl;

parameter real noise acc_dbc = -186; /f VCO FM noise @ fos (single-sideband)
parameter real fos = 1M;

parameter real noise white dbc = -125; // VCO PM noise (single-sideband)
parameter pn_en = 1; // phase noise enable(l), disable(@)
parameter Vectrl_target = 8.4;

output voo outl; /4 DCO output clk
output veo_outl;

reg vco_outl;

reg vco_out2;

reg vco_out_ideal;

reg voo_out_jitt;

parameter real freq = 6468M; /f DCO output frequency
parameter real Kvco = 588e6; £/ DCO gain (ppm/L5B)

real nom_delay;
real ideal_delay;
real jitt delay:

real fm _jitt std;
real pm_jitt_std;

real fm del;

real pm_del_2;|

real pm del;

integer seedl = -311;
integer seed2 = -561;
integer file;
integer i;°

integer count;

initial begin

£ veo_out = 1'h0;

voo_out_ideal = 1'b8;

vco_out_jitt = 1'b8;

nom_delay = 1/freq*led/2;

ideal_delay = nom_delay:

jitt delay = nom_delay;

if (noise_acc_dbc != 9)

fm_jitt_std = fos*sqrt(10%*(noise_acc_dbc/18)/(freq®*3))*1led; // FM jitter (period jitter std)

Figure 6.16: VCO Verilog Code
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sfopen({*jitter”,file_count+™8",".txt™},"w");

sfopen(*jitter.txt”, iH

count a;

end

always @(vco_out_ideal) begin
f/ideal_delay = nom_delay ® (1 + V(vctrl)*Kvco/freq):
ideal delay = 1e9/(2*(freqs#(V{vctrl)-Vctrl_target)*Kvco));

end

always @inegedge vco_out_jitt) begin Jf accumulating jitter modeling
pm_del 2 = pm del;
pm_del = pm_jitt std/2*sdist normal(seedl,f,
fm_del = fm_jitt_std/2*Sdist_normal(seed2.8,18 /i divided by 2 for half period
jitt _delay = ideal delay + pm_del - pm_del 2 +

end

always #(ideal delay) wco out ideal == ~vco out ideal;

always #(jitt delay) vco out jitt == ~yco_out_jitt;

ffalways @(posedge dco_out) begin

/f count = count + 1;

i if jcount = 1258)

i Sfwrite|file,"%f\n", Srealtime);
/fend

always @ipn_en,vco out ideal, vco out jitt) begin
case (pn_en)

] 2 begin
veo_outl == vco_out_ideal;
vco_out2 <= ~vco_out_ideal;
end
begin

vco_outl == weo_out_jitt:
voo out? == ~vco out jitt;

endcase
end

endmodule

Figure 6.17: VCO Verilog Code

2. Set up the VCO schematic and config file as descibed earlier. The VCO
test bench should like the one is figure 6.18.

Figure 6.18: VCO Test Bench

3. Once again, we can alter the VCO parameters to the design require-
ments. Here, the targeted VCO frequency is 6.4 GHz and a Ky ¢o of
500 MHz/V. A white noise of -125 dBc/Hz is used along with a tar-
geted control voltage of 0.4 V. Figure 6.19 shows the setup of these

parameters.
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Figure 6.19: VCO Parameters Setup

4. We see the two differential output clocks both operating at 6.4 GHz
in figure 6.20. These clocks will be used toward the serializer and the

driver.

. ok @

S 0 5 I R O 0 O 0 I

o =0 =

I 1elk180 @

Figure 6.20: VCO Waveform

6.1.4 Divider

1. The divider is setup in a similar way to the other PLL blocks. It
consists of five DFFs put together to divide the 6.4 GHz clock by a
factor of 32 to scale it down to 200 MHz to match it to the reference
clock. Figure 6.21 shows the VAMS code for the divider. A delay of 50
ps is added to the output.
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//Verilog-AMS HDL for "PLLBehav", "div" "verilogams"

“include "constants.vams"”
“include "disciplines.vams"
“timescale 10ps / 1ps

module div(out,clk);

input clk;

output out;

parameter divide ratio = 32;
reg out;

integer i=6;

always@(posedge clk) begin
if (1 < (divide ratio/2)-1) begin
#5 out = 6;
i=i+1;
end

else if (i == (divide ratio/2)-1) begin
#5 out = 1;
i=1i+1;

end

else if (1 < (divide ratio)-1) begin
#5 out = 1;
i=1i+1;
end

else if (i == (divide ratio)-1) begin
#5 out = 0;
i=8;
end
end
endmodule

Figure 6.21: Divider Code

2. Set up the divider schematic and config file as descibed earlier.

divider test bench should look like the one in figure 6.22.

The

Figure 6.22: Divider Test Bench

3. The required division factor is 32 in this case. However, it can be

changed by pressing () and setting it according to the design require-

ment as shown in figure 6.23.
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Figure 6.23: Divider Parameters Setup

4. We see the high-frequency VCO clock and the low-frequency divided
clock. In figure 6.24, we notice 16 pulses of the VCO clock in half-a-
cycle of the divided clock which implies 32 pulses of the VCO clock
per cycle of the divided clock hence verifying the functionality of the

divider.
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Figure 6.24: Divider Waveform
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6.2 PLL Analysis

1. Now that all the blocks of the PLL are set up and working, they will
be integrated together to test the working of the PLL. The config file
and schematic for the PLL are created in a manner just like the other
blocks. The test bench of the PLL should resemble the one shown in
figure 6.25.

Figure 6.25: PLL Test Bench

2. The waveforms shown in figure 6.26 are captured at an instant where
the PLL is trying to acquire lock. We observe that initially the reference
clock is faster than the divided clock and hence we have UP pulses. This
causes current to be dumped into the loop filter and the control voltage
to increase in steps. The VCO output clock has varying frequency with
time and the PLL is not locked.
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Figure 6.26: PLL Trying to Acquire Lock
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3. In figure 6.27, the PLL is completely locked. The reference and divided
signal have zero phase and frequency offset. The UP and DN pulses
go momentarily high but are brought down by the reset signal. The
charge pump does not pump in or draw current from the loop filter
and the control voltage settles to a constant value. The VCO clock is

oscillating at 6.4 GHz. On observing the VCO frequency vs. time, we

notice fluctuations in frequency. This arises due to jitter in the VCO.
However, the PLL is said to be locked at this point of time.
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Figure 6.27: PLL in Locked State

4. A plot of the control voltage is shown in figure 6.28. We can see how
nicely the control voltage settles to a constant value of 400 mV once

lock is achieved.

15
time (us)

Figure 6.28: Control Voltage
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CHAPTER 7

TRANSISTOR LEVEL SIMULATION

7.1 What Is Cadence Virtuoso?

Cadence Virtuoso is an Electronic Design Automation (EDA) tool used
for analog, mixed-signal and RF IC design. It allows for construction of

transistor-level schematics, layout, simulation and behavioral modeling.

7.2 Simulator

Cadence Spectre circuit simulator provides fast, accurate SPICE-level sim-
ulation for complex analog, RF and mixed-signal circuits. It is tightly in-
tegrated with the Virtuoso custom design platform and provides detailed

transistor-level analysis in multiple domains.

7.3 Transient Simulations

The transient response is the response of a system to a change from a steady-
state condition. It is used to study the time-varying behavior of a system

and is used to analyze the design of the PLL.

7.4 Cadence Virtuoso: Getting Started

This section presents a detailed tutorial on constructing and simulating a D
flip-flop. This includes transistor-level design, symbol generation and circuit

simulation.
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7.4.1 Creating a Schematic

1. Once Virtuoso is loaded, click on Tools — Library Manager and the

Library Manager window will pop up as shown in figure 7.1.

Library Bath Editar..

MC-Yerilog...

WHOL Toolbos

Mized Signal Environment  »
EDE L

BDE XL

WiV L

BMS

Technaology File kanager...
Display Resource Manager..
Ahstract Generator..

Print Hierarchy Tree...

Set Cell Type..

CDF

SKILL IDE...
SKILL Finder...
Canversion Tool Box...
Uniguify...

WEEEN Options  Help cadence

.1.6-64b - Log: /home/rushabh/CDS.log

OF ITS LICENSORS BND IS SUBJECT TO LICEMSE TERMS.

nmause L:
HE

Figure 7.1: Library Manager Window

2. Create a new library by clicking on File — New — Library. Name the
library PLL.

3. The next task is to create a cell view under the PLL library. Click on
File - New — Cell View. Select the PLL library. Name the cell view
DFF. The default setting for View will be schematic. If not, change

the setting to View as shown in figure 7.2.

42



File

Litrary \ELL [~ |

Cell OFF
Wiew schematic

Type schematic n
Application

Open with Schematics L K

_ Always use this application for this type of file

Library path file
#home /rushabh/cktb5/eds. 1ib

€LP concel Help
Figure 7.2: Creating a New Schematic Window

. Click on OK. The cell will show up in the corresponding library. A
schematic for the cell will also show up. Double-click on the schematic

to open the schematic window.

. A positive edge triggered DFF is created using NMOS and PMOS.
These components are found in a different library. To access these
components, use the create instance icon or alternatively press the key
I. The Add Instance window will pop up. Select the tsmcN65 library
and the cell as nch. Select the view as symbol as shown in figure 7.3.

Similarly, a PMOS can be selected by naming the cell as pch.

. Press Enter. The transistor will now be placed on the schematic window

and should look like the one displayed in figure 7.4.

. These transistors can be replicated by pressing the key C, selecting
the transistor and placing the replicated version at a different location.
This is time efficient since we do not need to access the Add Instance

window every time for instantiating the same component.

. By selecting the component and pressing the @) key, different properties
of the transistor, such as length, width and multiplier can be added and
edited.
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[~ ] Add Instance x

Library  tsmcHES| Browse |

Cell nch

Wi symbol

Mames

o Add Wire Stubs at:
« all terminals & registered terminals anly

Array Rows 1 Columns 1 E
42 Rotate Ak Sideways = Upside Down
hocdel name nch
description dard VT NMOS transistor
I (M) &0n M
W (M) 200n 1
total_widthihd) 2000 M
Mumhber of Fingers 1
rultiplier 1
total_tn 1
Hard_constrain ~
Calc Diff Params %
Source_area 3. Be-14
Drain_area 3.5e-14
source_periphery_ih) T50n X
Drrain_periphery_(kd) TEOn M

€ cacel | Demuis | Help

Figure 7.3: Instantiation

Figure 7.4: NMOS Transistor

9. Once the components are laid out, they can be wired by pressing the

W key and selecting the nodes to be wired.

10. Once the TSPC positive edge triggered DFF is constructed, the schematic
looks like the one in figure 7.5.
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Figure 7.5: Positive Edge Triggered DFF Schematic

11. The input and output pins are added by clicking on the P key. Once

12.

clicked, the window shown in figure 7.6 will pop up.

. Add Pin x
Pin Names 1|

Direction input n Bus Expansion e off _ on

Usage schematic n Flacement & single _ multiple
Signal Type signal ﬂ

Attach Met Expression: & No O Yes
Property Mame
Default Met Mame

Fant Height 0. 0825 Fuont Style stick

42 Rotate | Ab Sideways | | = Upside Down | Show Sensitivity »»

m _Cancel | Defaults | Help

Figure 7.6: Pin Assignment

Type in the pin name and give it the appropriate direction. Use in-
putOuput for VDD and GND.

The schematic is now ready. One of the most important steps is to

click on the Check and Save ot icon before closing the schematic

45



7.4.2 Creating a Symbol

1. Open the schematic of the component whose symbol is to be created.

2. Go to Create — Cellview — From Cellview. The window shown in

figure 7.7 will pop up.

Cellview From Cellview

Library Mame PLL T
—_—

Cell Mame IFF

From View Name ($chematic n

To Yiew Name symhol

Tool / Data Type  (chematicSymbol

<

Display Cellview
Edit Optiong ~

m Cancel Defaults apply Help

Figure 7.7: Creating a Symbol

3. Click OK. Once that is done a window similar to the one in figure 7.8

will pop up.
- Symbol Generation Options X
Library Mame Cell Name Wiew Mame
PLL IOFF symbol
Fin Specifications Attributes
Left Pins CLE D List
——
Right Pinz 0 0_har List
=
Top Pins List
\asan/
Bottom Fins List
e
Exclude Inherited Connection Pins
& None o All O Only thege:
Load/Save _ Edit attributes _ Edit Labels _ Edit Froperies  _

cancel || apply | Help
R e - e

Figure 7.8: Pin Direction Allocation

Here you can allocate which pins will appear on which side of the

symbol block.

4. On clicking OK, a symbol will be created and will look like figure 7.9.
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Figure 7.9: Symbol of a Positive Edge Triggered DFF

7.4.3 Creating a Testbench

Once all the components and symbols are assembled, simulations will be per-
formed on them. A testbench is an environment where all the components
are compressed into one symbol and the external sources, power supply and
ground are connected to that symbol to perform the simulations. This re-

duces the complexity of the overall work needed to extract the simulations.

1. Go to File — New — Cell View under the PLL library and call this
cell DFF_tb.

2. A schematic window will pop up. Press I to look for the symbols of
the DFF, vpulse sources and ground. The DFF will be under the PLL
library since it was created at that location. The vpulse and ground

can be found under the analogLib library.

3. Once the symbols are found, connect them to set up the testbench for
the DFF as shown in figure 7.10.
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Figure 7.10: DFF Test Bench

4. The specifications for the source need to be input in order to obtain
the desired result. This can be done by selecting the source and then

pressing (). The window in figure 7.11 will pop up.

- Edit Object Properties x

_ Browse Reset Instance Labels Display
Property ) Walue )
Library Mame analogLib
Cell Mame vpulse
Wiew Mame symbol

Instance Mame Vi

Add Delete rdadify

User Property Master \./alue .Lucal WValue
lvslgnare TRUE
CDF Parameter Walue

Freguency name for 1/period

Moise file name

Murmber of naisedfren pairs 1}

DC valtage

AC magnitude

AC phase

HF magnitude

P&C magnitude

PAC phase

Yaltage 1 ov

Yoltage 2 1.2v

Period 10n

Delay time 100p =

Rise time

Fall time

m Cancel | _Apply | Defaults | Previous

_Mexd

Display
off
off

off

off

Display
off

Display
off
off
off
off
off
off
off
off
off
off
off
off
offt
off
off

Elp

-gogooooooooDooon

Figure 7.11: Viyurce Specifications
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5. Enter the required values for the sources. Shown are the specifications



for the D input of the DFF. The pulse is contained between 0 and 1.2
V with a start value of 0 V and a delay of 100 ps. The period of the

pulse is 10 ns.

6. Finally, the test bench of the DFF is ready and can now proceed with

the simulations.

7.4.4 Performing Simulations Using Spectre

1. Once everything is set up, click on Check and Save. Without this step,
we cannot proceed. Next, click on Launch — ADFE L to launch the

Analog Design Environment (ADE) window as shown in figure 7.12.

Imﬂ File Edit Wiew

ADE GHL
Layout XL
Layout GXL
Schematics L
Schematics XL

LCreate Maodel (SMG)
Diva

Hierarchy Editor

I Packaging(SiF)

IC Testhenches

Mixed Signal Options  »
Parasitics

Erell IDE

Simulation 3

Figure 7.12: Launching ADE L

2. The window shown in figure 7.13 will pop up.
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ADE L (1) - PLL DFF_tb schematic = e

Launch Session Setup Analyses Wariables Outputs  Simulation Results Tools Calibre Help CEdEI‘ICE

I &l iE7 e =B dE

Design Yariables

Mame | Walue

Analyses 7 X
L AC
Type | Enable| Arguments o
= -
=
®
Outputs 7.8 % Q
MamesSignal/Expr | ¥alue | Plot| Save| Save Opfions |

R
aTAT

=

Plot after simulation: |Auta n Plotting mode: \Replace n

403

| simulatorDirectory/Huost ..

| Status: Ready | T=27 C | Simulator: spectre [|

Figure 7.13: ADE Window

3. It is imperative to ensure that the model libraries are correctly set and

the default simulator is spectre. To check whether it is correctly set,

go to Setup — Model Libraries and it should look something like the

window shown in figure 7.14.

spectre0: Model Library Setup x

|hadel File

B Global kodel Files
LCERGPME_JSAsmeMNED L modelssspectrescmBagplus_gd5_lk_wldlscs  (thip

L CBEEGPME_JSAsmeMES  SmodelssspectrescmBigplus_sds_[k_v1d0scs  (t dio

LCBEEGPME_JSAsmeMNES modelssspectrescmBagplus_ad5_lk_wildlscs  (tH_dio_33

LCERGPME_JSAsmeMNED/ Smodelssspectre/cmBagplus_2d5_[k_wldlscs  (t_mim

L CBEEGPME_JSAsme MBS modelssspectresomBigplus_sdS_lk_v1discs  (H dio_dmw

LCBEGPME_JSAsmeMNESS Smodelssspectre/cmBagplus_2d5_lk_widlscs  (t_dio_1&

LCERGPME_JSAsmeMNEDS  SmodelssspectrescmBagplus_2da_lk_wldl.scs [ bip_npn

LCBEEGPME_JSAsmeMES/  Smodelssspectre/cmBogplus_gda_lk_wldl.scs  (H_33

LCERGPME_JSAsmeMNED L modelssspectres/cmBagplus_2d5_lk_wldl.scs  trrimom

L CBEEGPME_JSAsmeMES/ SmodelssspectrescmBogplus_2d5_k_vw1ldD.scs  (f_mos_cap_25

LCBERGPME_JSAsmeMES Smodelssspectre/cmBanplus_gd5_k_wldl.scs  (H_14d

LCERGPME_JSAsmeMNED  modelssspectresomBagplus_gd5_lk_wldiscs  tdisres

L CBEEGPMSE_JSAsmeMES/ modelsispectrescrmBigplus_sds_[k_vld0.scs  (H_res -

<

KEKKKKKKK KK K]

|Section |

EEE(

m Cancel | Apply Help

Figure 7.14: Model Library Setup

4. Also change the simulator to spectre if it is not the default simulator.

Figure 7.15 illustrates how to do it.
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Choosing Simulator/Directory/Host -- ADE L (1)

Simulator spectre
hspiceD I
Froject Directory
Ltrassim
Host Mode -  distributed
ams
Host spectreterilog
Uitrasim etilog

Femote Directory

Cancel Defaults Ay Help

Figure 7.15: Simulator Setup

5. Now the simulation environment is ready. Since we are analyzing the
time-varying response of the DFF, we will perform transient analysis.
To perform transient analysis, in the ADE window click on Analyses
— Choose — tran. Choose the stop time to be 100 ns. This means

that the simulation will run for 100 ns. This is shown in figure 7.16.

- Choosing Analyses -- ADE L (1) x

Analysis & tran w dc W ac w nhoise
o  sens ' docmaich O sth
“ pz “ sp w envip  pss
w pac « psth O pnoise i pRl
w psp w Opss o gpac  gpnoise
o gpRl w opsp s hh « hbac
« hbnoise _ hbsp

Transient Analysis
Stop Time 1000

Accuracy Defaults (errpreset)

— conservative __ moderate _ liberal
_ Transient Noise

__ Dynamic Parameter

Enahled Options...
— e/

m Cancel Defaults Apply Help

Figure 7.16: Choosing Analyses for Simulation

6. Select the signals that need to be plotted by clicking Qutputs — To Be
Plotted — Select On Schematic as shown in figure 7.17. This will direct
the user to the schematic and the required signals can be selected to
be plotted.
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H ADE L (1) - PLL DFF_tb schematic K

Launch Sgssion Setup  Analyses  Variahles Emﬂ Simulation Results Tools Calibre Help caden(e

i S Setup
c 77 " I= s
(=R & = & e
Design Yariahles Import @ac
= Arguments o
Hame | Walug | [ tra Export
o To Be Saved » @
To Be Plotted —— L.
Save Al Select On Schematic IF:,
Add To %
Bemaove From
r s O
Outputs 78| @
MamesSignal/Expr | Value | Plot| Save| Save Options |
% Plot after simulation: |“utd n Flotting mode: Replace n |
n -
5() | Aod To | Status: Ready | T=27 C | Simulator: spectre J‘

Figure 7.17: Selecting Signals to be Plotted

7. Once everything is set up, click on the green arrow shown in figure
7.18. This will start the simulation. Once the simulation is completed
and successful, the main virtuoso window will display the simulation

successful. If not, error messages will appear.

IT:-:’

Figure 7.18: Starting Simulation

7.4.5 'Transient Response

Based on the signals selected to be plotted, a new Visualization window will

pop up displaying all the aforementioned signals.
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Figure 7.19: DFF Waveform

From the waveforms in figure 7.19, we notice that Q follows D on the rising

edge of the clock verifying the working of the DFF.

7.5 PLL Simulation Using Cadence Virtuoso

Now that we have experience and practice using Virtuoso, we will move on
to building the blocks of the PLL which are listed in section 7.5.1.

7.5.1 PFD+CP+LF Setup

1. The PFD used in this design is a NAND PFD which uses two-input,
three-input and four-input NAND gates along with inverters. The CP
is a bootstrapped charge pump and the loop filter is a low-pass filter.
Construct the schematic and symbol of these three blocks and set up
the testbench. The result will look similar to figure 7.20.
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Figure 7.20: PFD+CP+LF Test Bench

2. The fref and fdiv input are set up to have slightly varying frequencies
and a phase offset in order to test the working of the PFD. The images

in figure 7.21 and figure 7.22 illustrate their setup.

- Edit Object Properties
Apply Ta only current n instance n
Show _ system o user ¥ CDF
_ Browse __Reset Instance Labels Display
Pru‘peny i Walue i
Library Mame analogLib
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Wiew Mame symbol
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DC valtage
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AC phase
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Figure 7.21: fdiv Setup
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Help
B NEE
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Figure 7.22: fref Setup

3. Launch the ADE L window and set up the transient analysis for a
period of 100 ns. If the loop filter values are parametrized in the test-
bench, we can set them manually in the ADE window. To do that click
on Variables — Copy From Cellview. Once the parametrized values
show up, set them as per the design requirements. The ADE window

should now look like the one in figure 7.23.

[] ADE L (3) - CP bootstrap_test config R

Launch Session Setup Analyses Varishles Oufpuls Simulation Results Tools Calibre Help cadence

gl ek 8 db

Analyses
Design variables ac
[ Type | Enable| Arguments 3
[ hame | Value I || tran » 01000
I 97.21K o 2
2 c1 1zzp bl
A - [+
¥
Outputs 5% Q
B HName/Signal/Expr [al_Piot | Save| Save Oplions|
 fret ¥ | |ves |_
5 fiv ¢ ¢ yes
5 dn ¢ v yes
o e ¥ [ [yes
5 dn_b 2 |2 |ves
G up_b M (@ |yes =
= Plot afler simulation: (@uto R Ploting mode: Replace [
il =
18(34) \ Choose Design | Status: Ready | =27 € | Simulator: specire | State: ams_state1 |

Figure 7.23: PFD+CP+LF ADE Window
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4. On simulating, we observe the waveforms in figure 7.24. We notice the
current functionality of the circuit with 70 uA of charge pump current.
The delay in the NAND PFD is approximately 32 ps.

Virtuoso (R) Visualization & Analysis XL

Eile Edit View Graph Axis Trace Marker Measurements Tools Window Browser Help cadence

I -2 demls ¢ W B x 10 0aqqama -y BEES: |H
‘";/” 7 B[] sukwindows: Transient Response n || o !]_J || & = [pata Foint 1065308549n | || Jli m || [Crassic BE Q

-25
1.25 3

- I ffrefl @

= E - 39.13n0s 599.619mV,
-

. Aup @

M5: 38.40650s 70.0uA

-.25
. 7pout @ S0

—40.0

= 0.0

T T T T T T T T T T T T T T T T T T T T T T T T T T
36.0 37.0 38.0 39.0 40.0 41.0
time (ns)

Figure 7.24: PFD+CP+LF Waveforms

7.5.2 VCO Setup

1. The VCO used is a differential VCO using inverter chains with cross-
coupled latches. However, for this tutorial, we will be using a single-
ended VCO with a PMOS input. It consists of three inverter chains
and an additional inverter for getting full output swing. The schematic
and the corresponding test bench is shown in figure 7.25 and figure 7.26

respectively.
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Figure 7.25: Single-Ended VCO Schematic

ngle_ended

Figure 7.26: Single-Ended VCO Test Bench

2. Launch the ADE L window and set up the transient analysis for a
period of 100 ns. Set the capacitance to 197.5 fF and V., value to 400
mV since that is the value we will be using in our design. The ADE

window should now look like the one in figure 7.27.
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Figure 7.27: VCO ADE Window

3. On simulating,in figure 7.28, we observe that the period is 156.25 ps
which means that the VCO is operating at 6.4 GHz.

Transient Response

Name wig
1.25
I vctrl @
. /vout @
1.0 A
v/l |
£
=
S
.25 A
S e e L e I e o e L s e B L s e e e I e
225 22,75 23.0 23.25 23.5 23.75 24.0 24.25
time (ns)

Figure 7.28: VCO Waveform

7.5.3 Plotting VCO Output Frequency vs. Control Voltage
and VCO Gain

After simulating the VCO, it is important to observe and understand the

figures of merit. Figures of merit include the VCO gain Kyco, Vi tuning
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range and phase noise. VCO phase noise is the major noise contributor
to the PLL. This section presents a step-by-step tutorial on simulating and

observing these parameters.

1. To plot the VCO frequency vs. the control voltage we will make use of
the Calculator tool. Click on Tools — Calculator in the ADE window

as shown in figure 7.29.

Parametric Analysis ..
BF »

Calculatar ...
Results Browser ..
Wavefarm ..
Results Display .
Job Manitor ...

Figure 7.29: Calculator Tool

2. Click on vt. This will open the schematic of the test bench of the VCO.
Select the output of the VCO.

3. Click on the functions panel and select freq. Then select average. The

calculator expression will look like the one in figure 7.30.
averagelfreq(VT(Wout") "rising" TxMame "time" ¥mode "auto” Pthreshold D.D)l

Figure 7.30: Calculator Expression for Average of VCO Frequency

4. Go back to the ADE window. Click on Qutputs — Setup — Get Fxpres-
sion. The expression in the Calculator window will now be displayed

here. Give the output a suitable name. Figure 7.31 explains this step.

| Setting Outputs -- ADE L (6) x

Selectzd Output Table OF Outputs

_ MamedSignal/Espr | ¥alue| Plot| Save Options
Hame (opt) freq 1 vt ves ally

7 vout s ally
Exprassion average((freq VI("/vout") "rising" ? poom schematio g 4
Calculator | Open | Get Expression | Close
Will be # Plotted/Evaluated

f I
&dd | Delete | Change | Mext Mew Expression
—_— —

m Cancel | Apply Help

Figure 7.31: Extracting the Expression for the VCO Frequency
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5. Go to Tools — Parametric Analysis. Select the variable as vctrl and
sweep it from 0 to 1.2 V in step sizes of 0.1. Click on the green button

to initiate the parametric anaylsis as shown in figure 7.32.

Eile  Analysis Help

Il Ready

=l q% | & 3¢ C [ [TT] ~ | Run Mode: sweeps & Ranges °| o O |
Wariahle | Walue | Sweep? | Range Type | From | To | Step Mode | Step Size | Inclusion List | Exclusion List |
witrl 1] I FromTa 0 1.4 Linear Steps |01

Figure 7.32: Parametric Analysis

6. Once the simulation is done, the output will be displayed as shown in
figure 7.33. On taking the derivative of this plot, we can calculate the
VCO gain. We notice that at 400 mV, the VCO frequency is 6.397
GHz and Kyco = 521.6 MHz/V.

3

@

Narme [_ I
——
B vout freq Sk

M1: 400.051m 6.39779G

W KVCO

0.0 25 3, = 1.0
verrl

Figure 7.33: Frequency vs. Vi

7.5.4 VCO Phase Noise

1. In order to simulate VCO phase noise, it is necessary to run a Periodic
Steady State (PSS) simulation first. To do that, go to Analyses —
Choose — pss and set the parameters as shown in figure 7.34. The
beat frequency is the VCO target frequency and hence we need to check
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“oscillator” and select “vout” and “gnd” as the positive and negative

nodes respectively.

=] Choosing Analyses -- ADE L (7) x
Analysis o fran wdc Cac < noise —
ok « sens o domatch o sth
w Pz w sp w envip & pss
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=
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e/

» Calculate initial conditions (ic) automatically

__ Enable tuning mode analysis

m Cancel Defaults Apply Help
R LA NG LC AN BN S

Figure 7.34: VCO PSS Setup

2. For the phase noise simulation, go to Analyses — Choose — pnoise
and set the parameters as shown in figure 7.35. We set the start and
stop frequency from 1 K to 1 G. Once that is done, go back to the ADE
window and start the simulations. Once the simulations are complete,
we need to view the phase noise simulation. To do so, in the ADE
window, click on Results — Direct Plot — Main Form and a window
will appear as shown in figure 7.36. Choose “Phase Noise” and click

the “Plot” button.
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Figure 7.35: VCO Pnoise Setup
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Figure 7.36: VCO Pnoise Plot Setup

3. The phase noise of the VCO is plotted vs. frequency offset as shown
in figure 7.37. We notice that the phase noise for the VCO at a 1
MHz offset is -85.37 dBc/Hz which is reasonable considering our high-

frequency of oscillation.
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Periodic Noise Response
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Figure 7.37: VCO Phase Noise

7.5.5 Divider Setup

1. Setup the divider testbench in a similar fashion to the other blocks. It

should resemble the image shown in figure 7.38.

Figure 7.38: Divider Test Bench

2. In the ADE window as shown in figure 7.39, select the input and output
signals and setup a transient analysis for 10 ns. We can also use the
calculator to setup and calculate the frequencies of the input and output
signals. On simulation, from figure 7.40, we can see that the input
frequency is 6.4 GHz and is divided by a factor of 32 to output 200
MHz.
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Figure 7.39: Divider ADE window
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Figure 7.40: Divider Waveform
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Figure 7.41: Divider Waveform (zoomed in)

3. The 16 pulses of the input correspond to half a pulse of the output
which implies that there are 32 input pulses for 1 output pulse. Thus
the divider is dividing by a factor of 32. Also, there is a delay of 77.07

ps between the input and the output as seen in figure 7.41.

7.5.6 PLL Integration and Simulation

1. Now that all our blocks are built, it is time to integrate them and
simulate the entire PLL. To do this, we will create a new test bench
where we will import symbols of the different blocks. The test bench
should look like the one in figure 7.42.

Figure 7.42: PLL Test Bench

2. There is just one input to the PLL which is the reference clock. Set

up the reference clock as described earlier having a frequency of 200
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MHz. Additionally, we should add a certain rise and fall time, delay
time and pulse width to account for non-idealities of an actual crystal

generating the clock.

. With all transistor-level designs, the PLL will take longer to simulate

and lock. Hence, in the ADE window, we need to run the transient

analysis for 3 us. Select all the signals of interest to be plotted.

. On simulation we observe the PLL characteristics both before lock and

after lock. Figure 7.43 shows a picture of the PLL waveforms before
lock is acquired. Here, the div signal leads the ref signal which causes
the dn pulses. Due to the dn pulses, current is drawn out of the loop

filter and vctrl is decreasing in steps. The frequency of the VCO clock

is changing.

25
1.25

40.0 50.0 0.0 70.0 80.0
time (ns)

Figure 7.43: PLL Waveforms before Lock: Decreasing Control Voltage

d.

Similarly, when the ref signal leads the div signal, we have up pulses
which causes charge to be dumped into the loop filter and vctrl to
increase in steps as seen in figure 7.44. However, since the control

voltage is changing, the frequency of the VCO clock is not constant.
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Figure 7.44: PLL Waveforms before Lock: Increasing Control Voltage

6. When the PLL is locked, the control voltage settles to a constant value
and the reference and divided signal match each other in phase and

frequency as seen in figures 7.45, 7.46 and 7.47.

Transient Analysis
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Figure 7.45: PLL Settled Transient Waveforms
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Figure 7.47: PLL Locked State: Control Voltage

7. Ideally, we would expect the VCO frequency to be constant over time
in the locked state. However, due to phase noise in the VCO, the clock
frequency will slightly vary over time as seen in figure 7.48. In the time
domain this corresponds to jitter. This is undesirable and unavoidable

and efforts are needed to minimize this as much as possible.
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Figure 7.48: PLL Output Clock Frequency vs. Time

8. The PLL designed will be used to drive the serializer and the driver.
Hence the random and deterministic jitter are important figures of
merit and need to be minimized to reduce timing errors. These errors
could lead to a higher bit error rate (BER). In order to measure the
deterministic jitter, we need to select the VCO clock and then click
Measurements — FEye Diagram. A window like the one in figure 7.49
will pop up on the side. Enter the start time as 1.5 us, stop time as 1.5
us and period as 1/6.4 G (the start and stop time should be selected
at a time interval where the PLL is locked). Once these values are
entered, hit “Plot Eye”.
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Figure 7.49: PLL Output Eye Diagram Setup
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We notice that the output clock has some deterministic jitter in figure

7.50.

Figure 7.51: PLL Output Eye Diagram: Deterministic Jitter (zoomed in)

By putting markers at the 0.6 V crossings, we can calculate the deter-

ministic jitter of our PLL to be 3.11 ps as seen in figure 7.51.
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CHAPTER 8

DISCUSSION

8.1 Conclusion

This thesis has summarized the design and implementation of a PLL circuit
and has presented a detailed tutorial on the design and simulation of the
same at the behavioral as well as transistor level using Cadence Virtuoso.
The PLL outputted a clock at 6.4 GHz with -85 dBc/Hz phase noise and 3.11
ps deterministic jitter. There is tremendous scope for improvement in this
design with focus on phase noise reduction, random and deterministic jitter
reduction and exploring different architectural designs. With increasing data
rates, PLLs need to operate at a higher clock frequency pushing the limits
for improving the figures of merit. The purpose of this thesis was to gain an
in-depth understanding of high-speed serial links at the behavioral as well as
transistor level and also to provide a blueprint for future students seeking to

pursue a career in the field of analog and mixed-signal IC design.

8.2  Future Work

Designing a PLL at 6.4 GHz required the designer to use the building blocks
that improved the performance metrics. However, with trends of higher data
rates, the need for high-frequency PLLs is paramount. Besides implementing
analog PLLs, there is a need for All Digital PLLs (ADPLLs). Section 8.2.1

presents a discussion on ADPLLs.
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8.2.1 ADPLL
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Figure 8.1: ADPLL Block Diagram

An ADPLL replaces the charge pump with a time error-to-charge digital
converter, the loop filter with a discrete-time digital filter (generally second-
or third-order sigma-selta) and the Voltage Controlled Oscillator (VCO) with
a Digitally Controlled Oscillator (DCO) as shown in figure 8.1 [8].

The PFD detects the frequency and phase mismatch between the reference
and divided clocks. The error between the two signals is detected and a
control word is generated which is proportional to this error. Based on the
frequencies of the two clocks, the control word either increases or decreases.
This is then fed to the DCO which outputs the high-frequency clock.

ADPLLs are less susceptible to process and noise variations than analog
PLLs. The use of ADPLLs increases design portability and testability. There
is a greater flexibility in loop bandwidth, i.e. huge capacitors are not needed
for lower BW thus reducing on-chip area and making them attractive for use

in high-performance microprocessors [7].
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