
DESIGN AND IMPLEMENTATION OF A PHASE LOCKED LOOP FOR
HIGH-SPEED SERIAL LINKS

BY

RUSHABH MEHTA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Professor José Schutt-Ainé

ABSTRACT

Recent advances in the semiconductor industry and process technology scal-

ing have increased the demand for fast, robust computing. The thirst for

high-processing, low power ICs is ever increasing. This has pushed the de-

mand for high data rates in wireless and wireline communication systems in

the multi-Gbps range. With higher data rates, the I/O links need to scale

proportionally. However, the I/O channel bandwidth has not scaled appro-

priately making it the biggest bottleneck in high-speed links. Parallel links

have not been able to match this increasing system performance due to issues

such as crosstalk, timing skew and packaging costs. Thus there is a need for

high-speed serial links. For high-speed transmission of data, there arises a

need for high-speed on chip clocking circuits making the use of Phase-Locked

Loops (PLLs) imperative.

This thesis includes an overview of high-speed links along with the need

for PLLs. An in-depth understanding of PLL theory, loop dynamics and

behavioral and transistor level simulation follows. Performance metrics such

as phase noise, random jitter and deterministic jitter are discussed. Finally,

this thesis concludes with an insight into All Digital Phase-Locked Loops

(ADPLLs).

ii

To my family and friends, for their love and support

iii

ACKNOWLEDGMENTS

I have attended UIUC for six long years, four years as an undergraduate

student and two years as a graduate student. I have been involved in re-

search for the past three years. This journey was hard and at the same time

successful. I encountered countless obstacles which would not be solved if

I did not have the support of numerous people along the way. I take this

oppotunity to thank all the wonderful individuals in my life who have made

this journey memorable and fun.

First and foremost, I would like to thank my parents, Ravi Mehta and

Amita Mehta, for giving me this opportunity. Without them, I would not

have the chance to obtain higher education at such a prestigious university.

I also want to thank my brother Rohit Mehta for always being there by my

side.

Secondly, I want to thank my advisor Professor José Schutt-Ainé for being

the guiding light on my journey. It was under his direction that I took my

first circuits course and he trusted my abilities to conduct research under

his guidance. His passion for work motivated me to work even harder. As a

father figure to me, he has always encouraged and guided me throughout my

college journey. He will always continue to inspire me in every aspect of life.

Next, I want to express gratitude to Professor Pavan Kumar Hanumolu for

helping me throughout my thesis. His valuable inputs helped me complete

my project on time. I am extremely grateful to Professor Steven Franke,

Professor Chandrashekhar Radhakrishnan, Professor Songbin Gong, Profes-

sor Serge Minin, Professor Jennifer Bernhard, Professor Milton Feng and

Professor Elyse Rosenbaum for supporting and mentoring me throughout

my undergraduate and graduate career.

I would like to take this opportunity to thank my colleagues and friends

in graduate school: Da Wei, Yubo Liu, Sabareesh Ravikumar, Ankit Jain,

Xinying Wang, Jerry Yang and Zexian Li for always answering my questions

iv

whenever I encountered problems in my thesis.

A special thanks goes to all my wonderful friends who have made the hard-

est of moments look the easiest: Rishi Ratan, Maryam Hajimiri, Ishita Bisht,

Aarti Shah, Yi Ren, Danny Coombs, Brady Salz, Sarah Shim, Abhiyudai

Bhakuni, Rohan Mehra, Anmol Shrivastava, Sakshi Shrivastava, Shashank

Saxena, Bhagya Parekh and Akash Kotak.

Lastly, I am very grateful for getting the chance to work with some ex-

tremely smart undergraduate students, Alexandra Wleklinski, Ashwarya Ra-

jwardhan and Paprapee Buason.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Purpose . 2
1.3 Outline . 2

CHAPTER 2 HIGH-SPEED SERIAL LINKS 3

CHAPTER 3 PHASE-LOCKED LOOP CIRCUITS 7
3.1 What Is a PLL? . 7
3.2 Building Blocks . 8

CHAPTER 4 PLL LOOP DYNAMICS 14
4.1 Design Procedure and Parameter Calculation 16
4.2 PLL Bandwidth . 16
4.3 PLL Locking Verification . 17
4.4 PLL Noise Analysis . 18

CHAPTER 5 PLL DESIGN CHOICES 20
5.1 PFD . 20
5.2 Charge Pump . 21
5.3 Loop Filter . 21
5.4 Voltage Controlled Oscillator 22
5.5 Divider . 23

CHAPTER 6 BEHAVIORAL LEVEL SIMULATION 24
6.1 Behavioral Modeling . 24
6.2 PLL Analysis . 39

CHAPTER 7 TRANSISTOR LEVEL SIMULATION 41
7.1 What Is Cadence Virtuoso? 41
7.2 Simulator . 41
7.3 Transient Simulations . 41
7.4 Cadence Virtuoso: Getting Started 41
7.5 PLL Simulation Using Cadence Virtuoso 53

vi

CHAPTER 8 DISCUSSION . 71
8.1 Conclusion . 71
8.2 Future Work . 71

REFERENCES . 73

vii

CHAPTER 1

INTRODUCTION

1.1 Motivation

A sudden advancement in the semiconductor industry has resulted in tech-

nology scaling which requires faster data rates and necessitates high-speed

clocks in the multi-GHz range. With the ever increasing data rates, the I/O

links need to scale appropriately. However, the I/O bandwidth has not scaled

proportionally and has created a bottleneck in the system performance. Par-

allel links have not been able to match up with the system performance with

issues such as packaging costs, data skew and crosstalk. The rising data rates

are pushing the tolerance boundaries for timing skew and crosstalk. Looking

at the recent trends, ethernet data rates are advancing from 100 Mbps to

10 Gbps. PCI Express 2 is going from 5 Gbps to 8 Gbps in PCI Express

3. Serial ATA has increased from 1.5 Gbps to 6 Gbps in computing appli-

cations. Thus there is a need to condense the parallel buses to serial buses.

The serial buses have less crosstalk, data and clock skew as well as packaging

costs. This gives rise to the importance of High-Speed Serial Links (HSSL).

HSSL are used in modern-day systems. An example is the conversion of the

parallel SCSI bus to Serially Attached SCSI (SAS).

With skyrocketing data-rate interfaces, the need for clock frequencies in

the multi-GHz range is paramount and requires the use of Phase-Locked

Loops (PLLs). PLLs have a wide variety of use in analog, digital and Radio

Frequency (RF) communication systems. PLLs are capable of generating

high-frequency, low-jitter clocks with minimal timing skew. Besides, PLLs

are also used in Clock and Data Recovery (CDR) circuits to reliably recover

the data sent from the transmitter.

1

1.2 Purpose

The purpose of this thesis is to provide an in-depth understanding of the

theory and working of PLLs. PLL theory will be discussed in detail be-

fore moving on to behavioral and transistor-level simulations using Cadence

Virtuoso. Finally, figures of merit of the PLL will be documented and a

discussion on design improvement will follow.

1.3 Outline

1. Chapter 1 provides an introduction to High-Speed Serial Links (HSSL).

2. Chapter 2 provides an overview of the HSSL along with the effects of

the channel with increasing data rates and use of serial links in modern-

day communication systems.

3. Chapter 3 presents an in-depth analysis of the theory of the different

building blocks of the PLL.

4. Chapter 4 describes the loop dynamics of the PLL along with a focus

on PLL noise. Finally, a design procedure is documented for calculat-

ing the loop parameters required for the PLL to lock with optimum

bandwidth (BW), phase margin and settling time.

5. Chapter 5 describes the topologies chosen for the different blocks of the

PLL.

6. Chapter 6 describes the procedure for behavioral-level modeling of the

PLL using VerilogAMS.

7. Chapter 7 describes the procedure for transistor-level modeling of the

PLL using Cadence Virtuoso.

8. Chapter 8 concludes the thesis with an emphasis on future work and

an insight into ADPLLs.

2

CHAPTER 2

HIGH-SPEED SERIAL LINKS

A high-speed serial link model is shown in figure 2.1 [1]. Parallel data comes

into the serializer converting it to serial data. This data is fed to the Trans-

mitter (TX). The PLL generates the master clock to drive the serializer and

the transmitter. The transmitter generates a series of pulses and sends the

encoded clock and data across the channel. To counteract the effects of the

lossy channel, there is an equalizer present on the receiver side. The received

data stream is sent to the Clock and Data Recovery (CDR) circuit. The CDR

recovers the clock sent from the TX side and uses that clock to resample and

recover the data. The resampled serial data is sent to the deserializer where

it is converted back to parallel data.

Figure 2.1: HSSL Block Diagram

Data rates are increasing with technology scaling, however the channel BW

has not scaled due to many effects. Figure 2.2 shows a roadmap of increasing

3

data rates and the target channel BW.

Figure 2.2: Data Rates and Required Channel BW

A typical backplane channel is shown in figure 2.3. The channel is an

electrical path between the TX and RX and consists of vias, connectors and

PCB traces. The channel and its effects can be modeled by measuring its

S-parameters using a Vector Network Analyzer (VNA) or using a compu-

tational electromagnetic software such as Ansys HFSS. Once the channel is

modeled, there is a need for a high-fidelity, robust communication system

that can counteract the effects of the channel, such as crosstalk, substrate

loss and impedance mismatch between connectors. Besides, it needs to con-

sume low power and occupy the least possible area [1].

Figure 2.3: Backplane Channel Interface

Figure 2.4 shows the channel response and eye diagrams for different data

rates.

4

Figure 2.4: Channel Response and Eye Diagrams for Different Data Rates

Figure 2.5: Timing Jitter

The attenuation caused due to the many effects in the channel increases

with increasing frequencies. Notice how the eye virtually closes for increasing

data rates. Thus the signal received after the channel has a lower Signal-to-

Noise Ratio (SNR) and higher timing jitter. Figure 2.5 explains the concept

of timing jitter. To minimize the degradation of signal quality, it is important

to design TX clocks with minimum timing skew and RX with minimum

sampling errors to recover the signal with maximum integrity.

Serial links eliminate the use of multiple pins and hence reduce the cost

which is an added burden in parallel links. Also, parallel links encounter

interference between adjacent channels when data is being transmitted. This

effect is called crosstalk and worsens as the data rate increases. Crosstalk can

lead to erroneous data reception and is a huge bottleneck for signal integrity.

This does not occur in serial links due to the absence of multiple channels.

Another effect known as data skew is eliminated in serial links. When data

5

is transmitted at high speeds across a parallel link interface, it is possible

that there arises a difference in the arrival time of the data at the receiver,

which potentially leads to data unreliability [2].

Figure 2.6 illustrates the widespread applications of serial links in the con-

sumer electronic industry. Some examples are provided in the following list

[1]:

• Processor-to-memory: RDRAM (1.6 Gbps), XDR DRAM (7.2 Gbps),

XDR2 DRAM (12.8 Gbps), GDDR5 (8 Gbps), DDR4 (3.2 Gbps)

• Processor-to-peripheral: PCIe (2.5, 5, 8, 16 Gbps), Infiniband (2.5 - 25

Gbps), USB3.1 (10 Gbps)

• Processor-to-processor: Intel QPI (9.6 Gbps), AMD Hypertransport

(6.4 Gbps)

• Storage: SATA (16 Gbps), Fiber Channel (25 Gbps)

• Networks: LAN Ethernet (4 x 25 Gbps), WAN SONET (2.5, 10, 40

Gbps), Backplane Routers (2.5 - 25 Gbps)

Figure 2.6: Serial Link Applications

6

CHAPTER 3

PHASE-LOCKED LOOP CIRCUITS

3.1 What Is a PLL?

Figure 3.1: PLL Circuit

A Phase-Locked Loop (PLL) is a negative feedback control system that

generates a high-frequency output clock whose phase is related to the low-

frequency input clock. The need for PLLs is widespread as they find applica-

tion in analog, digital, RF and communication systems. The low-frequency

clock can be generated using a crystal with frequencies up to 200 MHz. Gen-

erating a high-frequency clock with high spectral purity is not possible with

a crystal and this is where PLLs come into play. They generate a high-

frequency clock with as low jitter as possible.

A simple PLL consists of a Phase and Frequency Detector (PFD), Charge

Pump (CP), Loop Filter (LF), Voltage Controlled Oscillator (VCO) and a

Divider. The operation of the PLL is as follows. The PFD tracks the phase

and frequency difference between the reference clock and the divided output

clock. The CP outputs a current that is proportional to this difference. These

current pulses are fed to the LF which generate a control voltage to be fed to

the VCO. The control voltage directs the VCO to generate a high-frequency

output clock which is divided through the divider and fed back to the PFD.

7

The loop is said to be locked when the reference frequency and the divided

output clock frequency are matched [3].

3.2 Building Blocks

The five main building blocks of the PLL are:

• Phase and Frequency Detector

• Charge Pump

• Loop Filter

• Voltage Controlled Oscillator

• Divider

3.2.1 Phase and Frequency Detector

The phase and frequency detector detects the phase and frequency difference

between the reference clock and the divided output clock and produces a

signal that is proportional to the difference between the two phases. This

error signal needs to remain constant with time for the loop to be locked.

Thus the PFD serves as an error detector to detect and minimize the error

as the lock state approaches.

A three-state PFD is required to track both phase and frequency due to

its asymmetrical transfer characteristics. A three-state PFD consists of an

UP, DN and RST state. When the reference signal is high, UP goes high.

When the divided signal is high, DN goes high. When both the reference

and divided signal are high, RST is activated, which resets the UP and DN

signal and both go low.

8

Figure 3.2: PFD Functionality

Figure 3.3: PFD Operation

Figures 3.2 and 3.3 describe the operation of the PFD. When the reference

clock leads the divided output clock, UP is 1. When the divided output clock

leads the reference clock, DN is 1. When both UP and DN are 1, the reset

path is activated and pulls the UP and DN pulses to 0. The width of the UP

and DN pulses depends on the delay in the reset path. It is required to have

a minimum delay before resetting these pulses in order to avoid a condition

called “dead zone” which will be discussed in section 3.2.2.

Figure 3.4: PFD Transfer Function

9

Figure 3.4 shows the transfer function of the PFD with a linear range of

±2π. The gain of the PFD is given by: KPFD = V
2π

.

3.2.2 Charge Pump

The charge pump converts the digital pulses from the UP and DN signals to

current pulses which are fed to the loop filter to generate the control voltage.

Figure 3.5: Charge Pump PLL

Figure 3.5 shows a block diagram of a charge pump PLL. The charge pump

and capacitor C1 form an integrator. This introduces a pole which makes the

loop unstable. Hence the resistor is added to stabilize the loop by introducing

a proportional path.

Figure 3.6: Charge Pump Operation

10

Figure 3.6 shows the operation of the charge pump. When the UP signal

is high, Vctrl will steadily increase.

The step increase in Vctrl is given by:

∆Vctrl =
ICP
C1

.
φe
2π
.T (3.1)

The average charge dumped per cycle is:

Qctrl =
C1.∆Vctrl

T
=
ICP
2π

.φe (3.2)

Thus the PFD and charge pump can be modeled together by the following

relation in the locked state:

KPFD =
ICP
2π

(3.3)

When the UP and DN pulses have a small width i.e. when the phase error

is small, it is possible that the charge pump will not output any current

proportional to the phase error. This condition is called the dead zone and

is undesirable. This phase error appears as jitter at the output of the PLL.

Avoiding this condition requires adding a minimum delay in the reset path

of the PFD such that both the UP and DN pulse width is greater than the

turn on time of the CP. Figure 3.7 illustrates the dead zone condition.

Figure 3.7: Dead Zone Condition

11

3.2.3 Loop Filter

The loop filter consists of a resistor in series with a capacitor. This combi-

nation is in parallel with another capacitor as shown in figure 3.8. Capacitor

C1 adds an integrator path and introduces a pole. The resistor adds a pro-

portional path and introduces a zero. Thus the system is stable with the

addition of these two paths. Capacitor C2 is used to suppress the Vctrl ripple;

however the addition of an additional capacitor comprises on the stability of

the PLL. The loop filter functions as a low-pass filter and rejects the input

high-frequency noise of the PLL and generates the control voltage to drive

the VCO.

Figure 3.8: Loop Filter

The transfer function of the loop filter is given as:

LF (s) =
s+ 1

RC1

C2s2(s+ C1+C2

RC1C2
)

(3.4)

3.2.4 Voltage Controlled Oscillator

The voltage controlled oscillator outputs a clock based on the control voltage

supplied to it. VCOs have different architectures with two popular topologies

which are the ring oscillator and the LC tank oscillator. A VCO is the biggest

contributor of high-frequency noise at the output of the PLL. This translates

to jitter in the time domain, and hence efforts should be made to minimize

phase noise [4]. LC tank oscillators have lower phase noise; however LC tanks

consume a lot of on-chip area compared to ring oscillators.

The transfer function of the VCO in the Laplace domain is derived as

follows:

12

ωout(t) = KV COυctrl(t) (3.5)

L[ωout(t)] = KV COυctrl(s) (3.6)

φout(t) =

∫ t

0

ωout(τ)dτ =

∫ t

0

KV COυctrl(τ)dτ (3.7)

L[φout(t)] =
ωout(s)

s
=
KV COυctrl(s)

s
(3.8)

The transfer function of the VCO is given as:

HV CO(s) =
φout(s)

υctrl(s)
=
KV CO

s
(3.9)

where KV CO is the VCO gain.

3.2.5 Divider

The VCO generates a high-frequency clock which when divided must be

matched in frequency to the reference clock in the locked state. The divider

divides the VCO clock using the same factor by which it is larger than the

reference clock. The log of this factor to the base 2 indicates the number of

stages to be used in the fractional-N divider circuit.

13

CHAPTER 4

PLL LOOP DYNAMICS

In this chapter we will analyze the loop dynamics of the PLL in the locked

state. The PLL has a particular order and type which are determined as

follows [5]:

1. The type of the PLL is determined by the number of integrators.

2. The order of the PLL is determined by the number of poles.

Every PLL must be of at least type 1 and order 1. This is because the

VCO has an in-built pole and addition of other poles can be in the system.

For the PLL designed, we have three poles in the system: one from the VCO

and two contributed from the loop filter. Thus, we see that the order of the

PLL can be determined by the number of poles in the system.

Figure 4.1: Linear Model of PLL

Figure 4.1 shows the linear model of the PLL.

The open-loop transfer function is:

LG(s) = KPD · F (s) · KV CO

s
(4.1)

= KPD ·KV CO ·
s+ 1

RC1

C2s2(s+ C1+C2

RC1C2
)

(4.2)

14

On analyzing the transfer function, we get:

ωz =
1

RC1

; ωp1 = ωp2 = 0;ωp3 =
C1 + C2

RC1C2

(4.3)

Thus the phase margin is given as:

φM = tan−1

(
ωugb
ωz

)
− tan−1

(
ωugb
ωp3

)
(4.4)

where ωugb is the unity gain bandwidth and ωz < ωugb.

In order to find the maximum value of the phase margin, we will differen-

tiate Eq. 4.4 with respect to ωugb and set the result to 0 [3]. On doing so,

we will obtain the following result [6]:

ωugb = ωz

√
C1

C2

+ 1 (4.5)

On plugging this result back into Eq. 4.4 we get:

φMmax = tan−1

(√
C1

C2

+ 1

)
− tan−1

 1√
C1

C2
+ 1

 (4.6)

Figure 4.2 shows the sub-optimal and optimal phase margin required for

the stability of the PLL.

Figure 4.2: Magnitude and Phase Response

15

4.1 Design Procedure and Parameter Calculation

We need to calculate the values of the capacitors and resistor in the loop

filter, the zeros and the poles in the system as well as the charge pump

current before implementing our design. This is done by first choosing the

unity-gain bandwidth, phase margin and resistor R.

Then Kc which is the ratio of C1 to C2 is calculated as:

Kc =
C1

C2

= 2((tan2(φM) + tan(φM)
√

tan2(φM) + 1)) (4.7)

From Eq. 4.5 we have:

ωz =
ωugb√
C1

C2
+ 1

(4.8)

Thus,

C1 =
1

ωzR
;C2 =

C1

Kc

(4.9)

Once all the above parameters are determined, the charge pump current is

calculated as:

ICP =
2πC2

KV CO

· ω2
ugb ·

√
ω2
p3 + ω2

ugb

ω2
z + ω2

ugb

(4.10)

4.2 PLL Bandwidth

In the previous sections, terms such as PLL bandwidth were used. It is

necessary to understand what this means. The PLL acts as a low-pass filter

with respect to the reference signal and rejects high-frequency noise whereas

it acts like a high-pass filter with respect to the VCO clock as seen in figure

4.3. Thus PLL bandwidth can be defined as the frequency at which the PLL

begins to lose lock with the changing reference signal (-3 dB) [7].

Figure 4.3: PLL Bandwidth

16

Bandwidth also plays an important role in determining the lock time of the

PLL. The higher the BW, the lower is the lock time as a larger BW allows

for faster correction of any phase and frequency errors as seen in figure 4.4.

Figure 4.4: Lock Time vs. Bandwidth

4.3 PLL Locking Verification

It is important to check that the PLL will lock when a frequency step is

applied at its input. Let the input frequency step be ωin = ∆ω
s

and hence

Φin(s) = ∆ω
s2

. The closed-loop transfer function is given as:

HPLL(s) =
LG(s)

1 + LG(s)
(4.11)

The steady-state error transfer function is:

Φerror(s)

Φin(s)
= He(s) = 1−HPLL(s) =

1

1 + LG(s)
(4.12)

17

Using the final value theorem,

ΦFstep
ss error = lim

s→0
s ·He(s) · Φin(s) (4.13a)

= lim
s→0

s · 1

1 + LG(s)
· ∆ω

s2
(4.13b)

= lim
s→0

[RC1C2s
2 + (C1 + C2)s]∆ω

RC1C2s3 + (C1 + C2)s2 +KV COKPDs+ 1
(4.13c)

=
0

1
(4.13d)

= 0 (4.13e)

Thus any steady-state phase error is eliminated and the PLL will achieve

lock.

4.4 PLL Noise Analysis

Each component of the PLL generates noise at the output. The noise transfer

functions can be derived to give overall noise of the PLL. Figure 4.5 shows

the noise model of the PLL.

Figure 4.5: PLL Noise Model

SΦIN
ΦOUT

= SΦIN
|NTFIN(s)|2 (4.14)

SiCP
ΦOUT

= SiCP
|NTFCP (s)|2 (4.15)

SvRΦOUT
= SvR |NTFR(s)|2 (4.16)

SΦV CO
ΦOUT

= SΦV CO
|NTFV CO(s)|2 (4.17)

18

where,

NTFIN(s) =
ΦOUT (s)

ΦIN(s)
=

N.LG(s)

1 + LG(s)
(4.18)

NTFDIV (s) = NTFIN(s) (4.19)

NTFCP (s) =
ΦOUT (s)

iCP (s)
=

2π

iCP
.NTFIN(s) (4.20)

NTFR(s) =
ΦOUT (s)

vR(s)
=

KV CO/s

1 + LG(s)
(4.21)

Shown in figure 4.6 are NTF plots of each of the PLL blocks.

Figure 4.6: PLL Output Referred Noise

19

CHAPTER 5

PLL DESIGN CHOICES

5.1 PFD

A NAND PFD was chosen to implement in this thesis. Figure 5.1 shows the

topology of a NAND-based PFD.

Figure 5.1: NAND PFD

A NAND PFD is a three-state PFD with an UP, DN and RST state. The

NAND PFD must be carefully designed to avoid the dead zone problem. The

reset delay must be greater than the switch on-time of the transistors in the

charge pump. The delay is given by TRST = 2TNAND2 + TNAND4 and the

20

maximum frequency of operation of the PFD is controlled by the reset delay

and is Fmax <
1

2TRST
.

5.2 Charge Pump

Figure 5.2: Bootstrapped Charge Pump

Figure 5.2 shows the topology of a bootstrapped charge pump. Matching the

up and down currents is required for the Vctrl range of operation. A mismatch

in these currents will contribute to jitter at the output. Taking this into

account, a bootstrapped charge pump was implemented. This charge pump

implements a unity gain amplifier which ensures that the same voltage is

maintained at the input and the output of the amplifier which allows the up

current to equal the down current. The bootstrap CP allows for differential

current steering and can operate with low swing UP/DN signals.

5.3 Loop Filter

The loop filter consists of a single resistor and two capacitors as shown in

figure 5.3. It effectively functions as a low-pass filter and filters out the

high-frequency noise at the input of the PLL.

21

Figure 5.3: Loop Filter

5.4 Voltage Controlled Oscillator

Figure 5.4: Differential VCO

A differential VCO is implemented using the replica load technique as shown

in figure 5.4. The control voltage is replicated and fed to the differential

chain which consists of inverters and cross coupled latches. The output of

the chain is fed to a buffer which generates the differential output clocks. The

advantage of using a replica bias regulator is that it provides high bandwidth

(good high-frequency PSRR) and good stability. The differential VCO also

has lower phase noise compared to a single-ended VCO.

22

5.5 Divider

The divider consists of five D Flip-Flops (DFFs) connected in the manner

shown in figure 5.5. Each DFF functions as a divide-by-2 divider. Hence

the entire chain performs a divide-by-32 operation. A factor of 32 is chosen

because the VCO clock is operating at 6.4 GHz and a reference clock of 200

MHz is being used. Each DFF employs a True-Single Phase Clock (TSPC)

architecture which is fast and has low skew.

Figure 5.5: Divider

23

CHAPTER 6

BEHAVIORAL LEVEL SIMULATION

6.1 Behavioral Modeling

SPICE is the most popular simulation engine to simulate analog/mixed-

signal circuits. However, while simulating a large circuit the simulation time

can be extremely long. Also, it is difficult to predict the behavior of the

circuit until the transistor level structure is known. SPICE needs to be reg-

ularly updated with technology scaling and becomes obsolete very quickly.

For this reason, behavioral simulations of analog/mixed-signal circuits are

performed. Behavioral modeling allows a designer to predict the nature of

the circuit without the transistor level design, i.e. it is process independent.

Besides allowing the designer to accurately debug any bugs, it also cuts down

on simulation time. VerilogAMS (Verilog Analog-MixedSignal) is the most

popular Hardware Description Language (HDL) used to perform such simu-

lations. This chapter presents a detailed tutorial on simulating the different

building blocks of the PLL using VerilogAMS.

6.1.1 PFD+CP

1. Once virtuoso is loaded, click on Tools → Library Manager and the

Library Manager window will pop up as shown in figure 6.1.

24

Figure 6.1: Library Manager Window

2. Create a new library by clicking on File → New → Library. Name the

library PLLBehavioral.

3. The next task is to create a cell view under the PLLBehavioral library.

Click on File → New → Cell View. Select the PLLBehavioral library.

Name the cell view pfd. Change the type to VerilogAMSText as shown

in figure 6.2.

25

Figure 6.2: Opening a VerilogAMS Text Editor

4. Click on OK. The cell will show up in the corresponding library. A text

editor will open. Type the code for the PFD as shown in figure 6.3.

The PFD has two inputs: fref and fdiv and four outputs: up, dn, upb,

dnb. The upb and dnb outputs are inverted versions of up and dn. An

additional test output is created which is the reset signal. To account

for non-idealities in this design, a delay of 80 ps is added to the output

denoted by #8.

26

Figure 6.3: PFD VerilogAMS Code

5. Once the code is written, save and exit the text editor. On exiting, a

pop-up window will appear. Click on yes to generate the symbol for

the pfd. Figure 6.4 illustrates this process.

Figure 6.4: PFD Symbol

6. Go to the PLLBehavioral library and create a new cell view called

pfd tb. Change the type to schematic as shown in figure 6.5.

27

Figure 6.5: PFD Schematic

7. To set up the test bench for the PFD, we need the PFD, wires and

voltage sources. This can be done by creating an instance or pressing

I. Import the symbol for the PFD from the pfd cell view and vpulse

sources from the analogLib library. These sources will be used as inputs

to the ref and div signals. Make sure that the two sources are slightly off

in frequency from one another and have a delay of 500 ps between them.

This can be done by selecting the sources, pressing Q and inputting the

necessary values. Wires can be obtained by pressing W and connecting

the necessary nodes. Figure 6.6 shows the PFD test bench.

Figure 6.6: PFD Test Bench

28

8. The next step is to create a config file whose job is to link the verilog

simulation engine and analog test bench sources together. Go to the

same cell view in which the pfd schematic is created i.e. pfd tb. Change

the type to config. The pop-up window should look like the one in figure

6.7. Click OK and a new window will pop-up.

Figure 6.7: PFD Config View

Figure 6.8: Config Setup

29

9. Change the view to schematic. Click on Use Template and select AMS.

Once everything is done, your window should look similar to the one

in figure 6.8.

10. Click OK and the following window will appear as shown in figure 6.9.

Figure 6.9: Config Setup

11. Click on Save and Open the schematic. The schematic will now look

similar to the one previously created but now it has config in the title.

12. Check and Save the schematic. Once that is done, go to Launch →
ADE L to open the ADE L window.

13. The ADE L window is the one where we will set up our anaylsis to be

performed on the PFD. Since we selected the template to be AMS, we

need to ensure that AMS is our simulator. To verify it, go to Setup →
Simulator and change the simulator to AMS. Once that is done, click

on Outputs → To Be Plotted → Select On Schematic and select the

input and output signals. The final setup is the type of simulation to

be performed. Click on Analysis → Choose and select transient for a

stop time of 100 ns. The ADE L window should now look like the one

in figure 6.10.

30

Figure 6.10: ADE L Window

14. The PFD waveforms should now look like the one shown in figure 6.11.

Notice that the PFD is functioning correctly. When the ref signal is

leading the div signal, UP goes high. When div goes high, DN goes

high and the reset path is activated which pulls UP and DN to 0.

Figure 6.11: PFD Waveform

15. In a similar fashion, set up the test bench for the charge pump as shown

in figure 6.13. The verilog code for the CP is shown in figure 6.12. The

31

current is set to 70 uA since that is the charge pump current required

in the PLL design.

Figure 6.12: CP VerilogAMS Code

Figure 6.13: CP Test Bench

16. Although the charge pump current is set to 70 uA, it can always be

changed. This is done by selecting the CP symbol, pressing Q, and

changing the current to the user’s choice as shown in figure 6.14.

32

Figure 6.14: CP Current Setup

17. The waveform for the CP is shown in figure 6.15. Note that current is

defined negative in AMS. The CP is functioning corrctly. We get +70

uA when UP is high and -70 uA when DN is high. Thus in an ideal

setting, the UP and DN currents are matched.

Figure 6.15: CP Waveform

33

6.1.2 LF

A MATLAB script was written to generate the loop parameters. There is no

VerilogAMS code involved here.

6.1.3 VCO

1. The VCO is set up in a fashion similar to the other blocks of the PLL.

The verilog code for the differential VCO is shown in figure 6.16 and

figure 6.17. As the name suggests, we have two outputs. The phase

noise is manually entered according to the jitter specifications of the

PLL. A control voltage of 0.4 V is targeted.

Figure 6.16: VCO Verilog Code

34

Figure 6.17: VCO Verilog Code

2. Set up the VCO schematic and config file as descibed earlier. The VCO

test bench should like the one is figure 6.18.

Figure 6.18: VCO Test Bench

3. Once again, we can alter the VCO parameters to the design require-

ments. Here, the targeted VCO frequency is 6.4 GHz and a KV CO of

500 MHz/V. A white noise of -125 dBc/Hz is used along with a tar-

geted control voltage of 0.4 V. Figure 6.19 shows the setup of these

parameters.

35

Figure 6.19: VCO Parameters Setup

4. We see the two differential output clocks both operating at 6.4 GHz

in figure 6.20. These clocks will be used toward the serializer and the

driver.

Figure 6.20: VCO Waveform

6.1.4 Divider

1. The divider is setup in a similar way to the other PLL blocks. It

consists of five DFFs put together to divide the 6.4 GHz clock by a

factor of 32 to scale it down to 200 MHz to match it to the reference

clock. Figure 6.21 shows the VAMS code for the divider. A delay of 50

ps is added to the output.

36

Figure 6.21: Divider Code

2. Set up the divider schematic and config file as descibed earlier. The

divider test bench should look like the one in figure 6.22.

Figure 6.22: Divider Test Bench

3. The required division factor is 32 in this case. However, it can be

changed by pressing Q and setting it according to the design require-

ment as shown in figure 6.23.

37

Figure 6.23: Divider Parameters Setup

4. We see the high-frequency VCO clock and the low-frequency divided

clock. In figure 6.24, we notice 16 pulses of the VCO clock in half-a-

cycle of the divided clock which implies 32 pulses of the VCO clock

per cycle of the divided clock hence verifying the functionality of the

divider.

Figure 6.24: Divider Waveform

38

6.2 PLL Analysis

1. Now that all the blocks of the PLL are set up and working, they will

be integrated together to test the working of the PLL. The config file

and schematic for the PLL are created in a manner just like the other

blocks. The test bench of the PLL should resemble the one shown in

figure 6.25.

Figure 6.25: PLL Test Bench

2. The waveforms shown in figure 6.26 are captured at an instant where

the PLL is trying to acquire lock. We observe that initially the reference

clock is faster than the divided clock and hence we have UP pulses. This

causes current to be dumped into the loop filter and the control voltage

to increase in steps. The VCO output clock has varying frequency with

time and the PLL is not locked.

Figure 6.26: PLL Trying to Acquire Lock

39

3. In figure 6.27, the PLL is completely locked. The reference and divided

signal have zero phase and frequency offset. The UP and DN pulses

go momentarily high but are brought down by the reset signal. The

charge pump does not pump in or draw current from the loop filter

and the control voltage settles to a constant value. The VCO clock is

oscillating at 6.4 GHz. On observing the VCO frequency vs. time, we

notice fluctuations in frequency. This arises due to jitter in the VCO.

However, the PLL is said to be locked at this point of time.

Figure 6.27: PLL in Locked State

4. A plot of the control voltage is shown in figure 6.28. We can see how

nicely the control voltage settles to a constant value of 400 mV once

lock is achieved.

Figure 6.28: Control Voltage

40

CHAPTER 7

TRANSISTOR LEVEL SIMULATION

7.1 What Is Cadence Virtuoso?

Cadence Virtuoso is an Electronic Design Automation (EDA) tool used

for analog, mixed-signal and RF IC design. It allows for construction of

transistor-level schematics, layout, simulation and behavioral modeling.

7.2 Simulator

Cadence Spectre circuit simulator provides fast, accurate SPICE-level sim-

ulation for complex analog, RF and mixed-signal circuits. It is tightly in-

tegrated with the Virtuoso custom design platform and provides detailed

transistor-level analysis in multiple domains.

7.3 Transient Simulations

The transient response is the response of a system to a change from a steady-

state condition. It is used to study the time-varying behavior of a system

and is used to analyze the design of the PLL.

7.4 Cadence Virtuoso: Getting Started

This section presents a detailed tutorial on constructing and simulating a D

flip-flop. This includes transistor-level design, symbol generation and circuit

simulation.

41

7.4.1 Creating a Schematic

1. Once Virtuoso is loaded, click on Tools → Library Manager and the

Library Manager window will pop up as shown in figure 7.1.

Figure 7.1: Library Manager Window

2. Create a new library by clicking on File → New → Library. Name the

library PLL.

3. The next task is to create a cell view under the PLL library. Click on

File → New → Cell View. Select the PLL library. Name the cell view

DFF. The default setting for View will be schematic. If not, change

the setting to View as shown in figure 7.2.

42

Figure 7.2: Creating a New Schematic Window

4. Click on OK. The cell will show up in the corresponding library. A

schematic for the cell will also show up. Double-click on the schematic

to open the schematic window.

5. A positive edge triggered DFF is created using NMOS and PMOS.

These components are found in a different library. To access these

components, use the create instance icon or alternatively press the key

I. The Add Instance window will pop up. Select the tsmcN65 library

and the cell as nch. Select the view as symbol as shown in figure 7.3.

Similarly, a PMOS can be selected by naming the cell as pch.

6. Press Enter. The transistor will now be placed on the schematic window

and should look like the one displayed in figure 7.4.

7. These transistors can be replicated by pressing the key C, selecting

the transistor and placing the replicated version at a different location.

This is time efficient since we do not need to access the Add Instance

window every time for instantiating the same component.

8. By selecting the component and pressing the Q key, different properties

of the transistor, such as length, width and multiplier can be added and

edited.

43

Figure 7.3: Instantiation

Figure 7.4: NMOS Transistor

9. Once the components are laid out, they can be wired by pressing the

W key and selecting the nodes to be wired.

10. Once the TSPC positive edge triggered DFF is constructed, the schematic

looks like the one in figure 7.5.

44

Figure 7.5: Positive Edge Triggered DFF Schematic

11. The input and output pins are added by clicking on the P key. Once

clicked, the window shown in figure 7.6 will pop up.

Figure 7.6: Pin Assignment

Type in the pin name and give it the appropriate direction. Use in-

putOuput for VDD and GND.

12. The schematic is now ready. One of the most important steps is to

click on the Check and Save icon before closing the schematic

window.

45

7.4.2 Creating a Symbol

1. Open the schematic of the component whose symbol is to be created.

2. Go to Create → Cellview → From Cellview. The window shown in

figure 7.7 will pop up.

Figure 7.7: Creating a Symbol

3. Click OK. Once that is done a window similar to the one in figure 7.8

will pop up.

Figure 7.8: Pin Direction Allocation

Here you can allocate which pins will appear on which side of the

symbol block.

4. On clicking OK, a symbol will be created and will look like figure 7.9.

46

Figure 7.9: Symbol of a Positive Edge Triggered DFF

7.4.3 Creating a Testbench

Once all the components and symbols are assembled, simulations will be per-

formed on them. A testbench is an environment where all the components

are compressed into one symbol and the external sources, power supply and

ground are connected to that symbol to perform the simulations. This re-

duces the complexity of the overall work needed to extract the simulations.

1. Go to File → New → Cell View under the PLL library and call this

cell DFF tb.

2. A schematic window will pop up. Press I to look for the symbols of

the DFF, vpulse sources and ground. The DFF will be under the PLL

library since it was created at that location. The vpulse and ground

can be found under the analogLib library.

3. Once the symbols are found, connect them to set up the testbench for

the DFF as shown in figure 7.10.

47

Figure 7.10: DFF Test Bench

4. The specifications for the source need to be input in order to obtain

the desired result. This can be done by selecting the source and then

pressing Q. The window in figure 7.11 will pop up.

Figure 7.11: Vsource Specifications

5. Enter the required values for the sources. Shown are the specifications

48

for the D input of the DFF. The pulse is contained between 0 and 1.2

V with a start value of 0 V and a delay of 100 ps. The period of the

pulse is 10 ns.

6. Finally, the test bench of the DFF is ready and can now proceed with

the simulations.

7.4.4 Performing Simulations Using Spectre

1. Once everything is set up, click on Check and Save. Without this step,

we cannot proceed. Next, click on Launch → ADE L to launch the

Analog Design Environment (ADE) window as shown in figure 7.12.

Figure 7.12: Launching ADE L

2. The window shown in figure 7.13 will pop up.

49

Figure 7.13: ADE Window

3. It is imperative to ensure that the model libraries are correctly set and

the default simulator is spectre. To check whether it is correctly set,

go to Setup → Model Libraries and it should look something like the

window shown in figure 7.14.

Figure 7.14: Model Library Setup

4. Also change the simulator to spectre if it is not the default simulator.

Figure 7.15 illustrates how to do it.

50

Figure 7.15: Simulator Setup

5. Now the simulation environment is ready. Since we are analyzing the

time-varying response of the DFF, we will perform transient analysis.

To perform transient analysis, in the ADE window click on Analyses

→ Choose → tran. Choose the stop time to be 100 ns. This means

that the simulation will run for 100 ns. This is shown in figure 7.16.

Figure 7.16: Choosing Analyses for Simulation

6. Select the signals that need to be plotted by clicking Outputs → To Be

Plotted → Select On Schematic as shown in figure 7.17. This will direct

the user to the schematic and the required signals can be selected to

be plotted.

51

Figure 7.17: Selecting Signals to be Plotted

7. Once everything is set up, click on the green arrow shown in figure

7.18. This will start the simulation. Once the simulation is completed

and successful, the main virtuoso window will display the simulation

successful. If not, error messages will appear.

Figure 7.18: Starting Simulation

7.4.5 Transient Response

Based on the signals selected to be plotted, a new Visualization window will

pop up displaying all the aforementioned signals.

52

Figure 7.19: DFF Waveform

From the waveforms in figure 7.19, we notice that Q follows D on the rising

edge of the clock verifying the working of the DFF.

7.5 PLL Simulation Using Cadence Virtuoso

Now that we have experience and practice using Virtuoso, we will move on

to building the blocks of the PLL which are listed in section 7.5.1.

7.5.1 PFD+CP+LF Setup

1. The PFD used in this design is a NAND PFD which uses two-input,

three-input and four-input NAND gates along with inverters. The CP

is a bootstrapped charge pump and the loop filter is a low-pass filter.

Construct the schematic and symbol of these three blocks and set up

the testbench. The result will look similar to figure 7.20.

53

Figure 7.20: PFD+CP+LF Test Bench

2. The fref and fdiv input are set up to have slightly varying frequencies

and a phase offset in order to test the working of the PFD. The images

in figure 7.21 and figure 7.22 illustrate their setup.

Figure 7.21: fdiv Setup

54

Figure 7.22: fref Setup

3. Launch the ADE L window and set up the transient analysis for a

period of 100 ns. If the loop filter values are parametrized in the test-

bench, we can set them manually in the ADE window. To do that click

on Variables → Copy From Cellview. Once the parametrized values

show up, set them as per the design requirements. The ADE window

should now look like the one in figure 7.23.

Figure 7.23: PFD+CP+LF ADE Window

55

4. On simulating, we observe the waveforms in figure 7.24. We notice the

current functionality of the circuit with 70 uA of charge pump current.

The delay in the NAND PFD is approximately 32 ps.

Figure 7.24: PFD+CP+LF Waveforms

7.5.2 VCO Setup

1. The VCO used is a differential VCO using inverter chains with cross-

coupled latches. However, for this tutorial, we will be using a single-

ended VCO with a PMOS input. It consists of three inverter chains

and an additional inverter for getting full output swing. The schematic

and the corresponding test bench is shown in figure 7.25 and figure 7.26

respectively.

56

Figure 7.25: Single-Ended VCO Schematic

Figure 7.26: Single-Ended VCO Test Bench

2. Launch the ADE L window and set up the transient analysis for a

period of 100 ns. Set the capacitance to 197.5 fF and Vctrl value to 400

mV since that is the value we will be using in our design. The ADE

window should now look like the one in figure 7.27.

57

Figure 7.27: VCO ADE Window

3. On simulating,in figure 7.28, we observe that the period is 156.25 ps

which means that the VCO is operating at 6.4 GHz.

Figure 7.28: VCO Waveform

7.5.3 Plotting VCO Output Frequency vs. Control Voltage
and VCO Gain

After simulating the VCO, it is important to observe and understand the

figures of merit. Figures of merit include the VCO gain KV CO, Vctrl tuning

58

range and phase noise. VCO phase noise is the major noise contributor

to the PLL. This section presents a step-by-step tutorial on simulating and

observing these parameters.

1. To plot the VCO frequency vs. the control voltage we will make use of

the Calculator tool. Click on Tools → Calculator in the ADE window

as shown in figure 7.29.

Figure 7.29: Calculator Tool

2. Click on vt. This will open the schematic of the test bench of the VCO.

Select the output of the VCO.

3. Click on the functions panel and select freq. Then select average. The

calculator expression will look like the one in figure 7.30.

Figure 7.30: Calculator Expression for Average of VCO Frequency

4. Go back to the ADE window. Click on Outputs → Setup→ Get Expres-

sion. The expression in the Calculator window will now be displayed

here. Give the output a suitable name. Figure 7.31 explains this step.

Figure 7.31: Extracting the Expression for the VCO Frequency

59

5. Go to Tools → Parametric Analysis. Select the variable as vctrl and

sweep it from 0 to 1.2 V in step sizes of 0.1. Click on the green button

to initiate the parametric anaylsis as shown in figure 7.32.

Figure 7.32: Parametric Analysis

6. Once the simulation is done, the output will be displayed as shown in

figure 7.33. On taking the derivative of this plot, we can calculate the

VCO gain. We notice that at 400 mV, the VCO frequency is 6.397

GHz and KV CO = 521.6 MHz/V.

Figure 7.33: Frequency vs. Vctrl

7.5.4 VCO Phase Noise

1. In order to simulate VCO phase noise, it is necessary to run a Periodic

Steady State (PSS) simulation first. To do that, go to Analyses →
Choose → pss and set the parameters as shown in figure 7.34. The

beat frequency is the VCO target frequency and hence we need to check

60

“oscillator” and select “vout” and “gnd” as the positive and negative

nodes respectively.

Figure 7.34: VCO PSS Setup

2. For the phase noise simulation, go to Analyses → Choose → pnoise

and set the parameters as shown in figure 7.35. We set the start and

stop frequency from 1 K to 1 G. Once that is done, go back to the ADE

window and start the simulations. Once the simulations are complete,

we need to view the phase noise simulation. To do so, in the ADE

window, click on Results → Direct Plot → Main Form and a window

will appear as shown in figure 7.36. Choose “Phase Noise” and click

the “Plot” button.

61

Figure 7.35: VCO Pnoise Setup

Figure 7.36: VCO Pnoise Plot Setup

3. The phase noise of the VCO is plotted vs. frequency offset as shown

in figure 7.37. We notice that the phase noise for the VCO at a 1

MHz offset is -85.37 dBc/Hz which is reasonable considering our high-

frequency of oscillation.

62

Figure 7.37: VCO Phase Noise

7.5.5 Divider Setup

1. Setup the divider testbench in a similar fashion to the other blocks. It

should resemble the image shown in figure 7.38.

Figure 7.38: Divider Test Bench

2. In the ADE window as shown in figure 7.39, select the input and output

signals and setup a transient analysis for 10 ns. We can also use the

calculator to setup and calculate the frequencies of the input and output

signals. On simulation, from figure 7.40, we can see that the input

frequency is 6.4 GHz and is divided by a factor of 32 to output 200

MHz.

63

Figure 7.39: Divider ADE window

Figure 7.40: Divider Waveform

64

Figure 7.41: Divider Waveform (zoomed in)

3. The 16 pulses of the input correspond to half a pulse of the output

which implies that there are 32 input pulses for 1 output pulse. Thus

the divider is dividing by a factor of 32. Also, there is a delay of 77.07

ps between the input and the output as seen in figure 7.41.

7.5.6 PLL Integration and Simulation

1. Now that all our blocks are built, it is time to integrate them and

simulate the entire PLL. To do this, we will create a new test bench

where we will import symbols of the different blocks. The test bench

should look like the one in figure 7.42.

Figure 7.42: PLL Test Bench

2. There is just one input to the PLL which is the reference clock. Set

up the reference clock as described earlier having a frequency of 200

65

MHz. Additionally, we should add a certain rise and fall time, delay

time and pulse width to account for non-idealities of an actual crystal

generating the clock.

3. With all transistor-level designs, the PLL will take longer to simulate

and lock. Hence, in the ADE window, we need to run the transient

analysis for 3 us. Select all the signals of interest to be plotted.

4. On simulation we observe the PLL characteristics both before lock and

after lock. Figure 7.43 shows a picture of the PLL waveforms before

lock is acquired. Here, the div signal leads the ref signal which causes

the dn pulses. Due to the dn pulses, current is drawn out of the loop

filter and vctrl is decreasing in steps. The frequency of the VCO clock

is changing.

Figure 7.43: PLL Waveforms before Lock: Decreasing Control Voltage

5. Similarly, when the ref signal leads the div signal, we have up pulses

which causes charge to be dumped into the loop filter and vctrl to

increase in steps as seen in figure 7.44. However, since the control

voltage is changing, the frequency of the VCO clock is not constant.

66

Figure 7.44: PLL Waveforms before Lock: Increasing Control Voltage

6. When the PLL is locked, the control voltage settles to a constant value

and the reference and divided signal match each other in phase and

frequency as seen in figures 7.45, 7.46 and 7.47.

Figure 7.45: PLL Settled Transient Waveforms

67

Figure 7.46: PLL Locked State: Reference and Divided Clock

Figure 7.47: PLL Locked State: Control Voltage

7. Ideally, we would expect the VCO frequency to be constant over time

in the locked state. However, due to phase noise in the VCO, the clock

frequency will slightly vary over time as seen in figure 7.48. In the time

domain this corresponds to jitter. This is undesirable and unavoidable

and efforts are needed to minimize this as much as possible.

68

Figure 7.48: PLL Output Clock Frequency vs. Time

8. The PLL designed will be used to drive the serializer and the driver.

Hence the random and deterministic jitter are important figures of

merit and need to be minimized to reduce timing errors. These errors

could lead to a higher bit error rate (BER). In order to measure the

deterministic jitter, we need to select the VCO clock and then click

Measurements → Eye Diagram. A window like the one in figure 7.49

will pop up on the side. Enter the start time as 1.5 us, stop time as 1.5

us and period as 1/6.4 G (the start and stop time should be selected

at a time interval where the PLL is locked). Once these values are

entered, hit “Plot Eye”.

Figure 7.49: PLL Output Eye Diagram Setup

69

We notice that the output clock has some deterministic jitter in figure

7.50.

Figure 7.50: PLL Output Eye Diagram: Deterministic Jitter

Figure 7.51: PLL Output Eye Diagram: Deterministic Jitter (zoomed in)

By putting markers at the 0.6 V crossings, we can calculate the deter-

ministic jitter of our PLL to be 3.11 ps as seen in figure 7.51.

70

CHAPTER 8

DISCUSSION

8.1 Conclusion

This thesis has summarized the design and implementation of a PLL circuit

and has presented a detailed tutorial on the design and simulation of the

same at the behavioral as well as transistor level using Cadence Virtuoso.

The PLL outputted a clock at 6.4 GHz with -85 dBc/Hz phase noise and 3.11

ps deterministic jitter. There is tremendous scope for improvement in this

design with focus on phase noise reduction, random and deterministic jitter

reduction and exploring different architectural designs. With increasing data

rates, PLLs need to operate at a higher clock frequency pushing the limits

for improving the figures of merit. The purpose of this thesis was to gain an

in-depth understanding of high-speed serial links at the behavioral as well as

transistor level and also to provide a blueprint for future students seeking to

pursue a career in the field of analog and mixed-signal IC design.

8.2 Future Work

Designing a PLL at 6.4 GHz required the designer to use the building blocks

that improved the performance metrics. However, with trends of higher data

rates, the need for high-frequency PLLs is paramount. Besides implementing

analog PLLs, there is a need for All Digital PLLs (ADPLLs). Section 8.2.1

presents a discussion on ADPLLs.

71

8.2.1 ADPLL

Figure 8.1: ADPLL Block Diagram

An ADPLL replaces the charge pump with a time error-to-charge digital

converter, the loop filter with a discrete-time digital filter (generally second-

or third-order sigma-selta) and the Voltage Controlled Oscillator (VCO) with

a Digitally Controlled Oscillator (DCO) as shown in figure 8.1 [8].

The PFD detects the frequency and phase mismatch between the reference

and divided clocks. The error between the two signals is detected and a

control word is generated which is proportional to this error. Based on the

frequencies of the two clocks, the control word either increases or decreases.

This is then fed to the DCO which outputs the high-frequency clock.

ADPLLs are less susceptible to process and noise variations than analog

PLLs. The use of ADPLLs increases design portability and testability. There

is a greater flexibility in loop bandwidth, i.e. huge capacitors are not needed

for lower BW thus reducing on-chip area and making them attractive for use

in high-performance microprocessors [7].

72

REFERENCES

[1] S. Palermo, CMOS Nanoelectronics Analog and RF VLSI Circuits, Chap-
ter 9. New York City, N.Y.: McGraw-Hill, 2011.

[2] M. Assaad, “Design and modelling of clock and data recovery
integrated circuit in 130 nm cmos technology for 10 gb/s serial data
communications,” Ph.D. dissertation, Univ. of Glasgow, Glasgow, 2009.
[Online]. Available: theses.gla.ac.uk/707/1/2009assaadphd.pdf

[3] B. Razavi, “Design of monolithic phase-locked loops and clock
recovery circuits.” [Online]. Available: http://www.ee.ryerson.ca/fyuan/
Razavi PLL Tutorial.pdf

[4] A. A. Abidi, “Phase noise and jitter in cmos ring oscillators,” IEEE
Journal of Solid-State Circuits, 2004.

[5] M. Mansuri, “Low-power low-jitter on-chip clock generation,” Ph.D. dis-
sertation, UCLA, 2003.

[6] P. Hanumolu et al., “Analysis of charge-pump phase-locked loops,” IEEE
Transactions on Circuits and Systems-I, vol. 51, no. 9, pp. 1665–1674,
2004.

[7] D. Fischette, “First time, every time - practical tips for phase locked
loop design.” [Online]. Available: http://www.ee.ryerson.ca/fyuan/
Razavi PLL Tutorial.pdf

[8] A. Babu and others., “All digital phase locked loop design and
implementation.” [Online]. Available: http://www.mit.edu/bdaya/
www/All Digital Phase Locked Loop Design and Implementation.pdf

73

