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1 INTRODUCTION 

1.1 Background 

The electrical modeling of high-speed interconnects becomes a crucial bottleneck for the 

system designer. Distributed models are needed to accurately simulate on- and off-chip 

interconnects. Various ways to obtain accurate frequency domain characterization of 

interconnects include full-wave electromagnetic simulation tools utilizing techniques like the 

Finite-Difference Time-Domain technique, transmission line simulation environments such as 

Advanced System Design (HP-ADS), or from measurements. The characterization data can be 

directly incorporated as S-parameter blocks into a larger network or input into a simulator 

through the use of a macromodel. Macromodeling generates an equivalent representation of the 

network.     

 An accurate simulation of interconnects requires a transient analysis of nonlinear driver 

and receiver, and frequency-dependent transmission-line systems. Consequently, the most 

efficient method of analyzing frequency-dependent component is using conventional time-

domain circuit simulation, or using circuit simulation technique by generating rational 

approximation in order to express the interconnect governing equations using ordinary 

differential equations. 

Circuit level simulation of interconnects with their nonlinear drivers and receivers can be 

costly in terms of central processor unit (CPU) time due primarily to the size of the linear 

interconnect portion of the model. Considering the number of interactions between interconnect 

and drivers/receivers (ports) will be small compared to the number of interconnect elements, it 

is often appropriate to partition the linear interconnect portions from the drivers and receivers. 

The interconnect can then be macromodeled using an efficient order reduction technique. These 
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macromodels are then combined with other linear blocks and nonlinear components in a circuit 

simulation environment. 

1.2 Overview 

Several methods have been proposed to generate rational representations of a distributed 

system. These methods include the asymptotic waveform evaluation (AWE) and complex 

frequency hopping methods (CFH) as well as their variants that are based on moment matching 

at single or multiple points [1]. Lanczos and Arnoldi are other reduced order modeling methods 

that are based on Krylov subspace techniques [2]. Robust rational interpolations that are based 

on the Hilbert transform of electrical parameters of passive networks or Kramers-Krőning 

relations between real and imaginary parts of material properties have also been used to 

generate rational approximation of frequency-dependent parameters [3]. In [4], a rational 

interpolation approach is used to approximate the transfer function of linear systems 

characterized by sampled data by using the three most common orthogonal polynomials: 

Legendre, Chebyshev of the first kind, and the second kind. The ill-conditioned Vandermonde-

like interpolation matrix associated with the ordinary power series is avoided by using these 

orthogonal polynomials. Clenshaw's recurrence algorithm is applied in transforming the 

coefficients of the orthogonal polynomials to the ordinary power series. However, the efficiency, 

accuracy, or stability of these approximations techniques has been compromised in an effort to 

generate high-order approximations of frequency-dependent parameters over a wide frequency 

range.   

In this thesis, a robust rational approximation technique for macromodel construction is 

discussed. Recently, the vector-fitting method was developed by Gustavsen and Semlyen in 

1998 [5] and [6] to approximate the frequency-dependent parameters of transmission lines using 

rational functions. In Chapter 2, the vector-fitting method is discussed in detail. The step-by-
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step implementation of the method is presented with mathematical proofs on some parts of the 

method. Some of the convergence issues using the traditional vector-fitting method are 

discussed. A new hybrid method is proposed by combining the rational interpolation method 

with the vector-fitting method [7]. Order and error estimation of this method are also discussed.  

In Chapter 3, the implementation of passivity enforcement to the resulted macromodel is 

discussed. Passivity check is one of the major issues in macromodeling. One of the various 

passivity-checking methods is implemented and discussed in depth.  

In Chapter 4, simulation results are presented. The examples focused on verifying the 

robustness, the accuracy, and the convergence of the hybrid method. An example of passive 

macromodel is also presented. 

In Chapter 5, a Simulation Program with Integrated Circuit Emphasis (SPICE) compatible 

equivalent circuit representation of a macromodel is discussed. The implementation discussed is 

only applied for a model characterized by admittance parameter. The SPICE–like representation 

makes the integration of the macromodel with other linear or nonlinear lumped circuit elements 

easy.  Finally, the conclusion and the outline of the future work to further improve the proposed 

method are presented in Chapter 6.  
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2 VECTOR FITTING METHOD 

The basic idea of macromodeling is to construct a rational function that represents the 

system. The vector fitting method accurately generates high-order rational functions over a wide 

frequency range. The method is an iterative technique based on pole-zero relocation technique. 

It has two main advantages, namely, numerical stability and convergence. It does not suffer 

from numerical problems that occur when approximating a high-order system over a wide 

frequency range. It arrives at the optimal solution by solving two linear equations within a few 

iterations. The frequency response f(s) of any linear time-invariant passive network can be 

represented using rational function. For an Nth -order system response, the rational function f(s) 

can be written as  

      

2

0 0 1 2

2

0 1 2

0

( )

M
m

Mm
m M

N N
n N

n
n

a s
a a s a s a s

f s
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                                 (1) 

where  s = ,j   is the angular frequency in radians per second. M and N are the orders of the 

numerator and denominator, respectively. For stable real systems, the difference between the 

numerator order M and the denominator order N of the rational function does not exceed unity. 

f(s) can be scattering, admittance, or impedance parameters generated from an electromagnetic 

simulation or from measurements.  All coefficients in Equation (1) are unknown, but this 

nonlinear equation can be written as a linear matrix system equation. Equation (1) can be 

expressed as modal expression of the form        
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f s d sh

s a
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where , ,n nc a d and h are residues, poles, real direct proportional constant, and real 

proportional constant, respectively. The residues and poles are either real quantities or in 

complex-conjugate pairs. In order to determine the above nonlinear equation, the problem can be 

solved by decomposing into two linear problems. The first linear problem is a pole identification 

problem in which the poles of the system are identified from the given frequency sample data 

and an initial starting poles. The second linear problem is to determine the residues and constant 

terms based on the frequency sample data and the new system poles determined from the first 

linear problem. 

2.1  Pole Identification  

In this stage, the system poles are fully identified from the given frequency sample data 

and initial starting poles in the frequency range. The methodology of determining the poles is 

discussed as follows. First, multiply the given frequency response f(s) with an unknown 

augmented function ( )s . The augmented function ( )s  is defined strictly as   

1

( ) 1
N

n

n n

c
s

s a




 




  ,                                                         (3) 

where  ,n nc a   are unknown constants. ( )s  is intentionally forced to approach unity at a very 

high frequencies.  The whole equation under consideration can be expressed as 
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In Equation (4) the rational approximation for ( )s  has the same poles as the 

approximation for ( ) ( )s f s . These poles are the initial starting poles. Detailed information 
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about how to choose these starting poles is given in Section 2.4.2.    Multiplying the second row 

in (4) with f(s) yields   

 

                    
1 1
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  ,                                           (5) 

                     ( ) ( ) ( ) ( ) .f i t f i tf s s f s                                                               (6) 

Equation (6) is the same representation as Equation (5). Equation (5) reveals that a linear 

equation results with unknown , , , .n nc c d h This equation can be rewritten for each frequency 

sample points as follows: 
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In matrix form, it becomes 
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where k is the number of frequency sample points. Since Equation (8) often results in an over-

determined linear equation, the least square solution can easily be obtained using one of the 

standard methods. 

Since the system considered is real, all poles must appear as real or complex-conjugate 

pair poles in order to insure stability of the macromodel.  In addition, for every complex-
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conjugate pair pole, the residue must appear in complex-conjugate form to insure that the 

approximate rational function represents a real system because it results a real coefficients. 

Similarly, a real pole will result a real residue. But solving for the unknown in Equation (8) does 

not guarantee this condition. The initial starting poles must also satisfy real or complex-

conjugate pair form.   The above complex matrix is modified to ensure that the residues will be 

in complex-conjugate form for complex-conjugate as 

                                    
*,n n n n n na a ja a a ja       ,                                                  (9) 

                                     
*,n n n n n nc c jc c c jc       ,                     (10) 

where na   is a real part of the complex pole, na   is the imaginary part of the complex pole, and 

*
na   is the complex-conjugate of na . Similarly, nc   is the real part of the residue, nc  is the 

imaginary part of the residue, and 
*
nc  is the complex-conjugate of nc . 

The governing modal equation can be rewritten in more detail form as having Q real poles 

and L complex-conjugate pole pairs as follows:  
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For a real pole, two elements in the matrix have the following form: 
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For a complex-conjugate pole pair, four elements of the matrix have the following form: 

, , 2* *

, 1 , 2 1* *

( ) ( )1 1
,

( ) ( )
,

k k
k n k n N

k n k n k n k n

k k
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                        (13) 

In matrix form, it becomes 
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where x is the unknowns, and [R], [C],[G], and [H] are matrices of the following form: 
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and the unknown x has the form: 

            




1 1 1

1 1 1
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x c c c c c c

c c c c c c d h

  

      
.             (17)     

 The given data has only positive frequencies, and the complex matrix A can be modified 

in terms of real quantities by separating the real and imaginary part of the complex matrix as  

                                     ,
A b

x
A b

 


 
   
   
   

                                                           (18) 

where A  and A  are the real  and imaginary part of matrix A, respectively, with the 

corresponding b  and b   vectors for the real and imaginary parts of the frequency response 

data, respectively.  Finally, the complex-conjugate residues are formed from x as  

                                     

r i
m m m

r i
m m m

c c c

c c c

 

    .                       (19)

 Now, the augmented function ( )s  and the product of the augmented function and 

frequency response ( ) ( )s f s  can be changed from modal form to fractions of numerator and 

denominator and rewritten as 
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From Equations (20),  f(s) can be obtained by dividing one from the other as  
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From Equation (21), the poles of f(s) become the zeros of ( )s . The initial starting poles are 

canceled out in this division process because both arguments have developed to have the same 

poles. Therefore, if the zeros of ( )s  are determined, the system poles can be directly found.  

The next section describes how to determine the system zeros to systems described in state 

space representation.  

2.2 Determination of Zeros   

A linear time invariant system can be described by a set of equations of the form 

                               
( ) ( ) ( )

( ) ( ) ( )

x t A x t B u t

y t C x t D u t

 

 
,                           (22) 

where   : d xx d t and  A,B,C, and D are constant matrices for time invariant system. u(t), x(t), 

and y(t) are the input, state, and output of the linear system, respectively. For a linear system 

that has p inputs and q outputs, u(t) is a p   1 vector and y(t) is a q   1 vector. If the linear 

system has n state variables, then x(t) is a n   1 vector. Therefore, the matrices A, B, C, and D 

must be n   n, n   p, q   n, and q   p matrices, respectively.  

Taking the Laplace transform of Equation (22) and x(0) as initial condition of the state, 

                               
( ) (0) ( ) ( )

( ) ( ) ( ),

sX s x AX s BU s

Y s CX s DU s

  

 
                                                (23) 

where ( ) , ( ) ,X s U s and  ( )Y s are the Laplace  transform of ( ) , ( ) ,x t u t and ( )y t , respectively.               

Equation (23) can be rewritten as  

        
( ) ( ) ( ) ( 0 )

( ) ( ) ( ) ,

s I A X s B U s x

C X s D U s Y s

  

 
                     (24) 

where I is an identity matrix of the same size as  A. 
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Writing the equation in matrix form, 
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                     (25) 

where P(s) is called the system matrix. The transfer function of the system, H(s), which is the 

transfer function of the system, can be derived from the state equation of the system. Again, 

applying Laplace transform to Equation (22) and rearranging the equations yields  
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         (26) 

The transfer function response representation in Equation (26) will be used to drive the zeros of 

the system defined by state space representation.  For a minimal realization of a system defined 

by Equation (22), a system zero is defined as a number that makes the output of the system zero 

for a time greater than or equal to zero. For such system, a necessary and sufficient condition for 

an arbitrary input of the form ( ) ( )tu t ge l t , where l(t) is a unit step function and g and  are 

arbitrary real constants, to yield   a state 0( ) ( )tx t x e l t   and  output  y(t) = 0 for 0 ,t   is 

when Equation (25) is determined at  t  =  0 with the input u(t) and gives     

                                          0 0
( )

0

x
P

g

   

   
  

                              (27) 

assuming the initial condition of the state x(0) is zero. 
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Therefore, a number λ ,  where   is complex space, is a zero of system in Equation 

(22) if and only if there exists 0 0x   where 0
nx   and mg  such that the triple λ, 0x , g 

satisfies Equation (27). 

The following theorem with its proof provides the construction of the system zeros based 

on the definitions given above.  The detailed theorem can be found in [8] - [11].              

Theorem:  

   A number   is a zero of a minimal system of Equation (22) if 

 λ is the eigenvalue of  ( A BD C ) and there exists an eigenvector 0x  of  ( A BD C ) 

corresponding to λ . 

 0x  must be in the null space of ( rI DD )C, then λ, 0x , g  must satisfy Equation 

(27). 

The matrix D  is called the pseudo-inverse or the Moore-Penrose generalized inverse of D [12].  

D  is defined as    1( )T TD D D D  ,  where  TD  is the transpose of D. rI  is an identity matrix. 

 Proof:  

 Let us take an input 0g D Cx  .  The eigen value equation can be written as 

         

0 0

0 0

0

( )

( )

( )

x A BD C x

I A x BD Cx

I A x Bg










 

  

 
                                                             (28) 

If  0x  is in the null space of ( )rI DD C , then  
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                               (29) 

which shows that    is the zeros of the system defined by Equation (22) because the last result 

is the same as Equation (27).             ■ 

The next step is to construct a state space model for the augmented function ( )s . The 

poles of the system response f(s) are the zeros of the augmented function ( )s . Therefore, the 

modal canonical form of ( )s can be written as 

                
1 1

( ) ( ) ( ) ( ) ( )

1

0

0 N

a

x t x t u t Ax t Bu t

a

   

   
   
        

                                       (30) 

       1( ) [ ] ( ) [ ] ( ) ( ) ( )Ny t c c x t d u t Cx t Du t             

where A is a diagonal matrix whose elements are the poles of ( )s ,which is the initial poles, B 

is a column vector whose elements are 1, C is a row vector whose elements are the residues of 

the ( ),s  and D is 1. In order to find the zeros of ( )s , according to the theorem, the 

eigenvalue of the matrix ( )A BD C  must be determined.  Since D = 1,  

                                                 1( )T TD D D D   = 1.           (31) 

Therefore, the zeros of ( )s  are the eigenvalue of the matrix ( )A BC , which are equally the 

poles of the frequency response f(s). 

By using this method the poles of the system are identified. At this point, unstable poles, 

poles with a positive real part, can be deleted or modified to be stable poles with negative real 

part. This insures stability of the approximation process.  In this pole identification process, 

initial poles are assigned at first and iteration can be used to refine the pole locations. These 
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initial poles must be stable poles. One can set a maximum root mean square error to end up the 

iteration process. There are ways to select a good starting poles, which are discussed in Section 

2.4.  

2.3 Residues and Constant Terms Identification 

Once the system poles are identified, the unknown residues and the constant term can be 

directly be calculated from     

1

( )
N

n

n n

c
f s d s h

s a

  
          (32) 

Now, the system poles na  are already determined from the pole identification process in 

Section 2.2. The only remaining unknowns are , ,nc d and h. The system poles are either real or 

complex-conjugate form. Therefore, the corresponding residue values must be the same form as 

the system poles. The governing modal equation f(s) can be rewritten again in more detail as 

having Q real poles ira  and L complex-conjugate pole pairs na    
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f s d sh
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                           (33) 

In matrix form, it becomes 
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[R] and [C] are matrices defined in Equation (15) and the unknown x have the form 

            1 1 1 .
Tr i r i

r Q r L Lx c c c c c c d h                         (35) 

Again, the complex matrix is modified in terms of real quantities by separating the real and 

imaginary part of the complex matrix as shown in Equation (18).                                 

Finally, the complex-conjugate residues are formed from x as: 

                                     
r i

m m mc c c  .                                 (36) 

Therefore, by following the above method, all the unknown residues and constant terms are 

obtained. The residues obtained guarantee complex-conjugate form for complex-conjugate poles.               

2.4  Selection of Starting Poles 

The vector fitting method needs initial poles to approximate the given data in rational 

function. However, the accuracy and convergence of the vector fitting method depends strongly 

on the number and the location of the starting poles. The standard methods for selecting the 

orders and initial poles are in most part heuristics [5] and [6]. So far, there has not been a study 

on the effects of the initial poles on the convergence of the vector fitting method. A possible 

way of selecting a set of starting poles was introduced in [5] and [6]. In [5], poles are selected in 

logarithmic or linear scale in the frequency range. But this way of selecting poles does not 

guarantee capturing the behavior of the data at the maximums and minimums. The number of 

the starting poles determines the order of approximation. The initial pole assignment proposed 

in [5] is to start with poles covering the approximation frequency range with the relationship 

between the imaginary and real poles  

                                    , 100ip j where         

 In this thesis, new ways of selecting starting poles are presented.  
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2.4.1 Automatic selection of initial poles 

One possible way of selecting the initial poles is performed by automatically parsing the 

data within the frequency range. This method is based on finding frequency points at which the 

local minimums or maximums of the given data occur. These frequency points are used to 

create the starting poles. The advantage of this method is that it does not require guessing the 

initial poles by users. One of the disadvantages of this method is that it generates a high-order 

approximation and can easily be affected by noise spikes in the given data. The fitting curves 

obtained from such a method of selecting the initial pole do not often give a smooth curve. The 

resulting starting poles from this method are all in conjugate complex form. 

The procedure is summarized as follows: 

1. Normalize the whole frequency range using the maximum frequency. 

2. Starting from the beginning of the frequency range to the end, find the local minimum 

and maximum points of the data. 

3. Store the frequency point at which these extreme occurs. Include the starting and the 

ending points of the frequency range.  

4. Set the imaginary part of the pole, 2* *pi  extreme frequency points. 

5. Create the initial poles, ,ip j     where 100  . 

 In this thesis, a new hybrid method of selecting initial poles for the vector fitting method 

is proposed. The set of initial poles is obtained by performing rational interpolation over 

partitioned frequency ranges. The method takes the advantage of the robustness of the rational 

interpolation in the extracting stable poles by partitioning the frequency range. These poles 

improve the accuracy and convergence of the vector fitting method. The new proposed method 

uses as initial poles the set of poles obtained by performing rational interpolation over a 

partitioned frequency range using the method developed in [3] and described below. 
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2.4.2 Rational interpolation 

The starting poles can be obtained by partitioning the frequency range and by finding the 

poles of each partition region by rational approximation using the real part of the partition [3]. 

The whole frequency range can be partitioned equally or in certain other criteria. 

Any network parameter of passive system can be approximated as a ratio of polynomials 

in the frequency domain as Equation (1). The real part of a network function can be specified as 

the even part of f(s) replacing 2s with 2 . The real part of the original function is fitted with 

the real rational polynomial function of squared variable as  
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                                 (37) 

The poles of the even function of f(s) are those of both f(s) and f(-s), those belonging to f(s) lie 

in the left half-plane. Thus the denominator coefficients of f(s) in Equation (1) can be obtained 

from Equation (37).  The following system equations results from matching the real parts of the 

original function with Equation (37) at the set of frequencies, as in 
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 ,           (38) 

where the subscript “r” indicates the real part of the complex data given. k is the number of 

frequency data points  given. Once the coefficients of the denominator polynomial are obtained 

from Equation (38), the roots of the denominator are calculated from  
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                          2 4 2
1 21 0q

qp p p                                                            (39) 

The poles are assumed to be distinct. Repeated poles are not likely because of the nature 

of the problem and the fact that the poles are computed numerically. If repeated poles are 

obtained, they can be modified slightly to make them distinct. Factoring the denominator and 

taking only the left half-plane roots, the partial fraction expansion of the transfer function is 

constructed. Stability of the poles is guaranteed, because the polynomial roots are determined in 

terms of the square poles. The purely imaginary single poles on the imaginary axis are rejected 

as spurious because the rational function has double roots. The remaining poles are used to 

formulate the stable initial poles for the vector-fitting method. 

 The transposed Vandermonde-like interpolation matrix in Equation (38) can be 

artificially ill-conditioned; the condition number of the matrix can be improved by normalizing 

the frequency range to unity. Therefore, the whole frequency range under consideration is 

normalized by the maximum frequency under consideration. The transposed Vandermonde-like 

matrix in Equation (38), even for a moderate order, is notoriously ill-conditioned in the sense 

that the entries along each row are simple powers of the corresponding frequency values. If the 

span of the frequencies being considered is large, then the magnitudes of the entries on some of 

the rows will be much larger than those in rows corresponding to low frequency values. For this 

reason, the frequency range under consideration is partitioned into smaller frequency range, and 

by doing this the risk of solving an ill-conditioned matrix is minimized. The frequency range 

can be divided equally. One possible way of partitioning the frequency range is by determining 

the number of extremes in the partition in such a way that each partition has equal extremes and 

comparable frequency range. A sufficient order of approximation should be set for this method 

to work. One possible way of guessing good order of approximation for a partition is again by 

determining the number of extremes in the partition. These poles are then used as starting poles 
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for the vector-fitting algorithm. The resulting estimate poles at each iteration are used as the 

starting pole for the next iteration. 

2.5 Hybrid Method 

The proposed method [7] combines the robustness and efficiency of the rational 

interpolation and the numerical stability and fast convergence of the vector-fitting method. The 

rational interpolation method is first used to generate accurate poles of the partition frequency 

range. Then the poles are used in the vector-fitting method to generate a high-order rational 

function valid over wide frequency range taking advantage of numerical stability and fast 

convergence properties of the method. 

The procedure is summarized as follows: 

1. Normalize the entire frequency range with the maximum frequency. 

2. Partition the frequency range into subsections and select the order of approximation to each 

partition.      

3. For each partition perform rational interpolation.  

3.1. Construct the real part of the matrix and solve for denominator coefficients in Equation 

(38). 

3.2. Factor the denominator polynomial and filter the stable poles.   

4. Collect all the poles from each partition and construct the initial guess poles, and perform 

vector fitting. 

4.1. Set the least square solution of the augmented functions at the frequency points using 

the initial poles. 

4.2. Solve for new set of poles. 

4.3. Find the residues and constants using the new set of poles. 
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4.4. Calculate the root-mean square (RMS). If the error is not acceptable, repeat step 4 using 

the new set of poles as initial guesses. If the error is acceptable, go to passivity checking 

and enforcement. 

The proposed combined method provides a more accurate and fast convergence rational 

approximation. 

2.6 Order Selection and Error Estimation 

An important step in any order reduction scheme is order selection. Unfortunately, in most 

methods predicting the order of approximation is very difficult. The approach is usually to start 

with a low order and increase the order until a convergence criterion is satisfied. Ideally the 

approximate response is compared to the exact response at the desired frequency points.   If the 

error is not acceptable, the order can be increased until the desired root-mean square error is 

achieved. Many frequency-sampling points should be taken in order to get a better 

approximation in continuous frequency. 
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3 PASSIVITY ENFORCEMENT 

3.1 General Passivity Requirement of Macromodels 

For transient time-domain analysis, a passive macromodel needs to satisfy three conditions:  

1. The macromodel has to have real coefficients in its rational approximation 

function.  

2. The macromodel should have stable poles. 

3. The macromodel must be passive.  

The passivity condition requires that the circuit does not create energy. The passivity 

conditions for a multiport macromodel are:  

1. [H(s*)]= [H*(s)] for all s, where * is the complex-conjugate operator. 

2. [H(s)] is a positive real matrix. Thus, the product [ ( ) ( )] 0T Tz H s H s z     for all 

s with Re(s) > 0 and any arbitrary vector z.  

These conditions translate into the following constraints: 

1. [H(s)]  does not contain poles on the right half of the s-plane.   

2. [H(s)] does not have multiple poles on the imaginary axis of the s-plane. 

3. The coefficients of [H(s)] are real. 

4. The real part of [H(s)] must be positive semidefinite for all frequencies. This 

implies that the eigenvalues of the real part of [H(s)] are positive or zero for all 

frequencies. 

The first and the second constraints are included as part of stability condition while the 

third condition is equivalent to simply satisfying the real coefficients of the system. Therefore, 

the passivity condition needs to ensure real coefficients and satisfy the stability condition.  
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Furthermore, all the eigenvalues of the real part of the rational function matrix must be 

semipositive. 

The next important step is how to satisfy these conditions and construct a passive and 

stable macromodel. The constraint for real coefficients can be satisfied by construction. In the 

construction of the passive macromodel, if all poles and residues are constructed in such a way 

that they appear as a real or complex-conjugate form, it is guarantee that the whole rational 

function matrix will have real coefficients. Therefore, poles and residues must appear as real or 

as conjugate pairs. The stability conditions can be satisfied by ensuring the poles of the rational 

function matrix lie on the left half of the complex s-plane and eradicating those poles that do not 

satisfy this condition.  The last passivity constraint must be satisfied and guaranteed over the 

infinite frequency bandwidth. Therefore, the last constraint should be developed independent of 

frequency bandwidth.  

Since poles are characteristic frequencies of the system, common poles should be used to 

represent the multiport passive system when approximating by rational function matrix [H(s)].  

Different approaches are available to enforce passivity. Some of these approaches are frequency 

range dependent. In [13], an eigenvalue approach has been discussed, which enforces passivity 

of the macromodel by directly compensating the poles and residues of the rational function 

using linearization and constrained minimization through Quadratic Programming. However, 

this method that is based on searching the frequency band of violation, is computationally 

expensive and uses discrete, band-limited frequency samples for enforcing passivity of the 

macromodel. Hence, the generated macromodel can still violate passivity over a continuous 

frequency and outside the band-limited frequency response since the macromodel is tested at 

discrete frequency samples. 
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Recently, the rational function matrix [H(s)] without common poles has been used for 

representing the passive macromodel for multiport circuits, and a compensation method has 

been proposed [14]. The compensation method can detect the frequency band violating passivity 

using the associated Hamiltonian matrix. In [15] and [16], a different approach is used to assure 

passive macromodel.  In this thesis, the method developed in [15] is used and discussed. 

The roots of the polynomial in Equation (1) are either real or complex-conjugate pairs. It 

is assumed that the root is simple or nonoverlapping. The pole-residue form can be rewritten as  
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                           (40) 

where the coefficients , , , , , , ,mr m nr ni n np p p d h    are real values. CPN and RPN represent the 

number of complex-conjugate poles and real poles, respectively. nr nip jp  are the complex-

conjugate poles with the corresponding residues n nj  .   mrp is a real pole with a residue m . 

d is a direct constant term independent of frequency. h is a proportional constant term 

dependent on frequency. By combining the complex-conjugate poles, Equation (40) can be 

rewritten as 
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For a distributed multiport network with common system poles, Equation (41) can be 

generalized as 
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where the matrices [ ],[ ],[ ],[ ],[ ]n n m d h    are PxP residue and constant matrices for a P-port 

network. 
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 The macromodel constructed needs to satisfy stability and passivity for a linear time-

invariant passive system. The stability requires that all poles must lie in the left half of the s-

plane. This can be achieved easily during the construction of the macromodel by applying 

0nrp   and 0mrp   in Equations (41) and (42). The passivity requires that a passive circuit 

does not create energy. Nonpassive macromodels combined with a stable circuit can generate an 

unstable time-domain response. Based on the maximum modulus theorem [17], the passivity 

condition for a one-port network can be written as 

                     Re{ ( )} 0 .H s j                                     (43) 

The one port network rational function H(s) can be separated into real and imaginary parts and 

results as follows: 

                  ( ) ( ) ( )H s j Hr j jHi j                                     (44) 
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3.2 For One-Port Network 

The passivity of each subnetwork in Equations (41) and (42) can be satisfied using the 

analytical formulas for the passivity. Applying the passive constraint for a one-port network, 

Equation (43), the following constraints can be derived from Equation (45): 
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Note that due to the stability constraint, 0nrp  and 0mrp  . It is important to note that 

the summation of a passive subnetwork is always results in a passive network. The rational 

function H(s) is regarded as a summation of subnetworks consisting of complex-conjugate poles 

and real poles with corresponding residues.   Therefore, if every subnetwork in Equations (41) 

and (42) satisfies the passivity condition, the rational function H(s) satisfies the passivity 

condition as well.               

3.3 For Multiport Network 

 For a multiport network, the rational function [H(s)] in Equation (42) has to be positive 

semidefinite at all frequencies according to the passivity constraints discussed before. Using the 

property of positive semidefiniteness, the one-port passivity formulae in Equation (47) can be 

extended to multiport passivity formulae as 

   Eigenvalues of [ ] 0m  , 

Eigenvalues of [ ] 0n nr n nip p    ,          (48) 

Eigenvalues of [ ] 0d  . 

From Equation (48), the multiport passivity formulae only depend on the poles and 

residues matrices, which are independent of frequency. Hence, the passivity of the circuit is 

satisfied over an infinite frequency. The multiport passive formulae are only enforced on each 

subnetwork of [H(s)], and there is no relationship for passivity between sub networks except 

that they contribute to the overall frequency response of the macromodel. This adds simplicity 

to the computation. For compensating negative eigenvalues in Equation (48), there are two free 

matrix variables [ ]n  and [ ]n  related to two free variables of complex-conjugate poles 

nr nip jp , a free matrix variable [ ]m  related to a real pole mrp , and a free matrix variable [ ]d  

that can be changed. Simulation results are presented in the next chapter. 
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4 NUMERICAL RESULTS 

4.1 Case Study I – Noisy Data Approximation 

Measured scattering parameters of interconnect are approximated over a frequency range 

using the proposed methods in Chapter 2. For comparison, the result of methods, the standard 

vector fitting, and the proposed method are presented. 

First, the measured data is approximated by using the initial poles selection method 

proposed in [5]. Figures 1 and 2 show the result of the magnitude and phase of the S21 of the 

given interconnect, respectively. Next, the measured data is approximated using automatic 

starting pole selection. In this method, the order depends on the number of extremes in the 

frequency range under consideration. The order of approximation is 162. High order is expected 

due to high number of picks. The root-mean squared error and the number of iterations needed 

for the vector fitting to converge are 2.9941 x 10-4 and 5, respectively. Figures 3 and 4 show the 

result of the magnitude and phase of the S21 of the given interconnect, respectively. The same 

data is approximated using the proposed combined method. Figures 5 and 6 show the magnitude 

and phase of the S21, respectively. Table 1 shows the comparison between these methods. 

Table 1. Comparison between the methods. 

 Standard Method Automatic Selection 
Method 

Combined Method 

Order of Approximation 110 162 84 

RMS 7.07 x 10-3 2.9941 x 10-4 7.7001 x 10-4 

Number of Iterations 8 5 8 
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Figure 1. Magnitude of S21: Measured data and the 110th-order rational approximation 
using standard method. 

 

 

Figure 2. Phase of S21: Measured data and the 110th -order rational approximation using 
standard method. 
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Figure 3. Magnitude of S21: Measured data and the 162nd -order rational approximation 
using automatic poles selection method. 

 

 

Figure 4. Phase of S21: Measured data and the 162nd -order rational approximation using 
automatic pole selection method. 
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Figure 5. Magnitude of S21: Measured data and the 84th -order rational approximation 
using combined method. 

 

 

Figure 6. Phase of S21: Measured data and the 84th -order rational approximation using the 
combined method. 
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As can be seen in Table 1, the starting poles generated using the suggested rational 

interpolation method give better results with a lower order approximation. Even though the 

combined method needs more iterations than the standard vector fitting method for this example, 

the comparisons over many other examples show that the two methods require about the same 

number of iterations. The root-mean squared error is calculated at each iteration and run for 30 

iterations using the combined method. Figure 7 shows the root-mean squared error versus the 

number of iterations. The error drops very fast in the first few iterations and stagnates at high 

iterations.  For example, the root-mean squared error at the second iteration is 0.0012 while at 

the 15th iteration the root-mean squared error is 0.00062 and stays constant for higher numbers 

of iterations.  

 

Figure 7. Root-mean squared error vs. number of iteration of the combined method. 

4.2 Case Study II – Accuracy Test 

Figure 8 shows an arbitrary structure developed using momentum in ADS. The frequency 

response of this two-port system is simulated with the quasi-static electromagnetic solver (EM) 

in ADS 2003C with Momentum MomEngine® 5.0 in radio frequency (RF) simulation mode.    
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The mesh is generated at 20-GHz mesh frequency with 20 cells per wavelength. The single 

layer substrate has 25-mil thickness with permittivity 9.6 and perfect ground. The two ports are 

characterized with 50-Ω termination.  The simulation frequency range is from 45-MHz to 20-

GHz. An S-parameter frequency response is obtained from the ADS in the frequency range. The 

S-parameters obtained from the EM simulation are approximated with the proposed method. 

Figures 9 and 10 show the magnitude and phase response obtained from the EM solver in ADS 

and the rational approximation using the proposed method, respectively.  

 

 

Figure 8. An arbitrary structure layout developed for test in ADS. 

From Figures 9 and 10, the approximation is well fit with the original data. Since the 

system is a real system, the proposed method uses common system poles for each parameter. 

The order of approximation resulted from the method is 28 and it took only four iterations to 

reach a RMS of 1.3492 x 10-4, which shows that a well fitted macromodel can be generated for 

any arbitrary structure with a wide frequency range. Figure 11 shows the 3D view of the 

structure. 

Port 1 
Port 2 
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Figure 9. Magnitude response of the structure under consideration, EM simulation result from 
ADS (original), and rational approximation obtained from proposed method. 

 

 

Figure 10. Phase response of the structure under consideration, EM simulation result from ADS 
(original), and rational approximation obtained from proposed method. 
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Figure 11. The 3D view of the structure under consideration. 

4.3 Case Study III – Convergence Test 

The next case study is on the convergence of the proposed combined method. First a 

frequency data, which ranges from 0.1-GHz to 10-GHz, is generated from a known eight-order 

system so that the locations of the actual poles are already known.  The frequency data is 

partitioned into four equal frequency ranges. The rational interpolation is applied on each 

partition such that good initial poles are extracted, that are going to be used in the vector fitting 

method. To show the process of convergence, a 12-order macromodel is generated using the 

proposed method so that the order of approximation is 12. Therefore, the macromodel generated 

has four more additional poles than the actual system. One way of observing the convergence of 

the combined method is by tracing the movements of the poles at each iteration. Figure 12 

shows how the poles are moved with iteration and fit in to the actual pole position.  Initially, the 

poles move a significant distance, but as the poles convergence, they move less and less.  The 

poles mainly move in the horizontal directions, indicating that the imaginary parts of the initial 

and estimate poles are very close. Through iteration, those excess poles are pushed to be located 

as far as possible from the imaginary axis, or to be as close as possible to one of the actual poles 
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by the combined proposed method. If the poles are far from the imaginary axis, the transient 

time response of the whole system due to these poles is insignificant. On the other hand, if the 

excess poles are somehow close to the actual poles, the effect of these poles is incorporated 

together. This phenomenon is pole clustering and is discussed in [18]. One can apply pole 

clustering to reduce the high-order macromodel to a lower model by combining poles near to 

each other. It also shows that the excess poles are near to the exact poles or far from the 

imaginary axis.  Table 2 presented the value of the poles in long precision at each iteration and 

the exact poles of the system. From the table, a fast convergence is achieved even at the first 

iteration, which shows poles generated by the rational interpolation as a starting pole results in 

accurate poles to be used by the vector fitting method.  

 

 

Figure 12.  Pole locations with each iteration and the location of the actual poles. 
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             Table 2. Normalized poles in each iteration and the exact poles in long precision format. 
 

Poles after 1st 
Iteration 

Poles after 2nd 
Iteration 

Poles after 3rd 
Iteration 

Exact Poles 

-2.28083083074210 -5.19615227575899 -- -- 
-5.29575863719451 -6.42868008638183 -12.69377218231458 

±2.95161226622251i 
-- 

-5.84740000001007 
±1.15450000012744i 

-5.84740000000000 
±1.15450000000114i 

-5.84740000000016 
±1.15449999999966i 

-5.84740000000000 
±1.15450000000000i 

-1.03112699999914 
±13.35900000004103i 

-1.03112699999998 
±13.35900000000030i

-1.03112700000009 
±13.35900000000028i 

-1.03112700000000 
±13.35900000000000i

-0.82122437903587 
±16.54782858783110i 

-0.82122437903587 
±16.54782858783111i

-0.82122437903588 
±16.54782858783112i 

-- 

-4.40499999996669 
±18.20299999992384i 

-4.40500000000000 
±18.20300000000002i

-4.40500000000000 
±18.20300000000002i 

-4.40500000000000 
±18.20300000000000i

-5.01520000001838 
±27.74100000003333i 

-5.01519999999999 
±27.74099999999998i

-5.01519999999999 
±27.74100000000000i 

-5.01520000000000 
±27.74100000000000i

 
 

Figures 13 and 14 show the magnitude and the phase plot of the generated frequency data 

together with the approximate result. 

 

Figure 13. Magnitude response of the 8th -order system and the 12th-order rational 
approximation obtained from proposed method.   
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Figure 14. Phase response of the 8th -order system and the 12th-order rational 
approximation obtained from proposed method.   

 
Table 3 shows the root-mean square error resulted at each iteration step. This table clearly 

shows that a fast convergence is achieved with few iterations, and once it reaches minimum 

RMS, it stays there for higher numbers of iterations. 

Table 3. RMS vs. number of iterations. 

Number of Iterations RMS 

1 2.046443874377408 x 10-12 

2 1.444960154069353 x 10-15 

3 1.420157181164892 x 10-15 
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5 SPICE-COMPATIBLE EQUIVALENT CIRCUIT 
SYNTHESIS 

 

A pole-residue representation of a macromodel can easily be integrated into SPICE-like 

circuit simulator [19]. The pole-residue representation of the rational function matrix [G(s)] is 

used to easily construct a lumped circuit; elements consist of resistors, inductors, capacitors, and 

controlled sources. The method of extraction can be easily demonstrated using an admittance 

network.  For a one-port admittance network, RL networks can be used to represent a real pole 

and residue. RLC networks can be used to represent a pair of complex-conjugate poles and 

residues.   A resistor can be used to represent the direct constant. A capacitor can be used to 

represent the proportional constant. For a passive multiport admittance macromodel, the sign of 

all the equivalent elements must be positive.  A closed-form admittance matrix representation 

for macromodel with N ports can be written the same as previously: 
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where RPN is the number of real poles, CPN is the total number of complex poles, and the same 

set of poles is used. Each of the terms in admittance Equation (50) is interpreted in terms of an 

equivalent circuit.  
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5.1 Self Admittance Term 

For the self-admittance term for the mth real pole,   
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where inductance value 
1

m
o m

L D
 

   and  resistance value m r
m

m

p
R D




  at port i. The 

equivalent circuit realization is given in Figure 15. 
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Figure 15. Equivalent circuit realization of a real pole in the self-admittance term. 

 

For the self-admittance term for the nth complex-conjugate pairs, 
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The above equation can be written in current-voltage form as  
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Equivalently, the above equation can be expressed as 
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where  
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The equivalent circuit realization is given in Figure 16. 
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Figure 16. Equivalent circuit realization for a complex-conjugate pair in the self-
admittance term. 
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For the self-admittance term, the direct constant value and the proportional constant value are 

represented as a series resistor and a capacitor: 
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                                 (55) 

The equivalent circuit realization is given in Figure 17. 

                                                    

R_dc C_prop

 

Figure 17. Equivalent circuit realization for direct constant and proportional constant in 
the self-admittance term. 

 

5.2  Transadmittance Term 

The equivalent circuit realization of transadmittance between ports can be realized in such 

a way that the contribution of the jth-port voltage to the current of the ith-port through the real 

poles, complex-conjugate pair poles, and constant terms that relates between these ports. 

Therefore, it is possible to create a voltage controlled current source (VCCS) in the independent 

side (port j, in this case), which in turn control the current controlled voltage source (CCVS) in 

the dependent side (port i, in this case).  

 In the transadmittance term, the mth real pole between ports i and j can be realized as in 

Figure 18. 
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Figure 18. Equivalent circuit realization in transadmittance term of a real pole between 
ports i and j. 

 
 In the transadmittance term, the nth complex-conjugate poles between ports i and j can be 

realized as in Figure 19. 
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Transadmittance term 

independent side
Transadmittance term 

dependent side  

Figure 19. Equivalent circuit realization in transadmittance term of a complex-conjugate 
pair poles between ports i and j. 

 
The direct and proportional constant also contributes to the transadmittance realization 

between ports as a resistor and capacitor, respectively. Therefore, the equivalent circuit for the 

ith port resulting from the combination of all the equivalent subcircuit representations of the self-

admittance and transadmittance terms is as in Figure 20.  
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Figure 20. Equivalent circuit realization for the i th port. 

 

In Figure 20, all the VCCS are from the contribution of the jth transadmittance term. All 

the other components are from the self-admittance terms. The dependent sources, which control 

the VCCS in the ith port, are as in Figure 21. 
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Figure 21. Equivalent circuit realization of the dependent sources for the transadmittance terms.   
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6 CONCLUSIONS 

 The goal of this work is to construct low-order macromodels of passive systems from 

frequency data for simulation of multiport networks. The macromodels need to be stable and 

passive to be used to speed time-domain circuit simulation of large networks. Using the 

constructed macromodels, the electromagnetic behavior of distributed networks can be 

successfully integrated into circuit simulators for design and analysis of a more complex system. 

A combined method that uses rational interpolation is proposed to improve the initial poles and 

convergence of the vector fitting method. The procedure takes advantage of the robustness of 

the rational interpolation method in generating stable poles over partitioned frequency range and 

the numerical stability and fast convergence of the vector fitting method to construct high-order 

approximation over wide frequency range. The convergences of the standard vector fitting and 

proposed methods are compared.  It is shown that the error decreases very fast and stagnates at 

high iterations. The movements of poles are also studied to compare the initial poles and the 

final estimate poles. A SPICE compatible equivalent realization is also studied for a system 

characterized by admittance matrix. 

 In this work, the convergence of the hybrid method is illustrated by using various 

examples and by studying the movement of the poles with iteration. The mathematical proof of 

the convergence with iteration should be studied. The hybrid method gives good approximation 

independent of the parameter measured or given. SPICE compatible equivalent circuit 

realization should also develop for other types of parameters like S-parameter frequency data.  
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APPENDIX – SOURCE CODE 

The Matlab® code implementation of the hybrid method is presented. One should modify 
the code below to plot the preferred data. Due to constraint in space, small functions are taken 
out. 

 
 

%**************************************************************************% 
% FUNCTION NAME:- Start_by_rational(fun,frequency,Order p)                 % 
%**************************************************************************% 
%**************************************************************************% 
% This Function accepts data to be approximated and the order              % 
% of approximation. It performs rational interpolation from the            % 
% given data. It returns the approximate poles in the frequency range.     %  
%              BY: Yidnek Mekonnen    ,  June 2004                         %  
%**************************************************************************% 
 
function [prunedpoles] = Start_by_rational(fun,frequency,p) 
q=p; %assume the denominator order = numerator order 
% Rational approximation of a complex analytical function 
f0 = fun(1);  
alpha=1; 
f=fun(2:length(fun)); 
f= f'; 
freq=frequency(2:length(frequency))/alpha; 
freal = real(f); 
x = (freq).^2; 
xmax = max(x); 
x=x/xmax; 
K = length(x); 
A = ones(1,K+1); 
for k=1:p 
   A = [A;[0,x.^k]]; 
end 
for k=1:q 
 A = [A;[0,-(x.^k).*freal]]; 
end; 
soln = (A')\[f0,freal]'; 
soln = real(soln); 
for I=1:q 
   soln(1+p+I)=soln(1+p+I)/(xmax^I); 
end 
denpoly = fliplr([1;soln(2+p:p+q+1)].');  
%prunedpoles = sqrt(-roots(denpoly)); 
poles = sqrt(-roots(denpoly)); 
prunedpoles = poles(find(real(poles)>0)); 
prunedpoles_real = real(prunedpoles); 
prunedpoles = prunedpoles_real+ j*1*2*imag(prunedpoles); 
prunedpoles = prunedpoles'; 
for k=1: length(prunedpoles) 
    if imag(prunedpoles(k)) == 0 
        prunedpoles(k) = prunedpoles(k) + j*2*prunedpoles(k); 
        prunedpoles(length(prunedpoles)+1) = real(prunedpoles(k)) - 
j*imag(prunedpoles(k)); 
    end 
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end 
prunedpoles = sort(prunedpoles); 
%**************************************************************************% 
 
 
%**************************************************************************% 
% FUNCTION NAME: - STD_VECTORFIT(fun,frequency,Order p)                    % 
%**************************************************************************% 
%**************************************************************************% 
% This Function accepts the data to be approximated, initial starting      %  
% poles,the order of approximation,and the vector fitting number of        %  
% iteration. It returns the residues,the new poles , direct constants and  % 
% proportional constants and also the root mean error and the normal error % 
%               % 
%            BY: Yidnek Mekonnen    ,  June 2004                           %  
%**************************************************************************% 
 
function[Residues,New_poles,d_constant,Pro_constant,D,rmserror]= 
STD_VECTORFIT(f,frequency,Starting_pole,Order,No_iteration) 
freq_length = length(frequency); 
s = 2*pi*j*frequency;     
f_copy =f; 
G_row = []; G =[]; H=[]; 
No_real_pole = 0;  
Real_Starting_pole = []; 
Complx_Starting_pole = []; 
for i =1: length(Starting_pole) % Knowing Only real poles and complex poles 
    if imag(Starting_pole(i))==0 
        Real_Starting_pole =[Real_Starting_pole, Starting_pole(i)]; %Only 
real starting poles 
        No_real_pole = No_real_pole +1; %Counter of Real starting poles 
    else 
        Complx_Starting_pole 
=[Complx_Starting_pole,Starting_pole(i)]; %complex starting poles 
    end 
end 
sort(Complx_Starting_pole); %sorting complex starting poles 
sort(Real_Starting_pole); %Sorting real starting poles only 
Starting_pole=[Real_Starting_pole,Complx_Starting_pole]; 
f = f_copy; 
for k=1: freq_length 
     for p=1:No_real_pole  %Real poles only 
         G_row=[G_row, 1./(s(k)-Starting_pole(p))]; 
     end 
     %The following routine helps to get the conjugate solution of C and 
     %C_bars. C_bar will be the poles of the system and it must be in 
     %complex-conjugate b/s it represent a real system. 
     for p=No_real_pole+1:2:length(Starting_pole)  %for complex starting 
poles 
         real_part_pole=(1/(s(k)-Starting_pole(p)))+(1/(s(k)-
(Starting_pole(p))')); 
         imag_part_pole=j*(1/(s(k)-Starting_pole(p))-1/(s(k)-
(Starting_pole(p))')); 
         G_row=[G_row,real_part_pole,imag_part_pole];  
     end; 
     G =[G;G_row]; 
     H =[H;G_row*(-f(k))]; 
     G_row =[]; 
end %End of freq_length loop 
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A =[G,H,(ones(1,freq_length))',s.']; 
imag_A = imag(A); 
A = real(A);  
A = [A;imag_A]; 
clear imag_A; clear G; clear H; 
imag_f = imag(f); 
f = real(f); 
f =[f;imag_f]; 
clear imag_f; 
for col=1:length(A(1,:));  %normalizing the A matrix with Euclidian norm 
   Escale(col)=norm(A(:,col),2); %Euclidian norm 
   A(:,col)=A(:,col)./Escale(col);  
end 
X = A\f; 
X = X./Escale.';  % rescale the solution 
C =X(1:(length(X)-2)/2);  %the residues of the function f 
C_bar =X((length(X)-2)/2+1:(length(X)-2)); % the residues of the sigma 
function 
d_constant = X(length(X)-1); % the direct constant d 
Pro_constant = X(length(X)); % the proportional constant in the function  
C =C.'; 
C_bar =C_bar.'; 
for p=No_real_pole+2:2:length(C) %make C complex-conjugate 
    r1 = C(p-1);                  
    r2 = C(p); 
    C(p-1)=r1+j*r2; 
    C(p)=r1-j*r2; 
end 
for p=No_real_pole+2:2:length(C) %make C_bar complex-conjugate 
    r1 = C_bar(p-1);               
    r2 = C_bar(p); 
    C_bar(p-1)=r1+j*r2; 
    C_bar(p)=r1-j*r2; 
end 
%Calculating the Zeros of sigma function ,which is the poles of the function  
A=[]; B=[];CC=[]; 
for p=1:2:length(Complx_Starting_pole) 
      A(p,p)=real(Complx_Starting_pole(p)); 
      A(p+1,p+1)=A(p,p); 
      A(p,p+1)=imag(Complx_Starting_pole(p)); 
      A(p+1,p)=-1*A(p,p+1); 
      B(p)=2; 
      B(p+1)=0;  
      CC(p)=real(C_bar(p)); 
      CC(p+1)=imag(C_bar(p)); 
end 
B =B'; 
H = A - B*CC; 
New_poles = eig(H); 
for p=1:length(New_poles) 
    if real(New_poles(p))>0  %making unstable poles stable. 
        New_poles(p)= -1*real(New_poles(p))+j*2*imag(New_poles(p)); 
    end 
end 
New_poles = sort(New_poles); 
New_poles = New_poles - 2*j*imag(New_poles);  
clear f; 
clear C; 
clear Escale; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%% Finding the residues and other constants 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Real_New_pole = []; 
Complx_New_pole = []; 
No_real_pole =0; 
for p=1:length(New_poles) % Knowing Only real poles and complex poles 
    if imag(New_poles(p))==0 
        Real_New_pole =[Real_New_pole, New_poles(p)]; %Only real starting 
poles 
        No_real_pole = No_real_pole +1; %Counter of Real starting poles 
    else 
        Complx_New_pole =[Complx_New_pole,New_poles(p)]; %complex starting 
poles 
    end 
end 
New_poles=[Real_New_pole,Complx_New_pole]; 
G_row =[]; G=[]; 
for k=1: freq_length 
    f = f_copy; 
    for p=1:No_real_pole  %Real poles only 
         G_row=[G_row, 1./(s(k)-New_poles(p))]; 
     end 
     for p=No_real_pole+1:2:length(New_poles)   
         real_part_pole=(1/(s(k)-New_poles(p)))+(1/(s(k)-(New_poles(p))')); 
         imag_part_pole=j*(1/(s(k)-New_poles(p))-1/(s(k)-(New_poles(p))')); 
         G_row=[G_row,real_part_pole,imag_part_pole];  
     end; 
     G =[G;G_row]; 
     G_row =[]; 
end %End of freq_length loop 
Starting_pole = New_poles; % For next Iteration 
A =[G,(ones(1,freq_length))',s.']; 
imag_A = imag(A); 
A = real(A);  
A = [A;imag_A]; 
clear imag_A; clear G;  
imag_f = imag(f); 
f = real(f); 
f =[f;imag_f]; 
clear imag_f; clear Escale; 
for col=1:length(A(1,:)); 
   Escale(col)=norm(A(:,col),2); %Euclidian norm 
   A(:,col)=A(:,col)./Escale(col); 
end 
X = A\f; 
X = X./Escale.'; 
C=[]; 
C=X(1:length(X)-2); 
d_constant = X(length(X)-1); 
Pro_constant =X(length(X)); 
C=C.'; 
for p=No_real_pole+2:2:length(C) %make C complex-conjugate 
    r1 = C(p-1); 
    r2 = C(p); 
    C(p-1)=r1+j*r2; 
    C(p)=r1-j*r2; 
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end 
Residues = C; 
D = zeros(1,freq_length); 
for q = 1:length(New_poles) %Order  ...modified 08.19.2003 
  D = D + (Residues(q)/New_poles(q))./(-1+ s./New_poles(q)); 
end 
D = D + Pro_constant*s + d_constant; 
diff= D - f_copy.';  
rmserror=sqrt(sum(sum(abs(diff.^2))))/sqrt(length(frequency)); 
%END 
%**************************************************************************% 
%**************************************************************************% 
 
 
%**************************************************************************% 
% MAIN FILE NAME: - HYBRID_METHOD                                          % 
%**************************************************************************% 
%**************************************************************************% 
% This File is the main file. User must give a file name of the data, the  %  
% order of approximation and the number of iteration. User also must give  % 
% the parameter to be approximated. This file call S_TO_Y(not included here)%   
% Start_by_rational and STD_VECTORFIT. After running, it returns the       %     
% residues the poles , direct constants and  proportional constants and    % 
% also the root % mean error and the normal error. It plots the parameter  %  
% user approximated.                                                       % 
%               % 
%            BY: Yidnek Mekonnen    ,  June 2004                           %  
%**************************************************************************% 
 
clear all; 
fid=fopen('V60.txt','r');  % Data file 
Amat=fscanf(fid,'%e',[9,801]);  %read a file which contains a data 
fclose(fid);  
Amat = Amat'; 
[Y11,Y21,Y12,Y22,frequency] = S_to_Y(Amat,3);  %Type 1 rectangular form or 
Type 2 polar form Type 3 only S parameter 
f = Y12;  % This is choosen to find the system poles...It is possible to 
choose other parameter. 
f = f.'; 
f_copy = f; %Retain copy of the parameter 
Each_order =6; 
[Starting_pole_1] = Start_by_rational(f(1:40),frequency(1:40),Each_order); 
[Starting_pole_2] = Start_by_rational(f(41:80),frequency(41:80),Each_order); 
[Starting_pole_3] = Start_by_rational(f(81:120),frequency(81:120),Each_order); 
[Starting_pole_4] = 
Start_by_rational(f(121:160),frequency(121:160),Each_order); 
[Starting_pole_5] = 
Start_by_rational(f(161:200),frequency(161:200),Each_order); 
 
[Starting_pole]=[Starting_pole_1,Starting_pole_2,Starting_pole_3,Starting_pol
e_4,Starting_pole_5]; %Collecting all the starting poles from each partition  
freq_length = length(frequency); 
Order = length(Starting_pole);  
No_iteration =8; % Number of Iteration for vector fitting 
Error_array = []; 
Pole_store = []; 
clear figure(4); 
for q=1:No_iteration 
Starting_pole = sort(Starting_pole); 
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[Residues,New_pole,d_constant,Pro_constant,D,Error]= 
STD_VECTORFIT(f,frequency,Starting_pole,Order,No_iteration); 
Pole_store = [Pole_store;New_pole]; %only used to display the pole 
convergence 
if q ~= No_iteration % Except for the last iteration..make the real pole 
resulted complex-conjugate.. 
  for p=1:length(New_pole) 
     if imag(New_pole(p))==0  
        New_pole(p) = real(New_pole(p)) + j*2*real(New_pole(p)); 
   end 
end 
end 
Error_array = [Error_array,Error]; 
Starting_pole = New_pole; 
Order = length(Starting_pole); 
Error %Displaying the root mean error 
end %End of Iteration 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
diff= D - f_copy.';  
figure(15),plot(frequency,abs(f_copy),'-b',frequency,abs(D),'-
.r','MarkerSize',12); 
xlabel('Frequency (GHz)'); 
ylabel('Response'); 
legend('Measurement','Approximation',2); 
title('Magnitude '); 
aa=180/pi; 
figure(8),plot(frequency,aa*angle(f_copy),'-b',frequency,aa*angle(D),'-.r'); 
xlabel('Frequency (GHz)'); 
ylabel('Phase(-)'); 
legend('Measurement','Approximation',3); 
title('Phase'); 
New_pole = sort(New_pole); 
Iter = [1:No_iteration]; 
figure(77),plot(Iter,Error_array); 
xlabel('No of iteration'); 
ylabel('Root mean Squared Error'); 
title('Root mean square vs No of iteration'); 
 
%END 
%**************************************************************************% 
%**************************************************************************% 
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