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This thesis conerns the synthesis of active devices in coupled-microstrip and coupled-

coplanar technology. We �rst discuss several aspects of multiconductor transmission

line (MTL) theory, including longitudinal dependenices of immittance functions. We

next describe a frequency domain normal mode parameter extraction method for a

symmetric, uniform, MTL section. This is applied to coupled microstrip and coplanar

lines for distributed circuit parameter extraction from S-parameter simulation. Mea-

surement techniques for characterization of MTL structures with multiple ports and

multiple propagating modes are then discussed and applied. Finally, these analyses

and tools form a basis for the synthesis of several matching networks strategies (stubs,

reactances, transformers) to maximize power to a load for the unilateral and bilat-

eral cases. Measurement of synthesized structures veri�es the re
ection reduction

and power savings. Using these matching networks, a preliminary MTL transistor

ampli�er is presented, and a methodology for an advanced design technique with

maximum accuracy is developed.
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CHAPTER 1

INTRODUCTION

Much literature has addressed the numerical analysis and engineering concerns of

quasi-TEM propagation in multiconductor transmission line (MTL) systems [1]{[14]

Faster signal speeds, smaller trace sizes, and increasingly compact package structuring

are increasing the importance of this analysis.

Full-wave electromagnetic modelling of coupled transmission line systems is cur-

rently a heavy research topic, especially for high-frequency microwave applications

where discontinuities and radiation become signi�cant. In many instances, however,

rigorous modelling is often unnecessary for two reasons: quasi-static circuit methods

are much less computationally expensive and are often implemented easily. In addi-

tion, in many cases, board and package level interconnects are simply not used when

they radiate or behave very electromagnetically.

Currently, designers and signal integrity engineers apply much e�ort in crosstalk

suppression for on-chip interconnects as well as low-loss o�-chip interconnects and

buses. Use of proper current-mode drivers on the lines and layout 
exibility are two

methods, but together they may not be satisfactory. Consideration of the termi-

nations is therefore of paramount importance. However, little has been presented

regarding general matching strategies for coupled microstrip given mismatched MTL

terminations. Ponchak and Katehi [15] applied tuning stub matching to coplanar

waveguide systems on silicon. Kuo and Tzuang [5] reduced re
ections below -30 dB

using matched termination networks on six-line closely coupled microstrip circuits.

Amari and Bornemann [6] minimized re
ected power numerically by determining an

optimum resistive termination based on random and deterministic source excitations.

Sun [16] presented a multiconductor quarter-wave transformer.

Measurement of coupled transmission line systems includes both frequency and

time-domain characterization. In the frequency domain, two-port scattering parame-

ter (S-parameter) measurements can be extended to uniform symmetric lossy coupled-

line systems on chip to determine propagation constants [17] or estimate crosstalk

1



[7]. Impedance measurements of short- and open-circuited MTL structures yield the

circuit parameters [18] and characteristic matrices [19]. Multiport time-domain re-


ectometry (TDR) measurements were conducted by Tripathi and Tripathi [20], [21],

and Schutt-Aine and Mittra [8], [9]. Despite all this pioneering work, much remains.

For example, MTL characterization is generally di�cult or outright infeasible due to

not only measurement and probe engineering concerns, but also software processing.

The central thrust of this present work is to develop a methodology for synthe-

sizing microwave transistor ampli�ers in coupled-line systems. This involves new

longitudinal analysis in MTL systems, new transformation and extraction methods

from both measurement and simulation, the synthesis of new matching networks and

biasing schemes in coupled-line topologies, and new stability and gain derivations in

such topologies. These are all embodied in this work.

Thus, this thesis is organized into seven chapters. In Chapter 2, MTL theory is

overviewed. The electrical parameters of the system, resistance, inductance, conduc-

tance, and capacitance, are expressed as matrices, and their physical interpretations

are explained. Wave propagation is described by the telegraphist's equations, us-

ing the electrical parameter matrices. These equations are decoupled and solved

via the equivalent eigenvalue problem yielding the modal domain variables. Com-

plete descriptions and relations between the modal and state variables for the quasi-

TEM approximation are given, concentrating on symmetric, uniform, coupled-line

microstrip structures. Re
ections on the coupled lines due to source and termination

mismatches are also analyzed.

Chapter 3 focuses on inhomogeneous MTL structures such as coupled microstrip,

where propagation is characterized by multiple quasi-TEM modes with distinct prop-

agation constants. These \mode delays" cause the MTL functions to exhibit longi-

tudinal behavior which super�cially appears problematic in the context of passive,

lossless, reciprocal systems. This chapter presents a thorough investigation of the

longitudinal MTL functions. Using MTL formulation and computer simulation, we

explain the mathematics and physics of mode delays so that their e�ects are not

misinterpreted or attributed to error in the numerical analysis of MTLs.

In Chapter 4, a normal mode parameter extraction method is presented to obtain

normal mode parameters (NMP) or per-unit-length resistance, inductance, conduc-

tance, and capacitance (RLGC) parameters from S-parameters of a coupled-line sys-
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tem operating in the quasi-TEM regime. The major application of this method is to

extract NMP/RLGC data for coupled microstrip or coupled coplanar line full-wave

S-parameter simulations.

An overview of measurement techniques for MTL structures is presented in Chap-

ter 5. We concentrate on a renormalization method which allows for full, 50 
 S-

parameter measurements for a device with an arbitrary number of ports using only

a two-port vector network analyzer (VNA) and known loads not necessarily equal

to 50 
. This alogirithm is often essential to a multimode thru-re
ect line (TRL)

algorithm recently developed for multimode characterization of MTL lines.

Chapter 5 extends traditional matching networks for transmission lines to the

coupled-line problem. Tuning stubs, tuning reactances, and transformers are all syn-

thesized in coupled-line systems and applied to the coupled-line mismatches assuming

arbitrary boundary conditions. For the unilateral case, simple resistive mismatches

are considered, though the relations derived account for terminations with complex

impedance networks. The matching methods will be applied to a three-coupled line

system to exemplify matching for general n-line applications. These may include

transistor ampli�er circuits substituting microstrip for coplanar technology, optoelec-

tronics packaging, chip- and package-level interconnections, and parallel data buses.

We then present some numerical results and simulations of the synthesized match-

ing networks and validated the sythesis with frequency-domain scattering parameter

measurements. Reasonable engineering approximations are utilized in simulation and

measurement where necessary.

In Chapter 6, we present a generalized methodology for synthesizing narrowband

ampli�ers in coupled microstrip systems and detail a novel narrowband ampli�er in

a three-coupled microstrip topology utilizing chip capacitors for matching networks.

The purpose of such a con�guration is to validate the synthesis of microwave am-

pli�ers in coupled microstrip technology (the ground plane being common to many

fabrication technologies) where the planarity inherent to coplanar designs alleviates

the need for vias, thereby reducing fabrication cost.

Finally, Chapter 7, provides conclusions and directions for future work.
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CHAPTER 2

COUPLED-LINE THEORY

In this chapter multiconductor transmission line (MTL) theory is overviewed.

Circuit parameter matrices that characterize MTL structures are formulated and

physically interpreted. Fundamental relations for MTL systems are then derived,

which di�er from single-line systems in that each quantity may be expressed as a

state variable (describing the conductor relations) and modal variable (describing the

modal relations). Re
ection and transmission of voltage and current signals travelling

on the line and their power relations are derived. Finally, the basic longitudinal

matrices and power relations of an MTL structure are introduced.

2.1 Circuit Parameters for Coupled-Line Systems

A system of N total conductors or n(= N � 1) coupled lines (one conductor

ground/reference) where N > 2 is characterized by (n � n) complex matrices of

Maxwellian per-unit-length resistance, conductance, inductance, and capacitance ma-

trices,R,G, L,C, respectively (all matrices in this thesis will be denoted by italicized

boldfaced capitals). All four parameters depend upon the geometry and materials

in the multiconductor structure. Although many common geometries such as coax-

ial line, twisted pair, and parallel plate waveguides have closed-form expressions for

these parameters, they are generally determined using numerical techniques. Several

of these will be overviewed in the next chapter.

In systems where N = 2, the circuit parameter matrices that characterize the

transmission line represent the scalar line-to-ground inductance L and capacitance

C, respectively. But for N > 2, the state voltages and currents are described by

vectors. The subsequent physics will demonstrate a general interdependence among

each state voltage and current, represented by generally full circuit matrices. In-

ductance and capacitance between each conductor and ground shall be referred to

here as self-inductance and self-capacitance when N > 2. Line-to-line inductance

4



and capacitance shall be referred to as mutual capacitances and inductances. Their

relations to matrix elements in L and C will be detailed shortly.

First, however, a capacitance matrix should be derived. The mutual capacitance

between conductor lines is due to the charge-potential e�ect of each system conductor

upon the others. In general multiconductor systems, a system of N conductors will

result in N equations relating each charge to each potential [22]:

Q1 = c11V1 + c12V2 + � � �+ c1NVN ;

Q2 = c21V1 + c22V2 + � � �+ c2NVN ;
...

QN = cN1V1 + cN2V2 + � � �+ cNNVN : (2.1)

In the above system, the coe�cients cii are called the coe�cients of capacitance, and

the coe�cients cij (i 6= j) are known as the coe�cients of induction. Qi denotes the

charge per-unit-length on the ith conductor in the longitudinal direction ẑ, and Vi

is the potential of the ith conductor. These may be compactly expressed as vectors

(where all vectors in this thesis will be denoted by italicized boldfaced lowercase) q

and v, respectively. Thus,

q = Cv: (2.2)

To solve for these coe�cients, consider a physical capacitance Cij connecting

conductors i and j. From reciprocity, Cij = Cji and each of the N conductors can be

interconnected to each other using N(N � 1)=2 or n(n + 1)=2 capacitors. From this

network, the scalar version of (2.2) leads to n equations

Q1 = C1;NV1 + C1;2(V1 � V2) + � � �+ C1;N�1(V1 � VN�1);

Q2 = C1;2(V2 � V1) + C2;NV2 + � � �+ C2;N�1(V2 � VN�1);
...

QN�1 = C1;N�1(VN�1 � V1) + C2;N�1(VN�1 � V2) + � � �+ CN�1;N(VN�1): (2.3)

With common voltage terms these are regrouped as

Q1 = (C1;N + C1;2 + � � �+ C1;N�1)V1 � C1;2V2 � � � � � C1;N�1VN�1;

Q2 = �C1;2V1 + (C2;1 + C2;N + � � �+ C2;N�1)V2 � � � � � C2;N�1VN�1;
...

QN�1 = �C1;N�1V1 � C2;N�1V2 � � � �+ (CN�1;N + C1;N�1 + � � �+ CN�1;N)VN�1:

(2.4)
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For a general N -conductor system these relations can be more easily obtained

from [2]

[C]ii = CiN +
nX

j=1;j 6=i

Cij and [C]ij = �Cij; j 6= i; (2.5)

repeated here for convenience.

This capacitance interpretation is practically demonstrated using the three-coupled

microstrip line system to be analyzed and measured in this thesis (see Fig. 2.1; all

�gures and tables appear at the end of each chapter). Conductor 4 (the microstrip

ground plane) is designated the reference conductor. The lines are symmetric about

the x = 0 plane, thus C1;2 = C3;2 and C1;4 = C3;4.

Comparing (2.4) with (2.1), the capacitance matrix is assembled as2
64
c11 c12 c13

c21 c22 c23

c31 c32 c33

3
75 =

2
64
C14 + C12 + C13 �C12 �C13

�C21 C24 + C12 + C23 �C23

�C31 �C32 C34 + C13 + C23

3
75 :
(2.6)

Ci;4 represents the capacitance of conductor 1 to ground, commonly referred to as

self-capacitance. Note that this capacitance may di�er with i due to the di�erent

charge distributions on di�erent conductors (this is signi�cant for microstrip lines).

Thus, it may be denoted Cself�i (though the i will be omitted when i = 1; 3). O�-

diagonal terms ci;j, i 6= j, correspond to negative mutual capacitance Ci;j between the

two lines i and j. In three-line systems, a more speci�c de�nition will denote mutual

capacitance between nearest neighbors (ji � jj = 1) Cmut, and mutual capacitance

between nonadjacent neighbors (ji � jj = 2) Cnon. By reciprocity, cij = cji. The

capacitance matrix terms for three-line systems are thus:

c11 = c33 = Cself + Cmut + Cnon;

c22 = Cself�2 + 2Cmut;

c12 = c21 = c23 = c32 = �Cself ;

c13 = c31 = �Cnon: (2.7)

The self-partial capacitances are positive, and the self-mutual capacitances are

negative, a physically intuitive result given that a positive potential applied to the

ith conductor results in positive charge on the ith conductor and negative charges on

the remaining conductors excluding ground.
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For planar noncyclic structures like microstrip, the mutual capacitances between

adjacent lines are typically much larger than the capacitances between nonadjacent

lines (including second-neighbors and beyond). Large matrices in real systems are

often sparse or banded because the capacitive coupling between distant nonadjacent

conductors is negligible compared to the self and near-neighbor mutual capacitance.

Next, the inductance matrix L relates the currents on the signal conductors to

the magnetic 
ux between each signal conductor and the reference conductor:

 = Li: (2.8)

Inductances are generally obtained by solving a magnetostatic problem involving

the calculation of a magnetic vector potential. There exists an isomorphism between

magnetostatic and electrostatic problems, however, which allows the longitudinal

magnetic vector potential to be solved via an equivalent electrostatic problem. Given

that typical microstrip problems will involve no magnetic media, this procedure is

commonly employed to characterize lines in the quasi-TEM regime.

The conductance matrix G accounts for loss due to an imperfect dielectric. It

is computed for arbitrary geometries by solving Laplace's equation (see Chapter 3)

while accounting for the complex permittivity of lossy dielectric media. A result

similar to the capacitance matrix follows for the conductance matrix; (2.2) becomes

i = Gv; (2.9)

with all mutual conductance elements negative. This property, like that governing

the capacitance terms, follows from network analysis of the circuit conductances.

The resistance matrix R relates the longitudinal conductor voltages to the cur-

rents. It is typically used to characterize the power loss on conductors. It contains

positive or negative o�-diagonal terms which account for the excitation dependence

which arises as a consequence of the resistance of the conductors depends on the

the conductor current distributions. Thus, the nondiagonal resistance matrix which

relates voltages and currents cannot be computed unless the excitation is known.

However, in [23], it is shown that R may be de�ned as diagonal (as it is for

dc), because the diagonal elements of the nondiagonal R are realtively insensitive

to excitation, as opposed to the o�-diagonal elements. The elements of the diagonal

matrix are obtained by assuming di�erent excitations and solving a linear system of

equations describing the power loss of the entire multiconductor system, as opposed

to the power loss in each conductor.
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In the general case of n lossy lines, (n� n) impedance and admittance matrices

describe the distributed circuits. For passive systems, these matrices are symmetric

and consist of n(n+1)=2 independent elements. For microstrip lines symmetric about

the x = 0 plane, the matrices contain 1
4
(n2+2n+mod(n=2)). Or, for a set of n general

lossless, a total of n(n+1) independent L and C parameters characterize the system;

physical symmetry assumed reduces that number by 2(n� 1) [24].

The per-unit-length impedance and admittance Z and Y are given by

Z = R + j!L (2.10a)

Y = G + j!C: (2.10b)

The admittance matrix elements will be identically labelled with the subscripts em-

ployed for capacitance,

Y 11 = Y 33 = Yself + Ymut + Ynon; (2.11a)

Y 22 = Yself + 2Ymut; (2.11b)

Y 12 = Y 21 = Y 23 = Y 32 = �Yself ; (2.11c)

Y 13 = Y 31 = �Ynon; (2.11d)

and can be realized physically as a network of impedances through the similar well-

known relations

Zii =

 
NX
k=1

Y ik

!�1

; i = 1; 2; : : : ; N (2.12)

and

Zij = (�Y ij)
�1 ; 1 � i < j � N (2.13)

where Zii is the impedance connecting node i to ground, and Zij is the impedance

connecting node i to node j. These impedances may be grouped into an impedance

termination matrix, which shall be de�ned ZS;L, for the source or load termination.

Because most practical multiconductor transmission line systems can be charac-

terized as low-loss [19], computation of R and G are omitted in this thesis. However,

the MTL formulations detailed in this chapter and the matching results presented

in later chapters will assume general lossy lines and include R and G, except where

speci�c lossless assumptions are stated.
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2.2 MTL Fundamentals

The MTL equations in frequency domain matrix form (sinusoidal, steady-state

conditions) for an n-line system are
d

dz
v(z) = �Zi(z) (2.14a)

d

dz
i(z) = �Y v(z); (2.14b)

where v(z) and i(z) are the (n� 1) phasor line voltages and current vectors, respec-

tively, with z the longitudinal coordinate and ej!t suppressed.

It should be stressed that this theory does not apply in a strict sense to mi-

crostrip lines, which are inhomogeneous and therefore cannot support TEM modes.

However, at su�ciently low frequencies, the lines support quasi-TEM modes which

approximately satisfy the MTL equations [7]. In quasi-TEM analysis of n coupled

lines, n modes propagate. These are obtained through the uncoupling of the telegra-

pher's equations [1]{[4], usually via numerical eigenanalysis, though other methods

for computing the propagation constants exist [11].

Given quasi-TEM propagation, the propagating modes are interpreted as physical

system voltages and currents [1]. It will be shown next that the pair of adjoint

matrices ZY and Y Z resulting from the decoupling of (2.14) allows generalization

of the inhomogeneous dielectric case [1] for all microstrip structures. This change

of variables (between line and mode) is the most frequently used method to obtain

modal solutions to coupled-line systems [3].

The transformation to modal quantities is accomplished through the relations [9]

vm(z) = Ei(z) (2.15a)

im(z) =Hi(z) (2.15b)

where E and H are (n � n) matrices whose ith rows are the voltage and current

transformation vectors associated with the ith mode. The n column vectors vm and

im are the modal voltage and current vectors which relate to the electric and magnetic

�eld con�gurations for the n modes.

Second-order MTL equations result from di�erentiating (with respect to z) and

combining (2.14),
d2

dz2
v(z) = ZY v(z) (2.16a)

d2

dz2
i(z) = Y Z i(z); (2.16b)
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to which the transformations in (2.15) are applied; rearrangement yields
d2

dz2
vm(z) = EZY E

�1 vm(z) (2.17a)

d2

dz2
im(z) =HY ZH

�1 im(z): (2.17b)

These equations are decoupled by �nding an E and H which diagonalize ZY

and Y Z and convert (2.17) into wave equations with propagation constants
d2

dz2
vm(z) = �2

m vm(z) (2.18a)

d2

dz2
im(z) = �2

m im(z): (2.18b)

The diagonal modal propagation constant matrix �m contains the ordered complex

propagation constants 
i=1;2;:::;n for modes i = 1; 2; : : : ; n.

Transformation matrices E and H must consist of linearly independent eigen-

vectors; this orthogonal diagonalization is only accomplished if ZY and Y Z are

symmetric [25]. Recalling symmetry of all structures studied in this thesis, Z = ZT

and Y = Y T , so that

(ZY )T = Y TZT = Y Z; (2.19)

a critical result which states that only E orH is required to decouple the equations.

Hence,

EZY E�1 =HY ZH�1 = �2
m; (2.20)

and �2
m is the eigenvalue matrix for ZY and Y Z. Because microstrip is inhomoge-

neous, there will in general be n distinct eigenvalues [1].

The transformation matrices E and H are inverses of the left-hand eigenvector

matrices for the general eigenvalue problem Ax = �x. As previously mentioned,

they are easily determined using numerical eigenvalue routines. Eigenanalysis does

have drawbacks; its nonuniqueness for multiple eigenvalue occurence in the general

case where symmetry is not assumed can present problems. Reiss and Palusinski [11]

work around these with an algorithm capable of computing the square root of the

matrix LC, a de�nition from the same eigenvalue problem discussed in this paper.

For this thesis, eigenanalysis will be applied given symmetry in all cases.

Solving (2.20) yields the eigenvector matrices. For three lines, E assumes the

form 2
64
1 � 1

1 0 �1

1 �� 1

3
75
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where each row represents the normalized �eld con�guration of the alpha, beta, and

xi modes (�; �; �), respectively. Matrix H will equal E for symmetric microstrip

lines. The normalization factors for distinct eigenvalues are arranged in a diagonal

normalization matrix and do not introduce ambiguity in the de�nitions of modal

impedance or admittance as described in [12] because the eigenvector matrices are

orthogonal. Constants � and � depend on coupling magnitude, though orthogonality

requires that j��j = 2.

2.3 Voltage, Admittance, Impedance, and Re
ection

Typically, coupled lines are terminatated at the source and load, resulting in

re
ection and transmission of the signals in the system. In this thesis, termination

networks consisting of passive, linear components are analyzed. Before considering

the terminations, however, wave re
ection expressions are formulated. The modal

vectors vm(z) and im(z) in (2.17) may also be expressed as the superposition of

forward and backward going waves

vm(z) = Q(�z)v+m +Q(z)v�m = Y m
ch
�1
�
Q(�z)i+m +Q(z)i�m

�
(2.21a)

im(z) = Q(�z)i+m �Q(z)i�m = Zm
ch
�1
�
Q(�z)v+m �Q(z)v�m

�
(2.21b)

where v�m and i�m are the modal coe�cient vectors determined by boundary conditions

at the load, and Q(z) is a diagonal propagator matrix of ordered modal phasors e
1z,

e
2z, : : : , e
nz. The characteristic modal impedance matrix Zm
ch is the inverse of the

characteristic modal admittance matrix Y m
ch.

Substitution of (2.21) into (2.14) yields

E�1 d

dz

�
Q(�z)v+m +Q(z)v�m

�
= �ZH�1

�
Q(�z)i+m �Q(z)i

�
m

�
(2.22a)

H�1 d

dz

�
Q(�z)i+m �Q(z)i

�
m

�
= �Y E�1

�
Q(�z)v+m +Q(z)v�m

�
: (2.22b)

Di�erentiating with respect to z, cancelling negative signs, and rearranging leads

to

�m

�
Q(�z)v+m �Q(z)v

�
m

�
= EZH�1

�
Q(�z)i+m �Q(z)i�m

�
(2.23a)

�m

�
Q(�z)i+m +Q(z)i�m

�
=HY E�1

�
Q(�z)v+m +Q(z)v�m

�
: (2.23b)

Combining (2.21) with (2.23), the characeteristic modal impedance and admittance
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matrices are expressed as

Zm
ch = ��1

m EZH
�1 (2.24)

Y m
ch = ��1

m HY E
�1: (2.25)

Transformation matrices E and H must simultaneously diagonalize both Z and

Y [3] to uncouple the MTL equations, and obviously must be nonsingular [3], [10]

to enable transformation between both modal and state variables. Matrices Zm
ch and

Y m
ch are therefore diagonal where the ith entry denotes the characteristic impedance

or admittance of the ith mode. Transformation matrix H may be rede�ned with a

normalization matrix D [3] as H 0 = (DT )�1 so that

ETH 0 = 1n: (2.26)

Similarly, characteristic impedance and admittance matrices Zch and Y ch for the

system can be derived by de�ning v(z) = Zchi(z) for forward and backward waves

separately [8]. From (2.15) and (2.21) we can write

Q(�z)Hi� = [Zm
ch]

�1Q(�z)Ev�; (2.27)

but Zm
ch and Y

m
ch are diagonal so Q(�z) cancels leaving

v� =
�
E�1Zm

chH
�
i�: (2.28)

Therefore, by de�nition of characteristic impedance,

Zc
ch = E�1Zm

chH = E�1��1
m EZ; (2.29)

and

Y c
ch = Zc

ch
�1 =

�
E�1��1

m EZ
��1

= Z�1E�1�mE: (2.30)

This de�nition agrees with [8], [10], [11] when Z is replaced with L for the lossless

case.

Now consider a terminated microstrip structure as shown in Fig. 2.2. Each of the

N nodes are interconnected with impedances. The resulting network is expressed as

an (n� n) matrix ZL, where the ij term denotes the impedance connecting line i to

line j at the load plane z = 0 if i 6= j, or the impedance terminating line i to ground

if i = j.

In MTL analysis, terminations of an n-line system at the source or load are

represented as (n � n) open-circuit impedance matrices Zc
S, Z

c
L, respectively, or

(n� n) short-circuit admittance matrices Y c
S, Y

c
L, respectively.
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From Ohm's law, the line voltage and current vectors are related at the load by

the load admittance matrix Y c
L = Y c

L(z = 0) as

Y c
L � v(z = 0) = i(z = 0): (2.31)

Conversion to modal quantities using (2.21) with z = 0 produces

Y c
LE

�1
�
v+m + v�m

�
=H�1Zm

ch
�1
�
v+m � v

�
m

�
; (2.32)

and solving for the forward going modal voltage vector in terms of the reverse going

modal voltage vector leads to

v�m = �
�
1n +EY

c
L
�1H�1Zm

ch
�1
��1 �

1n �EY
c
L
�1H�1Zm

ch
�1
�
v+m: (2.33)

De�ning a modal re
ection coe�cient matrix at the load �m
L as

v�m = �m
L (z = 0)v+m; (2.34)

and substituting (2.24) and pulling in the negative sign results in

�m
L (z = 0) =

�
1n +��1

m EZY
c
LE

�1
��1 �

1n ���1
m EZY

c
LE

�1
�
; (2.35)

similarly for the source,

�m
S (z = 0) =

�
1n +��1

m EZY
c
SE

�1
��1 �

1n ���1
m EZY

c
SE

�1
�
; (2.36)

these are more compactly expressed in terms of (2.24) as

�m
S (z = �D) = [Zm

S +Zm
ch]

�1 [Zm
S �Z

m
ch] (2.37)

�m
L (z = 0) = [Zm

L +Zm
ch]

�1 [Zm
L �Z

m
ch] (2.38)

or in terms of (2.25) as

�m
S (z = �D) = [Y m

ch + Y
m
S ]

�1 [Y m
ch � Y

m
S ] (2.39)

�m
L (z = 0) = [Y m

ch + Y
m
L ]

�1 [Y m
ch � Y

m
L ] ; (2.40)

where Zm
L and Y m

ch are the modal load impedance and admittance, respectively. It

is apparent from (2.33) that these quantities are derived directly from the line load

impedance and admittance matrices:

Zm
L = EZc

LH
�1 (2.41)

Y m
L =HY c

LE
�1: (2.42)

The (n�n) re
ection coe�cient matrices (2.37)-(2.40) have several notable prop-

erties. First, �m
S;L relate modal voltages, not line voltages. For example, the ith

diagonal entry represents the self-re
ection coe�cient of mode i, or the ratio be-

tween the reverse- and forward-travelling mode i voltage waves. O�-diagonal entries

ij correspond to intermode partial re
ection from mode j to mode i. Thus, �m
S;L will
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generally be asymmetric. Secondly, if terminated symmetrically, �m
S;L will typically

contain [n=2] (where brackets denote integral part) zero-valued elements due to the

lack of partial re
ection between even and odd modes, to be de�ned by symmetry

about the center line. For the three-line case, the � and � modes are the even modes,

while � is the single odd mode. Since the odd and even modes are arranged in alter-

nating rows of E, matrix �m
S;L will be \checkered" with [n=2] zeros (i.e., [�m

S;L]ij = 0

unless i,j are both odd or both even). Third, self-re
ection of a particular mode i

will be zero if all lines are terminated by [Zm
ch]ii. Finally, it is generally very di�cult

to gauge the signs of the elements in �m
L given Zm

ch, due to the nonlinear dependence

on the load admittance matrix, Y c
L.

Correspondingly, the line re
ection coe�cient matrix which relates forward and

backward going line voltages v+ and v� is derived by premultiplying both voltages

in (2.34) by E�1 and applying (2.15); its de�nition then yields

E�1�m
LEv

+ = v�; (2.43)

a result from which a line re
ection coe�cient is de�ned to relate forward and reverse

travelling line voltages as

�c
L = E�1�m

LE: (2.44)

From (2.35) and (2.36) one obtains

�c
L =

�
1n +E

�1��1
m EZY L

��1 �
1n �E

�1��1
m EZY L

�
(2.45)

�c
S =

�
1n +E

�1��1
m EZY S

��1 �
1n �E

�1��1
m EZY S

�
; (2.46)

which are more compactly expressed by multiplying through by Zc
ch as

�c
L = [Zc

L +Z
c
ch]

�1 [Zc
L �Z

c
ch] (2.47)

�c
S = [Zc

S +Z
c
ch]

�1 [Zc
S �Z

c
ch] (2.48)

or by multiplying through by Y ch as

�c
L = [Y c

ch + Y
c
L]
�1 [Y c

ch � Y
c
L] (2.49)

�c
S = [Y c

ch + Y
c
S]
�1 [Y c

ch � Y
c
S] ; (2.50)

which agrees with the re
ection matrices derived in [5], [6]. The ith diagonal entries

correspond to the ratio of reverse-to-forward line voltages on the ith line; o�-diagonal

elements refer to ratios of the reverse voltage on line i to the forward voltage on line

j [5].
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2.3.1 Longitudinal dependencies

Line and modal re
ection coe�cient, impedance, and admittance matrices are

functions of the longitudinal coordinate z. These functions are required to calculate

signals along the coupled line system and optimize the matching networks that will be

introduced in Chapter 4. For a uniform two-conductor transmission line the familiar

scalar result � (z) = � (0) e2
z = �Le
2
z applies, from which impedance and admit-

tance transformations are derived. In a general n-line system, the modal re
ection

coe�cient at position z resulting from the given termination is determined using the

propagator matrix Q(z). Modal signals along the coupled lines are superpositions of

forward and backward travelling waves (2.21) and when applied to (2.34) for some

position z,

Q(z)v�m = Q(z)�m
LQ(z)Q(�z)v+m; (2.51)

obtaining

vm(z) = Q(�z)v+m +Q(z)�m
LQ(z)Q(�z)v+m

= [1n +Q(z)�m
LQ(z)]Q(�x)v

+
m

= [1n + �m(z)]Q(�z)v+m: (2.52)

Thus, the modal re
ection coe�cient matrix of the three-line system at a position

z is the phase-shifted �m
L ,

�m
L (z) = Q(z)�m

L (0)Q(z); (2.53)

and from (2.44) the line re
ection coe�cient matrix as a function of length is obtained,

�c
L(z) = E

�1Q(z)�m
LQ(z)E: (2.54)

Expanded into n2 equations, (2.54) reveals the presence of every mode in each �c
L(z)

term. MatrixQ(z) contains propagation constants e
iz scaled by constants composing

E, E�1, and �m
L . Every term is consequently expressed as a sum of n2 distinct z-

varying phasors, each containing some combination of 
i: 
1+
1, 
1+
2, 
1+
3, : : : .

For lossless lines with symmetric Y L, �
m
L is \checkered" with zeros; in this case each

term in �c
L(z) contains the sum of 1

4
[n2 + 2n+ 2(mod n)] distinct constant magnitude

phasors containing separate even-mode and odd-mode additive combinations of 
i:


1 + 
1, 
1 + 
3, 
1 + 
5, : : : 
2 + 
2, 
2 + 
4, : : : .

The result is that unlike lossless, dispersionless, single transmission lines where

the re
ection coe�cient phase varies linearly and its magnitude remains constant with

respect to z (or !), the terms of �c
L(z) for lossless, dispersionless coupled lines exhibit
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nonlinear phase and magnitude dependence with z. For practical applications, close

proximity (z < �=2) between the matching networks and the load is often desired. In

this region of small coupling length, �c
L(z) terms maintain approximately constant

magnitude.

Equations (2.37), (2.38), (2.47), and (2.48) may be generalized as

�m;c
S;L(z) =

�
Z

m;c
S;L(z) +Z

m;c
ch

��1 �
Z

m;c
S;L(z)�Z

m;c
ch

�
(2.55)

Modal and line admittance and impedance matrices for the coupled-line system

are derived directly from this result and exist in multiple forms. Matching procedures

detailed in Chapter 4 will mainly deal with load matching, so the most direct forms

for modal load admittance and impedance are

Zm
L (z) = Z

m
ch [1n + �m

L (z)] [1n � �m
L (z)]

�1 (2.56)

Y m
L (z) = [1n � �m

L (z)] [1n + �m
L (z)]

�1
Y m

ch; (2.57)

while several expressions for the line impedance matrix

Zc
L(z) = Z

c
ch [1n + �c

L(z)] [1n � �c
L(z)]

�1 (2.58a)

= Zc
chH

�1 [1n + �m
L (z)] [1n � �m

L (z)]
�1
H (2.58b)

= E�1 [1n + �m
L (z)] [1n � �m

L (z)]
�1��1

m EZ; (2.58c)

and the line admittance matrix

Y c
L(z) = Z�1E�1�m

L [1n � �m(z)] [1n + �m
L (z)]

�1
E; (2.59a)

=H�1 [1n � �m
L (z)] [1n + �m

L (z)]
�1
HY c

ch; (2.59b)

are valid.

If the short-circuit line admittance matrix is diagonally dominant and real at z,

it may be realized as an impedance network consisting of, in general, 2n nodes [26].

Furthermore, if all of the o�-diagonal terms of the admittance matrix are nonpositive,

then a conductance network of n + 1 nodes (with a common ground for all n ports)

may be synthesized [26, Theorem 8-4] according to the real parts (2.12) and (2.13).

This theorem may be extended to complex admittance matrices if the impedances

interconnecting the n+ 1 nodes are realized as parallel RL or RC circuits, where

Rij = <ef[Y c
L]ijg: (2.60)

Longitudinal modal and line voltage distributions exhibit standing wave patterns

and ratios similar to single transmission lines. Modal decoupling results in constant
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modal voltage standing wave ratios (SWRs) along the line. Mode voltage i from

(2.52) is given by

vm]i = [Q(�z)]ii v
+
m]i

�
1 +

Q(�z)2�m
L v

+
m]i

v+m]i

�
: (2.61)

SWR for the ith mode is the ratio of the maximum and minimum modal voltage

evaluated from (2.61),

SWRm]i =
1 + �m

Lv+m]i
v+m]i

1� �m

Lv+m]i
v+m]i

: (2.62)

It will be evident from simulated data plots in Chapter 4 that SWRs of the

longitudinal line voltages are not uniform. From (2.15), each line voltage is a lin-

ear combination of all modal voltages, each with distinct modal phase constants.

Through direct observation of particular modal voltage standing wave at z = 0, the

sign of the mode's self re
ection coe�cent may be ascertained. If the termination is

purely resistive, a standing wave minimum or maximum will occur exactly at z = 0,

indicating a negative or postive real re
ection coe�ent, respectively. As described

earlier in this chapter, the modal re
ection coe�cent matrix self elements [�m
L ]ii can

be cancelled out if each line is terminated by the impedance of the ith mode.

2.4 Power Relations

To quantify power savings with a matching network included we must �rst obtain

voltage or current values as functions along z. The source excitations are given in

Thevenin form with line voltage source vector vS and source admittance matrix Y S.

The modal and line transmission coe�cients are obtained from the voltage divider

at z = �D:

Tm
S =

�
1+EZSZ

�1
ch E

�1
��1

; (2.63)

T c
S = Zc

ch [Z
c
ch +Z

c
S]
�1 (2.64)

which can be rewritten in terms of admittance matrices to facilitate computation.

Use of the characteristic admittances applies to time domain computations, as in

[9]. But under steady-state single-frequency conditions, the admittance looking into

the coupled lines toward the load depends on the load re
ection coe�cient, or an

equivalent impedance transformation along the line.
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Maximum power is delivered to the load if the nonzero input impedance to the

system is equal to the complex conjugate of the source impedance (which in practice

is usually 50 
). The voltage incident upon the line is

v(z = �D) = T c
SvS (2.65)

from either modal or line voltage and current vectors, incident power upon the coupled

line system can be determined from Paul [3, Eqs. (53), (55)]. The orthogonality

properties of microstrip lines allow either de�nition; for simplicity the �rst (using

line quantites v(z = �D), i(z = �D)) will be employed here:

Pinc =
1

2
<efvTi�g: (2.66)

The results are similar to the relations derived by Amari and Bornemann [6], though

their terminations and characteristic admittance are considered strictly real, thus

the line re
ection coe�cients are real. In this analysis, we must consider complex

re
ection coe�cient matrices for arbitrary z. Forward travelling power on the system

depends on the forward travelling voltage at the load, v+m, found from (2.52). Forward

travelling current is determined from Ohm's law using Y m.
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CHAPTER 3

GENERAL MTL ANALYSIS AND MODE DELAYS

In inhomogeneous multiconductor transmission line (MTL) systems, the distinct

propagation constants result in \mode delays" along the longitudinal direction. The

general well-known MTL conductor- and mode-domain formulations that consider

mode delays [1], [2], [3], [14], [27], [28], are widely applicable to many microwave

problems with moderate to high coupling (e.g., crosstalk prediction). But to our

knowledge, no comprehensive study of these MTL quantities as functions of longitu-

dinal distance from a termination or discontinuity has been undertaken. One present

motivation for such analysis is MTL matching network synthesis and transistor am-

pli�er design [29].

In this chapter, we will present an investigation that focuses on the longitudinal

behavior of the MTL functions, including the signals and longitudinal immittance

matrix functions (LIMFs). Past work on MTL immittance matrices has concerned

their derivation for �xed length structures [13], [30], [31]. Immittance in this chapter

implies the impedance, admittance, re
ection coe�cient, or scattering matrix look-

ing into a terminated line of some speci�ed length. In particular, we will address

several seemingly problematic e�ects of the mode delays on these longitudinal MTL

functions. For example, consider that lossless, reciprocal, two-conductor transmission

lines exhibit several intuitive longitudinal properties: positive resistive and conductive

components of input impedances and admittances, and constant re
ection coe�cient

magnitude. However, these properties do not generally apply to the matrix and vec-

tor elements of the longitudinal MTL functions in steady-state conditions. We will

show how the longitudinal conductor admittance matrices (in a passive system) do

not necessarily have negative o�-diagonal real parts. Similar works have considered

the signs of characteristic matrix terms in asymmetric lines [32].

Our principal goal here is to investigate, explain, and validate these e�ects, so

they are not attributed to numerical errors or nonphysical behavior. First, the MTL

equations are overviewed brie
y. Next, the longitudinal properties of immittance
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matrices and signals in symmetric, lossless, reciprocal MTL systems are detailed (we

limit this analysis to inhomogeneous, symmetric systems and terminations) for arbi-

trary, passive, linear termination. The e�ects of mode delays on all MTL functions

is detailed and relevant physical interpretations are drawn. Numerical results from

simulation illustrate these e�ects.

3.1 Multiconductor Transmission Line Equations

Consider the coupled microstrip structure in Fig. 3.1 with an arbitrary number

of lines n and N = n + 1 conductors where the ground plane is reference. Unless

otherwise stated, we assume symmetry about the x = 0 plane, and while we focus

on the three-line (n = 3) case, results are generalized to n lines (excluding the

ground plane) where possible. The MTL equations are equivalent to the telegrapher's

equations in frequency domain matrix form (sinusoidal, steady-state conditions) for

an n-line system, and include the (n � n) symmetric complex matrices of per-unit-

length impedance and admittance Z and Y , composed of the Maxwellian per-unit-

length resistance, conductance, inductance, and capacitance matrices, R, G, L, and

C, respectively.

In n-line quasi-TEM analysis, the n propagating modes are interpreted as physical

system voltages and currents [1]. The decoupled telegrapher's wave equations are

solved with a linear transformation for the state (conductor) and modal variables,

vm(z) = E � v(z) (3.1a)

im(z) =H � i(z) (3.1b)

where E andH are (n�n) transformation matrices which simultaneously diagonalize

both Z and Y to uncouple the MTL equations. The n-column vectors vm(z) and

im(z) are the modal wave voltage and current vectors along the line. Vectors v(z)

and i(z) are the (n � 1) conductor wave voltage and current vectors, respectively,

with z the longitudinal coordinate and ej!t suppressed. For microstrip there are

generally n distinct eigenvalues, which are complex modal propagation constants


i=1;2;:::;n arranged in matrix �m.

The total modal wave voltage and current vectors in the n-line system are ex-
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pressed as the superposition of forward and backward going waves,

vm(z) = Q(�z)v+m +Q(z) � v�m (3.2a)

im(z) = Q(�z)i+m �Q(z) � i
�
m; (3.2b)

where v�m and i�m are the modal wave coe�cient vectors at the load (z = 0), andQ(z)

is a diagonal matrix whose entries are e
iz, with 
i denoting the complex propagation

constant of the ith mode.

Diagonal modal impedance and admittance matrices are [8], [9]

Zm
ch = ��1

m �E �Z �H�1 = E � Y �1 �H�1 ��m (3.3a)

Y m
ch = ��1

m �H � Y �E�1 =H �Z�1 �E�1 ��m; (3.3b)

where the ith entry denotes the characteristic impedance or admittance of the ith

mode. The characteristic impedance and admittance matrices that relate the con-

ductor voltage and current vectors via Ohm's law are

Zc
ch = E�1 ���1

m �E �Z = Y �1 �H�1 ��m �H (3.4a)

Y c
ch =H�1 ���1

m �H � Y = Z�1 �E�1 ��m �E; (3.4b)

where the superscript c denotes conductor.

3.1.1 The terminated MTL structure

Now suppose an extent of coupled lines is terminated with a passive, linear circuit

network comprised of unique impedances interconnecting each of the N conductors in

a common-ground topology at the termination plane z = 0 as illustrated in Fig. 3.2.

This entire termination network may be conveniently grouped in an (n�n) impedance

network matrix [ZL]. The diagonal term [ZL]ii represents the impedance connecting

line i to ground; the o�-diagonal term [ZL]ij represents the impedance connecting

lines i and j, as illustrated in Fig. 3.2. A dual admittance network matrix YL may

also be de�ned as the term-by-term reciprocal of the impedance network matrix,

[YL]ij = ([ZL]ij)
�1: (3.5)

Note that these network matrices have little mathematical meaning ([YL] 6= [ZL]
�1);

they are merely compact physical representations of circuit networks, hence the cal-

ligraphic denotation.

To analyze re
ections on a general coupled line system like Fig. 3.3 (a speci�c

three-line system which will be considered in the numerical results) the termination

networks must be expressed as (n � n) open-circuit impedance or short-circuit ad-

mittance matrices. We denote these as Zc
L and Y c

L ([Zc
L] = [Y c

L]
�1). Values for
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the termination matrices are easily calculated by �rst determining the conductor ad-

mittance matrix from the interconnecting circuit impedances using the well-known

admittance matrix relations:

[Y c
L]ii =

nX
k=1

([ZL]ik)
�1 ; i = 1; 2; : : : ; n (3.6a)

[Y c
L]ij = (�[ZL]ij)

�1 ; i 6= j: (3.6b)

(3.6c)

The conductor re
ection coe�cient at the load that relates the conductor voltage

vectors v+ to v� by

v� = �c
L � v

+ (3.7)

is expressed in several forms, and is usually derived from boundary conditions [3],

[29], [33], as

�c
L = Zc

ch � [Z
c
L +Z

c
ch]

�1 � [Zc
L �Z

c
ch] � Y

c
ch (3.8a)

= [Zc
L �Z

c
ch] � [Z

c
L +Z

c
ch]

�1 (3.8b)

= [Y c
ch + Y

c
L]
�1 � [Y c

ch � Y
c
L] ; (3.8c)

Term [�c
L]ij is the ratio of the backward-traveling voltage on conductor i to the

forward-traveling voltage on conductor j. The modal re
ection coe�cient at the

load which relates modal voltage vectors v+m to v�m is easily found using (3.1) and

(3.2) evaluated at z = 0:

�m
L = Zm

ch � [Z
m
L +Zm

ch]
�1 � [Zm

L �Z
m
ch] � Y

m
ch (3.9a)

= [Zm
L �Z

m
ch] � [Z

m
L +Zm

ch]
�1 (3.9b)

= [Y m
ch + Y

m
L ]

�1 � [Y m
ch � Y

m
L ] ; (3.9c)

where Y m
L is the modal admittance matrix at the load,

Y m
L =H � Y c

L �E
�1: (3.10)

Similarly, the term [�m
L ]ij is the ratio of the backward-traveling mode voltage i to

the forward-traveling mode voltage j. Since the remainder of this paper focuses

on admittance matrices, the admittance forms (3.8c) and (3.9c) will be utilized in

admittance matrix passivity and realizability discussions, while the impedance forms

are useful in deriving S-parameters.

Both re
ection coe�cient matrices are asymmetric in general, even for symmetric

lines and terminations. However, this structural symmetry leads to several simpli-

�cations. Matrix �m
L contains [n=2] zeros (where brackets denote integer part) for
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terms whose indices are related by

(i� j) mod 2 = 1; (3.11)

for symmetric terminations [29]. This is a consequence of the line-termination sym-

metry, which prevents incident even modes from exciting re
ected odd modes, and

vice versa. Matrix �c
L does possess some symmetry (if symmetric terminations are

assumed), namely,

[�c
L]i;j = [�c

L]n�i+1;n�j+1: (3.12)

This property follows from the assumption that the n lines are symmetric about

the x = 0 plane. The asymmetry about the diagonal of the conductor re
ection

coe�cient does not violate reciprocity of the system, as will be shown shortly.

A conductor current re
ection coe�cient matrix [�c
L]

cur may be de�ned to relate

the conductor current vectors i+ to i�. This matrix may be derived directly from

boundary conditions (as was [�c
L]

vol), or directly from [�c
L]

vol,

[�c
L]

cur = Y c
ch � [�

c
L]

vol �Zc
ch (3.13a)

= [Zc
L +Z

c
ch]

�1 � [Zc
L �Z

c
ch] (3.13b)

= [Y c
L + Y

c
ch] � [Y

c
ch � Y

c
L]
�1 (3.13c)

which is easily proven to be the transpose (superscript t; see Appendix A) of the

conductor voltage re
ection coe�cient matrix:

[�c
L]i = ([�c

L]v)
t; (3.14)

a fact easily shown using power relations or through direct boundary condition deriva-

tion (we highlight that this result di�ers in sign from [3] simply by convention).

However, in consideration of only the conductor voltage re
ection coe�cient for the

remainder of this chapter, the superscript is dropped for simplicity.

3.1.2 The longitudinal MTL functions

In the context of matching coupled transmission lines, the re
ection coe�cient

functions of z must be calculated. This requires the n quasi-TEM propagation con-

stants. As a function of longitudinal distance z, the modal re
ection coe�cient matrix

looking toward the load is

�m
in(z) = Q(z) � �m

L �Q(z); (3.15)

and the conductor re
ection coe�cient matrix is

�c
in(z) = E

�1 � �m
in(z) �E: (3.16)
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At an arbitrary point z = �a, either matrix may be converted to an admittance

matrix which, if realized and constructed, would terminate the lines at z = �a with

an N -node, n-port, common-ground passive circuit as in Fig. 3.4 and would provide

the equivalent immittance parameters of the coupled-line section of length a between

the observation point and the termination shown in Fig. 3.3.

The impedance and admittance matrices as functions of z are compactly expressed

[3], [5], [6], [33], in modal form as

Zm
in(z) = [1n � �m

in(z)]
�1 � [1n + �m

in(z)] �Z
m
ch (3.17)

Y m
in(z) = Y m

ch � [1n + �m
in(z)]

�1 � [1n � �m
in(z)] ; (3.18)

and in conductor form as

Zc
in(z) = [1n � �c

in(z)]
�1 � [1n + �c

in(z)] �Z
c
ch (3.19)

Y c
in(z) = Y c

ch � [1n + �c
in(z)]

�1 � [1n � �c
in(z)] : (3.20)

Impedance network matrices corresponding to the longitudinal input impedance and

admittance functions are extensions of (3.6):

[Z in(z)]ii =

 
nX

k=1

[Y c
in(z)]ik

!�1

; i = 1; 2; � � � ; n

[Z in(z)]ij = (�[Y c
in(z)]ij)

�1 ; i 6= j (3.21a)

[Y in(z)]ij = ([Z in(z)]ij)
�1 ; all i; j: (3.21b)

3.1.3 Asymmetry and reciprocity in MTL systems

One may easily show that Zc
in(z) and Y

c
in(z) are symmetric in reciprocal sys-

tems. Despite the symmetry of the terms in (3.8b), these factors do not necessarily

commute, resulting in general asymmetry of the re
ection coe�cient matrices. Phys-

ically, a voltage on line i incident upon a symmetric termination does not \see" the

same circuit as an incident voltage on line j; hence, the re
ected signal on line j due

to the incident signal on line i does not relate in a simple manner to the re
ected

signal on line j due to the incident signal on line i.

However, this property has no bearing on reciprocity since it does not relate

electromagnetic reactions. Instead, we must consider symmetry of the (n� n) input

conductor S-parameter matrix Sc
in(z) (referenced to impedance Zc

ch), which relates

the longitudinal power waves ac(z) and bc(z) by bcin(z) = Sc
in(z) � a

c
in(z). In general,

�c
in(z) and Sc

in(z) of the n-port at z are not equivalent (the exception being for
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diagonal Zc
ch with all diagonal terms equal). Matrix Sc

in(z) is derived from (3.8) and

the power wave normalizations

Sc = (Zc
ch)

1=2 � [Zc
ch +Z

c
L]
�1 � [Zc

L �Z
c
ch] � (Z

c
ch)

�1=2 : (3.22)

By reciprocity, an excitation of a1 on port 1 is scaled by S21 to produce b2 on port 2;

an excitation of a2 on port 2 is scaled by S12 to produce b1 on port 1. Even for dense

Zc
ch, S is symmetric and therefore reciprocal (see Appendix).

This result is now applicable to immittance matrices of terminated MTL sys-

tems, where the conductor voltages and currents are related by dense characteristic

impedance and admittance matrices. Now, the set of n ports looking toward the

load at z = �a is really an in�nitesimal section of coupled lines (zero phase, zero

loss) with an equivalent characteristic impedance matrix as the substituted section

of length a. This \port coupling" is illustrated in Fig. 3.4.

Note that the asymmetrical longitudinal transmission coe�cient matrix, de�ned

as

T c
in(z) = 1n + �c

in(z): (3.23)

does not account for this distribution. If �c
in(�a) = 0, then T c

in(�a) = 1n, which

e�ectively propagates the voltage signals already on the line an in�nitesimal distance

�z in the positive z direction from z = �a. Matrix T c
in(z) cannot account for any

coupling or its resultant physics (dispersion, distortion, etc.) represented in the

equivalent passive circuit beyond z = �a.

3.2 Mode Delay E�ects

At this point, we have derived the immittance matrices necessary for the discus-

sion on modal dispersion e�ects. Recall several obvious properties of lossless, passive

transmission line systems: power conservation, passivity (no active sources), and the

ability to realize the immittance parameters of terminated lines as passive circuit

networks. Mathematically, the immittance parameters are constrained by

V (z) = V (z � i
�

2
); z < 0; i = 1; 2; 3; : : : (3.24a)

P (z) = PL; (3.24b)

@

@z
j�j = 0; (3.24c)

<efZ; Y g � 0: (3.24d)
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However, in MTL systems, the immittance matrix behavior is considerably more

complicated. This section illustrates that conditions (3.24) do not unilaterally apply

to their MTL conductor matrix equivalents.

3.2.1 Signal distortion

Longitudinal modal voltage is the superposition of the forward and backward

traveling modal voltages; the modal voltage in (3.2a) may be combined with (3.15)

and expressed as:

vm(z) = Q(�z) � v+m +Q(z) � �m
L �Q(z) �Q(�z) � v+m

= [1n + �m
in(z)] �Q(�z) � v+m; (3.25)

where modal decoupling results in constant modal voltage SWRs along the line.

Mode voltage i from (3.25) is given by

vm(z)]i = [Q(�z)]ii v
+
m]i

�
1 +

Q(2z)�m
L v

+
m]i

v+m]i

�
: (3.26)

The SWR of the ith mode is therefore [33]

SWRm]i =

1 +

�����m
L v

+
m]i

v+m]i

����
1�

�����m
L v

+
m]i

v+m]i

����
: (3.27)

Clearly, (3.27) con�rms the constant longitudinal magnitudes of the modal re
ection

coe�cient for lossless coupled lines. The terms �m
L v

+
m]i=v

+
m]i in (3.26) and (3.27)

indicate the general dependence of the ith mode on all n forward voltage coe�cients

at the load v+m and the ith row of �m
L . This dependency is a physical result of mode

conversion at a discontinuity. A signi�cant consequence of this dependence is the fact

that a purely real (resistive) load termination network will not necessarily result in

a modal standing wave minimum or maximum at z = 0, unless all modes have equal

propagation constants.

However, the standing wave patterns may be useful if one wishes to characterize

terminations for short lines { where the modal dispersion is relatively small { as

\high" or \low" impedance based on voltage maxima or minima at z = 0. But at

present, we know of no systematic analytic evaluation available to ascertain the sign

of the modal re
ection coe�cent terms.

As for the longitudinal conductor voltages and currents, it is evident from (3.26)

that their SWRs are not uniform, since each is a linear combination (3.1) of all modal
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voltages or currents, respectively. Therefore, a de�nition of line SWRc along lossless

coupled lines would only apply to successive maxima and minima.

Power along the coupled lines may be quanti�ed in either the modal or state

variable domain for microstrip [3, Eqs. (53) and (55)]. Excitations are represented

in Thevenin form with a line voltage source vector vS and source impedance network

matrix ZS. The total power traveling down a lossless line is a constant equal to the

power dissipated in the arbitrary passive load,

PL = P (z) =
1

2
<efv�(z) � i(z)g (3.28a)

=
1

2
<efv�m(z) � im(z)g; (3.28b)

where the superscript asterisk denotes \complex conjugate transpose."

To examine longitudinal dependence, (3.28b) is rewritten as

PL = P (z) =
1

2
<ef(v+)� � i+ � (v�)� � i�; g (3.29)

predicting that the individual mode powers in (3.28b) are constants in z. However,

expanding (3.28a) into the sum of n terms as functions of the mode voltages, eigenvec-

tors, and propagators reveals the conductor power 
uctuations along the longitudinal

direction, a result quite di�erent from the single transmission line case (3.24b).

The total power is the sum of the powers incident on each conductor or the sum

of the n modal powers. Despite the individual conductor power variations along z,

the sum of n conductor powers is always PL.

3.2.2 Power conservation of the re
ection coe�cient matrices

Now, we examine the features of the longitudinal re
ection coe�cient matrix

functions. In lossless, uniform, dispersionless coupled-line systems, the magnitude of

the modal re
ection coe�cient elements remains constant along z,
@

@z
j[�c

in(z)]ijj = 0; (3.30)

and the phase is linear within each period. This fact is consistent with the power or-

thogonality of the quasi-TEM modes, and will be clearly demonstrated via numerical

simulations in Section IV.

However, Equation (3.16) shows that each term of �c
in(z) is a linear combination of

n2 distinct z-varying phasors which include all propagation constants 
i. Therefore,

the magnitudes of matrix terms [�c
in(z)]ij clearly vary with z.

For lossless lines with symmetric Y c
L, �

m
L and �m

in(z) are \checkered" with zeros;

in this case each term in �c
in(z) contains the sum of 1

4
[n2 + 2n+ (n mod 2)] distinct
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constant magnitude phasors containing separate even-mode and odd-mode additive

combinations of 
i: 2
1, 
1 + 
3, 
1 + 
5, : : : 2
2, 
2 + 
4, : : : . A total period for the

oscillations of each �c
in(z) term may also be de�ned if each eigenvalue is quantized to

m�k, where �k is some small propagation constant increment.

Does the longitudinal magnitude variation of [�c
in(z)]ij violate conservation of

power? From physical intuition, lossless, passive lines should neither dissipate nor

generate power; therefore, power should be conserved. It follows for such lines that

the eigenvalues are purely imaginary, thus

jdet[Q(z)]j = 1: (3.31)

Since a similar argument applies to the remaining matrices in (3.16), the linear algebra

determinant relationship det(AB : : : C) = det(A) � det(B) � : : : � det(C), con�rms

that
@

@z
(det[�c

in(z)]) = 0 (3.32)

clearly maintains a constant determinant over z assuming no active power sources

are present in the coupled lines. This result is physically intuitive for lossless lines:

no power is gained or lost in the longitudinal direction.

For practical applications, close proximity (z < �=2) between the matching net-

works and the load is often desired. In this region of small coupling length, �c
in(z)

terms maintain approximately constant magnitude. However, as the length or cou-

pling in the lossless system increases, a mixed-mode signal su�ers distortion. It

remains as future work to determine conditions when signal distortion due to modal

dispersion dominates the dispersion encountered in a lossy dielectric system.

3.2.3 Passivity of the admittance matrix

The magnitude variations in �c
in(z) for lossless lines also manifest themselves in an

arguably more interesting e�ect. Given many passive terminations, these 
uctuations

in j[�c
in(z)]jij result in equivalent admittance matrices with negative real admittance

elements. If the admittance matrix Y c
in(z) contains o�-diagonal elements with pos-

itive real parts, then the equivalent impedance or admittance network matrix that

realizes the mutual impedances or admittances will contain negative real parts, i.e.,

<ef[Z in(z)]ij; [Y in(z)]ijg < 0; i 6= j; (3.33)

which appears to violate passivity and suggests some active power source.
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Intuitively, this \active" e�ect seems a consequence of the re
ection coe�cient

magnitude variations, but can be mathematically justi�ed in a brief example. Con-

sider a symmetric two-line (n = 2) system with some arbitrary symmetric termina-

tion. The condition which yields (3.33) is easily shown to be:

<ef
�2[�c

in(z)]12[Y
c
ch]11[Y

c
ch]12 (1� [�c

in(z)]
2
11 + [�c

in(z)]
2
12)

(1 + [�c
in(z)]11)

2 � [�c
in(z)]

2
12

g > 0: (3.34)

Given the large magnitude 
uctuations (with simulation results presented in Section

3.2.4), it is clearly conceivable that this \active" e�ect (3.33) may occur in this situ-

ation. For n � 3, the analysis grows considerably more complicated, and numerical

evaluations become necessary. However, in typical systems, this condition may be

satis�ed at many points along the lines, as will be demonstrated in Section 3.4.

Despite this super�cially \active" result, there is no physical reason to suspect

that the passivity of the admittance matrix at the points in question is violated. In

fact, the passivity is easily veri�ed considering the following derivation. The (n� n)

admittance matrix at some longitudinal coordinate z represents a passive network if

the total average signal power entering all the ports is greater than or equal to zero.

Let the input admittance matrix Y c
in(z) describe the n-dimensional driving-point

short-circuit admittance matrix looking into an imaginary n-port which constitutes

the load impedance at the end of a coupled-line segment of length z. The power

entering these n ports is a generalization of the derivation in [34]:

P =
1

2
v� � i +

1

2
i� � v: (3.35)

Using the general relations i = Y v and i� = v�Y � (3.35) becomes

P =
1

2
v� � (Y + Y �) � v

= v� � (<efY g) � v (3.36)

as a consequence of reciprocity. Therefore, the passivity of the admittance matrix

Y c
in(z) may be easily veri�ed by checking the positive de�niteness of the immittance

function <efY c
in(z)g for all z. Simulation results for the three-line case will be shown

in the next section.

3.2.4 Realizability of the admittance matrix

While we have justi�ed the \active" result (3.33) mathematically via a simple two-

line case (3.34), and subsequently provided a passivity check via (3.36), realization

of the conductor admittance matrix must now be considered in the context of purely
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passive systems. We therefore digress to consider the realizability conditions of an

arbitrary short-circuit admittance matrix. In other words, can such an admittance

matrix be realized with a passive system at a point z?

In lossless lines, the distributed admittance matrix and the propagation constants

(eigenvalues) are purely imaginary. The distributed capacitance matrix C is a dom-

inant matrix [35]; i.e.,

j[C]kkj �
nX

m=1;m6=k

j[C]kmj k = 1; 2; � � � ; n; (3.37)

which renders the characteristic impedance and admittance matrices real and domi-

nant by virtue of (3.4).

In network synthesis, an (n � n) dominant real admittance matrix may be re-

alized as a resistive/conductive network consisting of, in general, 2n nodes [26].

Furthermore, if all o�-diagonal terms of this matrix are nonpositive, then a resis-

tive/conductive network of N terminals (i.e., N nodes with one node designated the

common ground to which all n ports are referenced) may be synthesized [26, Theorem

8-4] with the real parts of the impedance/admittance network matrices (3.21).

It follows for physical realization of a re
ectionless termination or simulation

of an in�nite extent of uniform coupled lines that the termination matrix must be

real, symmetric, and positive de�nite, and it must have positive diagonal elements

and negative o�-diagonal elements in order to be realized as an N-terminal network

consisting only of resistors.

Thus, a uniform coupled-line system characterized by Y c
ch may be terminated at

any z by realizing Y c
ch as an N -terminal resistive network (with the N -node network

common ground connected to the microstrip ground plane) to yield zero re
ection

for all excitations.

However, when the terminations are mismatched, re
ection is nonzero and the

immittance matrices become longitudinal matrix functions. Furthermore, in con-

sideration of reactive terminations, the simple realizability conditions applicable to

characteristic terminations for lossless lines (i.e., when Y c
ch is purely real) must be

generalized to complex immittance matrices. We reiterate that the complex input

impedance or admittance matrix does not physically represent loss in the conductors

or dielectric. Instead, either matrix for a purely real (resistive) or purely imaginary

(reactive) termination becomes complex as the observation point z = �a shifts along
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the lines.

To extend Theorem 8-4 [26]to the complex case, the admittance matrix is split

into real and imaginary parts. The equivalent network topology of the microstrip

con�guration under quasi-TEM conditions (N terminals) is an N -node polygon in-

terconnected with impedances in Z in (similar to Fig. 3.2). These impedances are

realized as parallel RL or RC circuits where

Rij(z) = (<ef[Y in(z)]ijg)
�1 ; (3.38a)

Lij(z) =
(=mf[Y in(z)]ijg)

�1

!
; =mf[Y in]ijg < 0 (3.38b)

Cij(z) = ! (=mf[Y in(z)]ijg)
�1 ; =mf[Y in]ijg > 0: (3.38c)

Since the susceptance network is realized with inductors or capacitors, the sign con-

straints apply only to the real parts of the admittance matrix, or the conductive

network. This admittance matrix split is hence physically realized as a conductive

network in parallel with a susceptive network, as shown in Fig. 3.5. Theorem 8-4

then applies strictly to the conductive network, thus the realization condition applies

to general admittance matrices.

Now, if all o�-diagonal terms of the dominant admittance matrix Y c
in(z) in a

microstrip system have nonpositive real parts, Y c
in(z) is passively realized as an N -

terminal RLC circuit network. This realization assumes the topology of a complete

polygon with N vertices and N(N � 1)=2 admittances, 1
4
[n2 + 2n+ (n mod 2)] of

which are independent (see Fig. 3.2). The circuit components in the parallel con-

ductance/susceptance networks of Fig. 3.5 are given by (3.38).

However, a dominant admittance matrix Y c
in(�a) whose o�-diagonal terms have

positive real components (3.33) may be realizable as an n-port RLC network that has

only N nodes but no common ground for all ports (the general synthesis procedure

may be found in [26]). Thus it follows for this case that the input admittance matrix

at z = �a is unrealizable as an N -terminal RLC circuit network. A realization con-

sisting of 2n nodes and n ports exists, though it lacks a common ground. It is therefore

impossible to terminate the lines at z = �a with an N -terminal passive impedance

network since the coupled microstrip network topology does have a common ground.

Of course, this alternative 2n-node realization exists for the case when Y c
in(�a) has

all o�-diagonal real components nonpositive, since its N -terminal network realization

may also take the form of 2n-node, n-port realization with no common ground, where
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both realizations are interchangeable via star-mesh conversions.

But the inherent physics of the system now seems violated: if the admittance

matrix Y c
in(�a) is not realizable as an RLC network with a common ground (i.e.

an N -terminal), then the MTL section between the passive termination at z = 0

and z = �a cannot be physically realized with an equivalent passive N -terminal

impedance network at z = �a. How, then, can this section of lines and terminations

possibly be modelled passively? This paradox is resolved by considering another

passive circuit element: the ideal transformer. If ideal transformers are permitted in

the equivalent RLC circuit realization of Y c
in(�a), one node may be designated as

the common ground, and the remaining ports may be isolated by these transformers

and then connected to the same common ground. Therefore, at points where realized

negative conductance is encountered (3.33), the application of ideal transformers to

n � 1 ports of the 2n-node realization without a common ground will permit the

n-port, N -node realization with a common ground. This possibility arises since any

synthesis procedure for realizing an n-port circuit network with ideal transformers

simultaneously realizes an N -terminal network [26].

Therefore, it has been shown that the \active" elements in Y c
in(z) for certain

longitudinal points z = �a do not violate passivity of the terminated system. Stable

numerical analysis at z = �a using the admittance matrix Y c
in(�a) will be illustrated

in the next section. However, a passive, unbalanced, N -node, n-port termination

network containing resistors, capacitors, and inductors with one common ground (the

microstrip ground plane) is not realizable at that distance z without transformers.

Obviously, we must expound the physical meaning of these admittance matrix

properties. In regards to the ideal transformers, they dissipate no real power and

store no energy. Moreover, if the turn ratios are 1:1, their only function is to isolate

a port and allow for common grounding and realization of an N -terminal topology.

Of course they only become necessary when condition (3.33) is encountered. Section

3.2 demonstrated several important consequences of mode delays; arguably, the most

signi�cant is the longitudinal power 
uctuations along the conductors. These 
uctua-

tions, closely related to the state voltage and current magnitude variations, e�ectively

require compensation in the immittance parameters. Condition (3.33) provides this

compensation, though not in a readily discernable manner.

Finally, it should be noted that within the context of passive MTL structures,
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similar physical attributes have been represented using passive circuit elements. The

transformer interpretation presented in this paper is cognate to that used to synthe-

size SPICE models for coupled transmission lines [36], where congruence transformers

with the proper turn ratios realize the eigenvectors, decouple multimode signals into

their individual modes, and propagate them along a unique transmission line system

for each mode.

3.3 Admittance Matrix Realizability Conditions

In MTL applications where quasi-TEM mode delay is present such as matching

networks [29], �lters, and ampli�ers in coupled microstrip technology, the LIMFs

exhibit interesting behavior in the state (conductor) domain, which was thoroughly

examined in [37]. Among the most interesting manifestations of the mode delay

were deviations from two common (but not necessary) properties of the input ad-

mittance matrix, namely its dominance and negative real o�-diagonal terms, as were

elaborated in the previous sections. As its passivity was readily demonstrated, this

section concerns the topological realizability conditions on the admittance matrix in

synthesizing equivalent circuits that model linear, passively terminated lengths a of

coupled lines, and the interpretation of such models. We address the constraints on

the realization of the admittance matrix and the physical interpretation of the real-

ized circuits in the passive, common-ground microstrip system. Finally, we discussed

the interpretations of several topologies for admittance matrices whose synthesis via

RLC N -terminal networks was generally not possible. These admittance matrices

resulted from mode delays and related the conductor voltage and current vectors at a,

causing longitudinal conductor power oscillation envelope variations. The necessarily

common-ground N -terminal realization used to model the length a of coupled lines

and their terminations thus required ideal transformers, sometimes for the n-port

realization but always for port isolation.

Physically, we considered a passive, generally lossy MTL system (n lines) termi-

nated with linear, passive networks. The longitudinal conductor input admittance

matrix Y c
in(z = �a) relates the conductor voltage and current vectors on the con-

ductors at z = �a. It models the length a of coupled lines between the point z = �a

and the prescribed termination at the output z = 0. This is shown in Fig. 3.3 (for a

three-line case).
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Coupling between the lines results in longitudinal conductor power oscillation

along each conductor. The unequal z-varying amplitude envelopes of each conductor

power oscillation (see [37, Fig. 11]) is perhaps the most signi�cant consequence of

the mode delays and provides the clearest physical insight to their presence. These


uctuations, directly related to the state voltage and current magnitude variations,

e�ectively require compensation in the immittance parameters, including the admit-

tance matrix. Though the admittance matrix accounts for these power oscillations,

two of its properties super�cially appear problematic: its lack of dominance,

j[Y c
in(z)]kkj 6�

nX
m=1;m6=k

j[Y c
in(z)]kmj k = 1; 2; � � � ; n; (3.39)

and the positiveness of the o�-diagonal real terms for various distances z = �a,

<ef[Y c
in(z)]ijg > 0; i 6= j: (3.40)

These conditions, reported in [37], provide compensation, though the general factors

that govern their occurrence are not immediately apparent. However, passivity was

readily shown for the matrix Y c
in(z) at all points and requires only a positive de�nite-

ness test. The major issue we wish to address here is that in synthesizing a network

as the model for Y c
in(z = �a), realizability conditions dictate the choice in topology.

In [37], the realizability theorem [26, Theorem 8-4] was extended to general com-

plex admittance matrices: an (n � n) dominant admittance matrix Y c
in(z) may be

realized as an impedance or admittance network consisting of, in general, 2n nodes.

Furthermore, if all o�-diagonal real terms of this matrix are nonpositive, then an

impedance or admittance network of N terminals (i.e., N = n + 1 nodes, with one

node designated the common ground to which all n ports are referenced) may be

synthesized from the impedance or admittance network matrices.

The general 2n-node, n-port realization of course lacks a common ground. It

exists as an alternative for the case when Y c
in(�a) has all o�-diagonal real components

nonpositive. In this case, the N -terminal realization also assumes a 2n-node, n-port

realization without a common ground, since both realizations are interchangeable

via star-mesh conversions. This possibility arises since any synthesis procedure for

realizing an n-port circuit network with ideal transformers simultaneously realizes an

N -terminal network [26].

As shown in [37], common-ground realizations were sometimes impossible without

the use of ideal transformers. Consequently, we attempted to rationalize the signif-
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icance of the transformers in terms of energy and power considerations. To further

elucidate the role of the transformers, we shall illustrate the realizability issues and

their physical signi�cance with two examples in an n = 2 system. For simplicity, we

will restrict the examples to (2 � 2) conductance matrices (as the imaginary parts

are irrelevant). The general four-node realization is shown in Fig. 3.6 for two ports.

For greater numbers of ports, the sketch is obviously more di�cult.

First, consider the following conductance matrix at z = �a with positive o�-

diagonal entries,

Y c
in(�a) =

"
7 2

2 7

#
: (3.41)

A cursory glance reveals the dominance of this matrix, and simple eigenanalysis

veri�es its positive de�niteness. Clearly, the assumption of a two-port, three-terminal

realization of (3.41) (referred to as a \pi" network in the two-port case), as illustrated

in Fig. 3.7(a) is not passive, as this realization requires the active conductance

element y = �2 connecting the nodes labeled with a plus sign (+). Since we wish

to construct the equivalent passive microstrip system with only passive elements, we

resort to the general synthesis procedure.

In this case, a passive four-node realization as shown in Fig. 3.7(b) based on

Fig. 3.6 is possible. Unfortunately, this realization lacks a common ground, and thus

appears to contradict the physics of a lossless microstrip system. We reconcile this

by recalling that an nth-order symmetric admittance matrix is realized as an n-port

with not only RLC elements, but also mutual inductances, and ideal transformers if

and only if it is positive de�nite [26, Theorem 7-2].

Therefore, at points where (3.40) holds in the generalized n-line case, ideal trans-

formers may be included in the 2n-node RLC circuit realization. One node is des-

ignated as the common ground, and to the remaining n � 1 ports we apply ideal

transformers (with turn ratios 1:1) which permit port isolation and allows for their

common grounding, thus realizing an N -terminal topology. Thus a third realization

for (3.41) using isolation transformers to establish a common ground is shown in Fig.

3.8.

Now, consider the following positive real conductance matrix with positive o�-
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diagonal entries and which lacks diagnal dominance:

Y c
in(�a) =

"
10 3

3 2

#
: (3.42)

Again, the assumption of common-ground precludes a passive realization; Fig. 3.9(a)

requires an active circuit element. Fig. 3.9(b) is an ad hoc realization for (3.42). We

are unaware of a systematic realization procedure for positive de�nite, but nondom-

inant, admittance matrices, though we repeat that a realization using ideal trans-

formers or mutual inductance or both is always possible for this case [26, Theorem

7-2]. Nevertheless, realization Fig. 3.9(b) also requires isolation transformers for a

common-ground realization, as shown in Fig. 3.10.

3.4 Interpreting the Ideal Transformers

Having resolved the initially troublesome positive real o�-diagonal elements and

the nondominance of the input admittance matrix by considering network synthesis

realizability conditions, we now seek an interpretation of the ideal transformers.

We �rst stress that certain nondominant matrices require no ideal transformers in

their general n-port realizations. The conditions and interpretation of this synthesis

is beyond the scope of this dissertation, though such examples are given in [26].

However, their topologies are not N -terminal, and therefore, a common ground could

only be achieved with isolation transformers.

Intuitively, an ordinary N -terminal RLC termination on n coupled lines must

have a dominant admittance matrix with negative real o�-diagonal terms [1]. As the

longitudinal distance from the load increases, the mode delays change the voltage-

current relationships (as re
ected in the longitudinal power envelope variations), and

consequently, the input admittance matrix. For short distances, low frequencies, or

small mode delays, the impact on Y c
in(z) is negligible. Nevertheless, any signi�cance

of the mode delays must somehow be accounted for in Y c
in(z), and therefore, in

its ultimate realization, which we have shown may include transformers, as the N -

terminal RLC networks used to model the section in Fig. 3.3 are generally not

capable of accounting for the relative power levels between the n lines at z = �a if

this system has mode delays.

All three circuit models (using both active and passive elements) for each case

((3.41) and (3.42)) are acceptable theoretical realizations. Passivity of these models,
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though physically obvious, still applies in Figs. 3.7(a) and 3.9(a); circuit analysis

veri�es that the positive resistors dissipate more power than is generated by the

negative resistors. Furthermore, the transformers dissipate no real power and store no

energy. While they have been theoretically shown to be permissible in the realizations,

their exact physical role, other than power transfer devices between the ports of the

realization, is not readily discernible.

3.5 Numerical Results

Numerical results presented in this section have previously appeared in the lit-

erature [29], though more longitudinal details are presented. A three-coupled line

microstrip structure with characteristic impedance matrix

Zc
ch =

2
64
50:1615 8:52729 2:29226

8:52729 49:4542 8:52729

2:29226 8:52729 50:1615

3
75
 (3.43)

and circuit parameters R = 0, G = 0, and

L =

2
64
310:887 67:4845 22:2536

67:4845 305:963 67:4845

22:2536 67:4845 310:887

3
75 nH (3.44)

C =

2
64

125:143 �15:4225 �0:81741

�15:4225 128:346 �15:4225

�0:81741 �15:4225 125:143

3
75 pF (3.45)

was simulated, analyzed, and synthesized on board for a three-coupled line matching

network. Moderate coupling ensured distinct quasi-TEM propagation constants for

an operating frequency of 2.0 GHz and therefore quasi-TEM modal dispersion. A

low impedance re
ection termination at the load with impedance network matrix

ZL =

2
64

20 287:152 2883:71

287:152 69:1719 287:152

2883:71 287:152 20

3
75
 (3.46)

resulted in multimode re
ections simulated via an MTL digital computer program.

As predicted by (3.30), the elements of �m
in(z) maintain constant longitudinal

magnitudes. Simulation with the low impedance termination (3.46) veri�es this re-

sult, with all �ve nonzero elements plotted in Fig. 3.11. The three distinct modal

propagation constants, as well as the intermode propagation constants (in this case
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the arithmetic mean of modes 1 and 3), are readily apparent in the phase plot. Also

evident is the phase shift at the load (180�) due to the low impedance termination.

Clearly, �c
in(z) for lossless, dispersionless coupled lines exhibits nonlinear phase

and magnitude dependence with z. Matrix �c
in(z) terms are shown in Fig. 3.12.

Within practical working distance from the terminations (z > �10 cm), the magni-

tude of the all voltage re
ection terms increase with the coupling length, except for

the self re
ection terms [�c
in(z)]11;33, which steadily decrease. For moderate to low

coupling or short distances from the terminations, the impact from these e�ects is

obviously minimum.

Observing the re
ection coe�cient at very large distances from the load, however,

(Fig. 3.13) reveals the oscillatory nature of the elements due to modal dispersion.

In tightly coupled systems with negligible loss, these values would prove problematic

in a multimode measurement. The actual period of each �c
in(z) term has, in this

simulation, been found to be too large for practical use.

To illustrate the contrast in the standing wave pattern for a high impedance ter-

mination, the 20 
 resistors in (3.46) were replaced with 430 
 resistors and the

simulation was repeated. Mode and conductor voltage standing wave patterns are

shown in Fig. 3.14. The \open" case corresponds to the high impedance termina-

tion, where the standing wave maximum falls almost exactly on the load (mode and

conductor voltages); the \short" case corresponds to the low impedance termination,

where the standing wave minimum falls almost exactly on the load. Clearly, as pre-

dicted analytically, the mode SWRs remain constant, and have periods of z = �i
2
.

Conductor voltage standing wave patterns have neither a �xed maximum-minimum

ratio nor simply quanti�able periods.

To better exemplify the longitudinal mode and line voltages magnitude properties

of lossless lines, a large length D = 50 cm was simulated. The standing wave patterns

are shown in Fig. 3.15. As predicted, each mode voltage standing wave pattern is

characterized by a minima o�set from the load and a distinct, constant SWR. At

large distances from the load, a phase o�set between the standing wave patterns

becomes apparent. The resulting dispersion in the line voltage signals is shown in

the lower half of Fig. 3.15.

Obviously more complicated terminations are encountered in practical systems

and require more detailed numerical or analytic attention, since the mode standing
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wave patterns di�er greatly from their conductor counterparts as di�erent combina-

tions of modes are incident and re
ected from a termination. Our goal was simply

to verify the longitudinal voltage features (analytically detailed in Section 3.2.1) re-

sulting from mode delays.

Power behaves similarly; constant longitudinal mode powers are observed in the

top plot of Fig. 3.16, while the line power 
uctuations due to the modal dispersion

are shown in the lower plot of Fig. 3.16. Careful graphical analysis reveals that the

sum of the three conductor powers at any z is constant.

Finally, the longitudinal input admittance matrix function is plotted to illustrate

\active" e�ect (3.33). Matrix Y c
in(z) is symmetrically normalized via

y = [Zc
ch]

1

2 � Y c
in(z) � [Z

c
ch]

1

2 ; (3.47)

though the following element-based normalization is helpful in examining the speci�c

locations were (3.33) holds:

Yself(z) =

nP
k=1

[Y c
in(z)]1k

[Y c
ch]11 + [Y c

ch]12 + [Y c
ch]13

(3.48a)

Yself�2(z) =
[Y c

in(z)]22 + 2[Y c
in(z)]23

[Y c
ch]22 + 2[Y c

ch]21
(3.48b)

Ymut(z) =
[Y c

in(z)]12
[Y c

ch]12
(3.48c)

Ynon(z) =
[Y c

in(z)]13
[Y c

ch]13
(3.48d)

where the admittance Yself connects lines 1 and 3 to ground, Yself�2 connects line 2

to ground, Ymut is the mutual admittance between nearest neighbors, and Ynon is the

admittance between nonadjacent neighbors, as shown in Fig. 3.17.

Fig. 3.18 shows locations for which

<e[Y c
in(z)]ij > 0 i 6= j: (3.49)

Clearly, the periodicity of the e�ect is evident. An evaluation of how the passive

termination choice a�ects the longitudinal location and occurrence frequency of (3.49)

is a highly nonlinear problem beyond the scope of this paper.

If the numerical analysis is extended to a length of 1 m, we observe locations

where normalized admittances Yself and Yself�2 have negative real parts, as illustrated

in Fig. 3.18. It therefore has been shown a posteriori that Y c
in(z) is no longer

dominant for certain longitudinal distances. However, none of the diagonal terms
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of [Y c
in(z)]ii contain negative real parts in these instances. In fact, the passivity

check involved computing all eigenvalues in verifying postitive de�niteness, and the

admittance matrix satis�ed passivity at all points along the system, demonstrating

numerical stability and correct MTL immittance matrix functions for passive network

description. In regards to the realizability of Y c
in(z), the condition of dominance is

su�cient, but not necessary for realization; the condition required for realization of

a nondominant matrix Y c
in(�a) at z = �a with ideal transformers is that Y c

in(�a) is

positive real [26]. Indeed, the function Y c
in(z) was found to be positive real for all lon-

gitudinal points in simulation, resulting in three-port, common-ground realizability

including transformers for all distances z.

3.6 Conclusions

The objective of this chapter was to detail the e�ects of mode delays on longitu-

dinal immittance matrix functions and justify the results mathematically and clarify

their physical meanings where possible. In conclusion, the study showed how quasi-

TEM modal dispersion in lossless, symmetric lines was responsible for the following:

� Longitudinal conductor power variations

� Varying conductor voltage SWRs

� Multimode signal distortion

� Conductor re
ection coe�cient magnitude variations

� Impedance networks with directly realized negative real elements

Passivity, reciprocity, and lossless properties of the immittance matrices were

demonstrated numerically for the cases encountered, and passive circuits of proper

topology in the microstrip structure (N -terminal) could be synthesized if ideal trans-

formers were included. Furthermore, this passive circuit network topology was shown

to be possible for all longitudinal admittance matrices of the terminated lossless cou-

pled lines; no active elements were required for the admittance matrix realization.

For the lossy case, such analysis becomes considerably more complicated, since

mode orthogonality breaks down and frequency dependence of the circuit parameters
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becomes signi�cant. But this analysis should be useful for many circuits of practi-

cal interest modeled using lossless assumptions. These longitudinal immittance ma-

trix properties are already encountered in the design and simulation of coupled-line

matching networks, and will become increasingly signi�cant as application speeds

and coupling increase. Modal dispersion must clearly be accounted for in lossy,

high-coupling MTL simulation to ensure that large longitudinal re
ection coe�cient

magnitude 
uctuations, conductor power variations, and signal distortion are not

attributed solely to power loss or other mechanisms.

Detailed analysis regarding the e�ects of modal dispersion on loss calculation, as

well as experimental validation on low-loss structures, remains as a topic of future

work. Thus far we know of no systematic analytical passivity check, though given

the emphasis on numerical techniques, such a check may be unnecessary. Also, an

extension of realizability conditions with transformers for nondominant admittance

matrices should be examined in depth.
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Figure 3.1 Relative dimensions for n coupled microstrip lines. Line numbers shown
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45



Z

Z

Z

Z

Z

y x

z

Z

Load

z=0

1

2

3

a
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Figure 3.6 The general two-port admittance nodal structure.
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Figure 3.7 Possible realizations for the admittance matrix given in (3.41). (a) Non-
passive realization assuming a pi topology. (b) Passive realization based on 2n-node
synthesis procedure.
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Figure 3.8 Realization of Fig. 3.7(b) using port isolation transformers for common
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Figure 3.11 Longitudinal variations of the input modal re
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CHAPTER 4

NORMAL MODE AND DISTRIBUTED PARAMETER

EXTRACTION

Frequency domain methods have become very popular with the availability of

accurate, powerful microwave measurement and data processing systems. Auto-

matic vector network analyzers (VNAs) provide S-parameter measurements over very

broad frequency ranges. For devices with an arbitrary number of ports, complete S-

parameter characterization is possible using such methods as [38] or [39].

In regards to parameter extraction, Agrawal et al. [18] presented a method to

extract distributed circuit parameters from experimental data in the frequency do-

main and applied it to a three-line system. The method, however, requires short-

and open-circuited impedance measurements using voltage and current probes.

Similarly, Williams [40] characterized a lossy, two-coupled line system by extract-

ing the distributed circuit parameters, characteristic impedances, and propagation

constants. However, extraction required measurement on multiple length sections

of the coupled line system and employed a nonlinear orthogonal distance regression

algorithm.

Winkel et al. [17] developed a method to determine the propagation constant of

symmetric, coupled lossy lines based on high-frequency S-parameter measurements.

The method is only applied to an even-odd mode system, however, as the transfor-

mation matrices (eigenvectors) for such a system are known a priori, which holds

true only for two-conductor, two-mode symmetric systems.

Wang and Ling [41] extracted broadband multimode parameters of coupled mi-

crostrip lines using �nite-di�erence time-domain (FDTD) simulation and then em-

ployed signal-processing techniques. Wang and Ling carefully address the physical

meaning of the modal impedance and use a de�nition ideal for the full-wave behavior,

namely the unique modal current and power 
ow.

Finally, Merwe et al. [19] conducted measurements on a low-loss three-coupled

microstrip line strip and extracted the distributed inductance and capacitance ma-
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trices. Again, this method also requires fabrication and measurement of short- and

open-circuit MTL structures.

In this chapter, we present a method to extract the \normal mode parame-

ters," which include the characteristic impedance matrices, eigenvectors (modes),

and eigenvalues (propagation constants) [42]. Coupled-port S-parameter theory is

�rst explained in the framework of MTL analysis. Then, the characteristic matrices

are extracted. From these we renormalize the 50-
 S-parameters to the characteristic

impedance of the uniform coupled-line section. Finally, we employ simple MTL and

S-parameter theory to extract the eigenvalues and eigenvectors numerically. We vali-

date this method using simulated S-parameters from analytic formulas and standard

commercial software packages.

The problem and the extraction method are formulated in both the state (conduc-

tor) domain and the modal domain. S-parameter data in practice is usually obtained

in the state domain, or using the terminology of [43], the mixed-mode domain. Via

modal decoupling, the eigenvectors allow a diagonalization of most of the conductor

matrices. A comprehensive examination of the properties of the conductor and mode

MTL matrices is given in [37].

4.1 Generalized Scattering Parameters in Reference Systems

with Coupled Ports

Consider the n-coupled line system depicted in Fig. 4.1 with speci�ed physi-

cal length l. This section is uniform in the longitudinal direction and symmetric in

the transverse plane; the line widths wi are such that w1 = wn, w2 = wn�1; : : : . The

(n�n) mode and conductor characteristic impedance matrices describing this section

are denoted Zm
ch and Zc

ch, respectively. Let the port numbers be de�ned such that

ports 1 to n constitute the n-dimensional input port and ports n+1 to 2n constitute

the n-dimensional output port. In longitudinal MTL analysis (such as [29], [37], [44]),

there are input and output (n�n) immittance matrix functions looking into, respec-

tively, the input or output side of the coupled-line system, while the opposite side

is terminated with some prescribed boundary condition, normally an impedance or

admittance network. Any of the (2n � 2n) frequency domain immittance matrices

provide a convenient representation of this 2n-port. In this paper, however, we focus

on the (2n � 2n) S-parameter matrix from which we will extract the normal mode
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parameters. In practice these S-parameters could be obtained using new methods

such as the multimode TRL algorithm [45], though this paper will not concern those

details.

4.1.1 Coupled ports

Measured S-parameters are usually referenced (or \normalized") to 50-
 termina-

tions; the characteristic or \reference" impedance for such a 2n-port system (such as

the coupled-line section in Fig. 4.1 is therefore respresented by a diagonal (2n� 2n)

matrix

Z0 = 50 � 12n; (4.1)

where 12n is the (2n�2n) identity matrix. If all n characteristic impedances are equal,

as in the above case, then the (2n � 2n) mode and conductor re
ection coe�cient

matrices �m;c and S-parameter matrices Sm;c of the n-port are equivalent,

v�m;c = [Sm;c] � v+m;c: (4.2)

More generally, the characteristic impedances of the ports which constitute this

reference system may not all be equal, as in some devices such as pre-ampli�ers. Let

us also consider a 2n-port section of n coupled lines whose 2n ports referenced to 2n

di�erent impedances. In this case,

Zc
CH = [diag (Z01; Z02; Z03; : : : ; Z02n)] (4.3)

denotes the (2n�2n) diagonal conductor characteristic impedance matrix (the capital

notation in the subscript will henceforth distinguish 2n-dimensional matrices and

vectors from their n-dimensional counterparts in n-coupled line systems).

We denote the (2n � 1)-dimensional entering and exiting power waves am;c and

bm;c. They are given by

am;c =

2
6666666666666664

a
m;c
in ]1

a
m;c
in ]2
...

a
m;c
in ]n

a
m;c
out ]1

a
m;c
out ]2
...

a
m;c
out ]n

3
7777777777777775

; bm;c =

2
6666666666666664

b
m;c
in ]1

b
m;c
in ]2
...

b
m;c
in ]n

b
m;c
out ]1

b
m;c
out ]2
...

b
m;c
out ]n

3
7777777777777775

; (4.4)
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where am;c
in is the (n� 1) mode and conductor power wave vector entering the input

port and bm;c
in is the (n� 1) mode and conductor power wave vector exiting the input

port. Similarly, at the ouput port, we have the entering power waves am;c
out and exiting

power waves bm;c
out . Note that the wave a

m;c
out ]n denotes the mode or conductor power

wave entering the nth output port (port number 2n in Fig. 4.1).

The mode and conductor power waves are now de�ned and normalized as

am;c = [Zm;c
CH ]

�1=2 � v+m;c; (4.5a)

bm;c = [Zm;c
CH ]

�1=2 � v�m;c: (4.5b)

Thus, the generalized mode or conductor (2n � 2n) S-parameter matrix, denoted

Sm;c, relates these mode or conductor power waves by

bm;c = Sm;c � am;c; (4.6)

where Sm;c consists of the four (n�n) submatrices Sm;c
in;in, S

m;c
in;out, S

m;c
out;in, and S

m;c
out;out,

Sm;c =

"
S
m;c
in;in S

m;c
in;out

S
m;c
out;in S

m;c
out;out

#
; (4.7)

relating the (n�1) mode or conductor power wave vectors at the n-dimensional input

and output ports.

Consider a device with an arbitrary number of ports p, referenced to some diag-

onal (p � p) characteristic impedance matrix as in (4.3). In this case, the inward-

traveling conductor power waves ac]i on each port are independent. We will refer to

this reference system as uncoupled; in other words, an excitation at port i produces

only the inward-traveling wave ac]i if all ports are matched. It follows in uncoupled

reference systems (whose characteristic impedance matrices are always diagonal) that

the independent excitation ac]i only depends on vcS]i and b
c]i.

For the general case, we consider reference systems with two or more ports coupled

to one another. We term these reference systems with port coupling coupled refer-

ence systems. In other words, their reference systems have characteristic impedance

matrices Zc
CH with nonzero o�-diagonal terms. In scattering analysis, this matrix

property has an obvious physical interpretation: it leads to interdependent power

wave coupling, by virtue of (4.5). In other words, if port i is coupled to port j

([Zc
ch]ij = [Zc

ch]ji 6= 0), the inward-traveling wave ac]i depends on v
c
S]j.

Where would such a reference system be encountered in practice? It would obvi-

ously be encountered in MTL systems such as Fig. 4.1, manifested in the section of

coupled lines on the right or left which feed the section of coupled lines of length l,

63



the device under test (DUT) considered in this paper. The (n�1) conductor voltages

and currents in this MTL section are generally related by dense (n�n) characteristic

impedance and admittance matrices Zc
ch and Y

c
ch. The feedline connection is clearly

uniform across the reference plane, thus the 2n-port symmetric, coupled reference

system Zc
CH is described by the 2n� 2n matrix

Zc
CH =

"
Zc

ch 0

0 Zc
ch

#
: (4.8)

Although Zc
ch may be dense, the zero matrices indicate no coupling between ports

on the input and output, an assumption which applies to the analysis in this paper.

Now, the set of n ports looking into the input (or output) of the DUT is really

an in�nitesimal section of coupled lines (zero phase, zero loss) with an equivalent

characteristic impedance matrix as the substituted section of length l. This \port

coupling" is illustrated in Fig. 4.2.

4.1.2 Decoupled-to-coupled S-parameter re-referencing

Once again, microwave device and system S-parameters are normally referenced

with uncoupled, 50-
 characteristic impedance ports. However, to extract modal

information from the conductor S-parameter matrix Sc, the reference system should

be identical to the characteristic impedance matrix of the coupled-line section, given

by (4.8).

Therefore, we must re-reference the (2n�2n) S-parameter matrix of the DUT (of

length l) from Z0 to Z
c
CH. (Note that for an uncoupled system, Zc

0 = Z
m
0 ; therefore,

we omit the superscript.) To accomplish this, we convert the S-parameter matrix to

a (2n� 2n) open-circuit impedance matrix for the 2n-port.

The S-parameter matrix for a system (in this case, a 2n-port system of n-coupled

lines) in terms of its open-circuit impedance matrix referenced to a general coupled

or uncoupled characteristic impedance matrix Zc
CH was derived in [37], [44], [46] and

is repeated here for convenience using the uncoupled 50-
 reference characteristic

impedance matrix Z0:

Sc = (Z0)
1=2 � [Zc +Z0]

�1 � [Zc �Z0] � (Z0)
�1=2 : (4.9)

Rearranging this equation for an S-parameter set referenced to Z0 and solving for

the impedance matrix yields

Z = Z0 �
�
[Z0]

�1=2 � Sc � [Z0]
1=2 + 12n

�
�
�
12n � [Z0]

�1=2 � Sc � [Z0]
1=2
��1

: (4.10)
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Finally, we re-reference Sc to Zc
CH by solving (4.10) and combining Zc with the

coupled reference system Zc
CH in place of Z0 in (4.9).

4.1.3 Solution for power waves

Given an S-parameter matrix referenced to some prescribed characteristic impedance

matrix Zc
CH, and given both port and interport boundary conditions (in the form of

termination matrices), the conductor power wave vectors are solved quite easily; the

mode power vectors are not required by this extraction method but are nonetheless

derived with the analogous mode quantities.

Consider a general n-coupled-port system with given (2n � 2n) conductor S-

parameter matrix Sc, referenced to the characteristic impedance matrix Zc
CH. Sup-

pose all 2n ports are terminated with (2n � 2n) impedance matrix Zc
T and excited

with a (2n � 1) Thevenin voltage source vcS. We may easily determine the forward

and backward power waves given these boundary conditions and the scattering pa-

rameters Sc by �rst expressing the independent power wave ac as the contribution

from the voltage divider at the 2n ports and the re
ection from the port termination

impedances:

ac = [Zc
CH]

�1=2 � T c
S � v

c
S + �c

S � b
c; (4.11)

where �c
S is the port re
ection coe�cient matrix, looking from the DUT towards its

terminations, given by

�c
S = [Zc

T +Z
c
CH]

�1 � [Zc
T �Z

c
CH] ; (4.12)

and T c
S is the source voltage transmission coe�cient matrix given by

T c
S = Zc � [Zc

S +Z
c]�1 ; (4.13)

where Zc is given by

Zc = (Zc
CH)

1=2 � [12n � S
c]�1 � [12n + S

c] � (Zc
CH)

1=2 : (4.14)

The second relation between the independent and dependent power waves is of

course the S-parameter matrix. Combining (4.11) and (4.6), we arrive at

ac = Lc
av

c
S (4.15)

where the operator Lc
a is

Lc
a =

�
[12n � �c

S � S
c]�1 � [Zc

CH]
�1=2 � T c

S�
�
; (4.16)

similarly, the relationship for b is easily shown to be

bc = Lc
bv

c
S: (4.17)
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with

Lc
b =

�
[12n � S

c � �c
S]
�1 � Sc � [Zc

ch]
�1=2 � T c

S�
�
: (4.18)

Therefore, as expected by the de�nition of power waves, ac results from the

input voltage at the ports with voltage sources in addition to the contribution from

the re
ection of outward waves at \unmatched" ports.

4.2 Frequency Domain Mode Extraction

To illustrate the normal mode parameter extraction numerically, we consider

the analytic form of conductor and mode S-parameters as functions of the normal

mode parameters. This will provide an analytical test to which we can apply the

characteristic impedance and mode extraction procedures.

The central assumption regarding the success of this optimization is that good

initial guesses for the normal mode parameters exist. Numerous EM �eld and circuit

extraction tools may be employed to approximate the eigenvectors; these will usually

provide satisfactory initial guesses.

4.2.1 Multimode analytic S-parameter expressions

The relationship between the conductor and mode S-parameters has been de-

rived for a two-mode system [43], but in the general n-line case where the voltage

and current eigenvectors are not equal, this relationship is not so simple. Here, we

derive a general relationship applicable to n-line systems with arbitrary characteris-

tic impedance matrices. While multiple formulations exist, the most direct utilizes

multimode signal 
ow graph theory, analogous to the common scalar derivation of

the S-parameters of a known length of line of some speci�ed characteristic impedance

(e.g., [47]).

First, we consider a section of n coupled lines of length l. In this 2n-port device,

with port numbers de�ned at the reference planes as per Fig. 4.1, we have four

(n� n) mode or conductor S-parameter submatrices as in (4.7). Symmetry leads to

S
m;c
in;in = S

m;c
out;out; reciprocity leads to Sm;c

out;in = S
m;c
in;out. Now we extend scalar signal


ow graph analysis such that the nodes correspond to vector power waves and the

branches correspond to matrices. Figure 4.3 shows the signal 
ow graph for a length l

of coupled lines with characteristic impedance matrix Zm;c
ch referenced to some system

Z
m;c
0 .
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Power wave scattering in the coupled line section results not only from the coupled

length l but also from the junctions between the test and reference system at the input

and output, since, in general, the reference and coupled line characteristic impedance

matrices are not equal. Therefore, the signal 
ow representation for the total section

of coupled lines in some reference system is the cascade of three 2n-port systems: the

input junction, the lines, and the output junction, as shown in Fig. 4.3.

Next, we simultaneously derive the conductor and mode S-parameters of the

reference-to-test junction. For both these domains, the antisymmetry and reciprocity

yield Sjun
11 = �Sjun

22 and Sjun
12 = S

jun
21 (where Sjun

11 looks into the input junction from

the reference side and Sjun
22 looks into the output junction from the DUT side). For

simplicity, we denote � = S
jun
11 and T = S

jun
12 , applicable as either a conductor or

mode variable. S-parameter analysis on the junction yields

�m;c = (Zm;c
ch �Z0) � (Z

m;c
ch +Z0)

�1 ; (4.19)

Tm;c = 2[Zm;c
ch ]�1=2 �

�
1n +Z0 � [Z

m;c
ch ]�1

��1
� [Z0]

�1=2: (4.20)

We now consider propagation on the coupled section (between the dashed lines

in Fig. 4.3), quanti�ed by the mode or conductor power wave propagator matrix

	m;c(�l), as shown in Fig. 4.3.

The mode or conductor MTL propagator matrix Qm;c(�l) relates the conductor

(or mode) inward-traveling voltage on the input side of the coupled-line section to

the conductor (or mode) outward-traveling voltages on the output side as
�b
m;c
out = [Zm;c

ch ]1=2 �Qm;c(�l) � [Zm;c
ch ]�1=2 � �am;c

in ; (4.21)

where we have used an overbar to identify the vector as one entering or exiting the

coupled-line section between the center dashed lines in Fig. 4.3.

Since the mode voltages and currents are propagated by the MTL propagator

matrix

Qm(�l) = diag
�
e�
1l; e�
2l; : : : ; e�
nl

�
; (4.22)

an expression for the conductor propagator matrix follows if we relate conductor and

mode power waves from (4.5). Using (4.5b) and the eigenvector de�nition we can

write
�b
m
out = [Zm

ch]
�1=2 �E � �v�c�out

= [Zm
ch]

�1=2 �E � [Zc
ch]

1=2 � �b
c
out: (4.23)

Similarly,

�amin = [Zm
ch]

�1=2 �E � [Zc
ch]

1=2 � �acin; (4.24)
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and the relationship between the conductor and mode propagator matrices is thus

Qc(z) = [Zc
ch]

�1=2 �E�1 �Qm(z) �E � [Zc
ch]

1=2: (4.25)

Therefore, the mode or conductor power wave propagator matrix is

	m;c(�l) = [Zm;c
ch ]1=2 �Qm;c(�l) � [Zm;c

ch ]�1=2; (4.26)

and the (n� n) submatrices

Sin;in = �� T �	(�l) � � �Q(�l) � [1n � � �	(�l) � � �	(�l)]�1 � T (4.27a)

Sin;out = T � [1n � � �	(�l) � � �	(�l)]�1 �	(�l)T (4.27b)

are easily derived from the signal 
ow graph (note that we have omitted the mode

and conductor superscript labels for simplicity). The �nal (2n � 2n) S-parameter

matrix of the coupled lines is assembled from (4.7).

4.2.2 Characteristic matrix extraction

Extraction of modal coe�cients and propagation constants for the n-line DUT

becomes trivial if we can reference the S-parameter matrix to the (n�n) characterisitc

impedance matrix Zc
ch of the DUT. This implies that we must �rst directly extract

Zc
ch, which is not initially known, from the S-parameters referenced to Z0.

A single, uniform, lossless transmission line terminated with an impedance Z0

equal to its characteristic impedance is matched; its longitudinal immittance func-

tions are constant, and the input impedance is everywhere equal to Z0. Optimization

of Z0 given only one line-length S-parameter set requires only a relatively good intial

guess. Uniform, lossless MTL characteristic impedance matrix extraction simply ex-

tends this property to its matrix form. The input impedance matrix Zc
in(z) will only

remain constant and equal Zc
ch if the output is terminated with Zc

ch.

We denote the (n� n) initial guess ~Z
c

ch. The (n� n) re
ection coe�cient matrix

looking into the output from a Z0 system terminated by ~Z
c

ch is

�c
t =

�
~Z
c

ch �Z0

�
�
�
~Z
c

ch +Z0

��1
; (4.28)

and the (n� n) re
ection coe�cient at the input with this termination is thus

�c
in = [Sc]in;in + [Sc]in;out �

�
[�c

t]
�1 � [Sc]out;out

��1
� [Sc]out;in (4.29)

where we have indexed the four (n � n) submatrices of Sc, from (4.7). Now, we

terminate the output side with the initial guess ~Z
c

ch. If ~Z
c

ch matches the actual
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characteristic impedance of the unknown section of coupled lines under test, then

~Z
c

ch = Zc
in(�l) (4.30a)

= (1n � �c
in(�l))

�1 � (1n + �c
in(�l)) �Z0 (4.30b)

= Zc
ch: (4.30c)

Obviously with a decent initial guess we may optimize the solution ~Z
c

ch by minimizing

the Frobenius matrix norm

jj[ ~Z
c

ch]� [Zc
in(�l)]jj: (4.31)

We then re-reference the 2n-port S-parameters of the DUT to their characteristic

impedance ~Z
c

ch, and denote the result ~S
c
. The accuracy of the solution ~Z

c

ch may now

be estimated by examining the submatrix ~S
c

in;in. Since the junctions at the input

and output is uniform when the reference system characteristic impedance equals the

characteristic impedance of the DUT (coupled-line section), all elements of ~S
c

in;in (or
~S
c

out;out, since ~S
c

in;in = ~S
c

out;out should be zero when (4.30c) applies. Therefore, we

de�ne a �gure of merit, M as

M = jj~S
c

in;injj: (4.32)

However, this method is, in rare cases, susceptible to error. In single transmis-

sion line characteristic impedance extraction, the so-called half-wavelength windows,

which occur when the line length is some integer multiple of �=2, are obviously prob-

lematic. These e�ectively make the transmission line section transparent, repeating

the output termination at the input, regardless of the magnitude of the mismatch.

In MTL systems, the half-wavelength ambiguities occur when the physical length is

an integer multiple of one or more mode half-wavelengths, i.e.,

�jl = n�; n = 1; 2; : : : ; (4.33)

where �j is the imaginary part of the complex propagation constant, 
j = �j + i�j.

When (4.33) occurs for the jth mode, the modal form of (4.30a) holds for all initial

guesses, i.e., [ ~Z
m

ch]jj = [Zm
in(�l)]jj always, and extracted values are therefore sus-

pect. These mode half-wavelength ambiguities (MHWAs) must be carefully consid-

ered during extraction. If possible, S-parameter simulations or measurements must

be avoided for physical lengths corresponding to these MHWAs. Otherwise, error

could be avoided by performing a narrowband frequency sweep through the design

frequency, thus simulating a slight longitudinal distance sweep through the actual

design length and its MHWA.
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4.2.3 Eigenvector and eigenvalue extraction

In systems where the orthogonal voltage and current eigenvectors are equal (E =

H) the eigenvalues may be easily extracted by diagonalizing the ~Z
c

ch-renormalized

conductor S-parameter matrix. In general systems, however, E 6= H, and since the

S-parameter matrices relate power waves and not strictly voltages and currents, it

becomes necessary to determine E and H independently.

In a lossless, uniform system, orthogonal eigenvectors propagate with only a com-

plex scaling factor k. To make the coupled lines appear uniform (or in�nite in extent),

the n-dimensional output port is then terminated with the optimized characteristic

impedance matrix ~Z
c

ch, and the 2n-port termination matrix is

Zc
T =

"
0 0

0 ~Z
c

ch

#
; (4.34)

which absorbs all outward power waves for all modes provided that (4.30a) holds.

We construct the boundary conditions (4.12) and (4.13), and the operators La and

Lb.

Then we apply a conductor voltage v̂cin on the input as an initial guess for an

eigenvector. The corresponding voltage source voltage vector is

v̂cS =

2
6666666666666664

v̂cin]1

v̂cin]2
...

v̂cin]n

0

0
...

0

3
7777777777777775

; (4.35)

where the carets denote the vectors as \test" or \guess" vectors.

Power waves for these boundary conditions are calculated from (4.15) and (4.17),

and from (4.5) we determine the n-dimensional input and output voltage vectors.

If this input voltage vector assumes any one of the system eigenvectors, the output

excitation vector will also assume the con�guration of this eigenvector, scaled by a

complex constant k, with unity magnitude,

v+c�in = kv�c�out: (4.36)
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We therefore determine an eigenvector by maximizing the coe�cient of linear depen-

dence between the input and output. Consequently, the eigenvalues for each mode

are the respective values k.

Several signi�cant drawbacks of this mode-by-mode determination include the

requirement of good initial guesses for the eigenvectors, careful consideration of zero-

valued elements, and the relative scalar ambiguity between any pair of eigenvectors.

To eliminate the �rst two of these shortcomings, we should extract all eigenvectors

simultaneously. When v+c�in consists of more than one mode, (4.36) becomes a matrix

equation. Vectors v+c�in and v
�
c�out are now related by

v+c�in =M � v�c�out; (4.37)

where matrix M accounts for the multimode distribution. Matrix M is easily ex-

pressed in terms of the eigenvectors and eigenvalues by considering

E � v+c�in = v
+
m�in; (4.38)

and

v�c�out = E
�1 � v�m�out: (4.39)

From MTL theory we have

v�m�out = Qm(�l) � v+m�in; (4.40)

therefore, M must be

M = E�1 �Qm(l) �E: (4.41)

With the boundary condition (4.34), simultaneous extraction of the n modes

requires n (2n � 1) voltage \test" vectors as in (4.35), which we shall number

v̂cS�1; v̂
c
S�2; : : : ; v̂

c
S�n. For compactness, we group the n test voltages and power

waves into (2n� n) matrices,

V̂
c

S =
h
v̂cS�1 v̂cS�2 : : : v̂cS�n

i
; (4.42)

and

Â
c
=
h
âc1 âc2 : : : âcn

i
; (4.43)

which are related by

Â
c
= Lc

aV̂
c

S: (4.44)

Similarly, we have

B̂
c
= Lc

bV̂
c

S: (4.45)
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To solve for the components of M , the power waves at the input and output must

be converted to inward- and outward-travelling voltage waves using (4.5),

V̂
+

c�in = [ ~Z
c

ch]
1=2 � Â

c

in (4.46a)

V̂
�

c�out = [ ~Z
c

ch]
1=2 � B̂

c

out (4.46b)

Now, using this result and the de�nition of M , (4.37), we have

M = V̂
+

c�in � [V̂
�

c�out]
�1: (4.47)

Now, from (4.41), we see that diagonalization ofM yields the propagator matrix

Qm(l) and its eigenvectors E. However, these eigenvectors are ambiguous to an

arbitrary complex constant,

E =K �E0: (4.48)

Consequently, onlyE0 is extracted. MatrixK is diagonal with j[K]iij = 1. The phase

bahavior of [K]ii, as will be shown in the next section, is nonlinear with respect to

length of the coupled line section, but is minimal as length approaches zero. This

is due in part to the mode delays and to their increasing signi�cance with length or

frequency.

To determine the current eigenvector matrix H, an analogous derivation with

current quantities could be employed, but if we chose H according to [3, Eq. 22], no

such derivation is necessary.

Finally, to extract the ith propagation constant from the ith eigenvalue, we must

know how many ith mode half-wavelengths occur within the physical length l, since

the phase of [Qm(l)]ii (or k for the single-mode extraction case) is only de�ned over the

interval [��; �]. For reasonably low frequencies (or short lines), good initial guesses

for the propagation constants adequately provide the number of half-wavelengths,

and the jth propagation constant is thus


j =
1

l
[ln ([Qm(l)]jj) + 2m�i] :

j = 1; 2; : : : ; n

m = 0; 1; 2; : : :
(4.49)

4.3 Numerical Results

In order to demonstrate the method, we resort to several numerical examples

based on simulations from quasi-static and full-wave electromagnetic solvers. Both

lossless and low-loss three-coupled line cases over swept length are examined, as well

as a swept-frequency example on a lossy three-line system. The method is shown to
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be very stable, robust, and e�cient. We stress that numerical optimization is only

required to obtain the solution ~Z
c

ch.

In both examples, we consider a three-line microstrip system at an operating fre-

quency of 2.0 GHz with the following quasi-static, frequency-independent, distributed

circuit parameters:

L =

2
64

313.9 67.5 22.2

67.5 319.3 67.5

22.2 67.5 313.9

3
75 nH (4.50)

C =

2
64

130.3 -16.2 -0.8

-16.2 133.7 -16.2

-0.8 -16.2 130.3

3
75 pF: (4.51)

Three distinct voltage test vectors, accounting for all three modes to keep the

system well-conditioned, were employed. Our choice included v̂cin�1 = [2:0 1:0 0:0]t,

v̂cin�2 = [1:0 � 0:8 � 1:0]t, v̂cin�3 = [1:0 � 0:8 1:0]t. Several trials using di�erent test

vectors failed to impact the extraction error. The Nelder-Mead simplex method was

used to minimize the matrix norms (4.31) for all test cases.

4.3.1 The lossless case

The resulting normal mode parameters for this coupled line section are

Zc
ch =

2
64

49.4072 8.3545 2.2371

8.3545 49.5332 8.3545

2.2371 8.3545 49.4072

3
75
 (4.52)

E =

2
64

-0.5198 -0.6780 -0.5198

-0.7071 -0.0000 0.7071

0.4786 -0.7362 0.4786

3
75 (4.53)

H =

2
64

-0.5205 -0.6768 -0.5205

-0.7071 -0.0000 0.7071

0.4794 -0.7351 0.4794

3
75 (4.54)

� = [i diag (13.5636; 12.3680; 11.9748)] (4.55)

Upon extraction, error analysis is �rst examined for the computed characteristic

impedance matrix. We consider only close initial guesses given conventional CAD

tools and algorithms. The �gure of merit M was extremely small, less than 2� 10�6

normally and less than 3:5� 10�5 around the mode half-wavelength ambiguities.
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Figure 4.4 shows the only signi�cant sources of error for ~Z
c

ch, the MHWAs. How-

ever, the spikes are extremely narrow and require a resolution of 0.1 mm in length

sample. The e�ect of mode delays not only includes the MHWAs but also points

where �1l = (�3l)
�. For an overview of the e�ects of mode delay on the the immit-

tance matrices, the reader is encouraged to consult [37].

The eigenvalue error is very small over a swept length from l = 0 m to l = 10:0

m, and would obviously remain so for arbitrarily large distances. With no loss in

the coupled-microstrip system, the net power 
ux into or out of the 2n-port system

must be zero, therefore we expect convergence of ~Z
c

ch as in the lossless single line case,

regardless of length. Eigenvalue perturbation at the MHWAs was less than 4�10�6%.

Results for all three normal mode parameters are shown in Table 4.1. The magnitudes

of the elements in the eigenvector matricesE0 andH0 were extracted with very small

error, and only the phase ambiguity in K, which increases with coupling length as

shown in Fig. 4.5.

We reiterate that because all eigenvectors are real and all eigenvalues are imagi-

nary in this case, solution convergence may be sensitive to the initial guess, therefore,

simultaneous optimization of both eigenvector matrices was desirable to avoid numer-

ical di�culties.

4.3.2 The lossy case

Losses in microstrip MTL are dominated by conductor imperfection (skin e�ect)

for monolithic microwave integrated circuits (MMIC) applications and dielectric im-

perfection for microstrip board size structures. For a low loss case, we considered the

following resistance and conductance matrices

R = [diag (18.3453; 17.4558; 18.3453)]m
 (4.56)

G =

2
64

251.1210 -22.8909 -0.3994

-22.8909 256.109 -22.8909

-0.3994 -22.8909 251.1210

3
75 nS; (4.57)

together with the parameters (4.50) and (4.51). Again, extraction yielded all normal

mode parameters with very little error. Fig. 4.6 shows the only signi�cant error,

the imaginary parts of ~Z
c

ch, which are very small in magnitude for the low-loss lines.

Table 4.1 details error for the eigenvectors and propagation constants.

It should be emphasized that extraction error for ~Z
c

ch, in general, increases with
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increasing coupling length. Physically, this results from the matching e�ect caused

by a lossy line. Physically, longer lossy lines absorb greater power. As the length

approaches in�nity, the choice of termination becomes increasingly irrelevant since

the signal re
ection will be minimal by virtue of the line loss as opposed to the

re
ection at the load mismatch. Our example considers relatively low-loss lines, thus

the large swept length has little impact on ~Z
c

ch extraction error. Preliminary tests

showed that at least two orders of magnitude of length increase or a much higher loss

were necessary to signi�cantly impact the ~Z
c

ch extraction error. Thus, ~Z
c

ch extraction

su�ered minimal error, with M < 0:01. Again, results for all three NMPs are shown

in Table 4.1. In the case of E0, we compared magnitudes (which are tabulated in the

real column), not real and imaginary parts themselves.

Finally, we applied the extraction procedure to a set of simulated S-parameters

from a full-wave simulation using a commercial software tool, Sonnet [48]. We con-

sidered a set of three-coupled lines 2.032 cm (800 mil) in length on a substrate of

0.762 mm (30 mil), with dimensions given in Fig. 4.7 and the following electrical

parameters: �r = 3:43, tan � = 0:01, �c = 5:813 � 107 S/m. The simulation was

performed from 1 to 10 GHz.

Ports were de�ned in the center of the conductor cross sections at the board edges.

In several simulations, we increased the board length but used port de-embedding

to move the reference planes inside the board edges, keeping the ports in the center

of the conductors. This resulted in only slight overall deviations in the extracted

parameters. Characteristic impedance matrix elements (Fig. 4.8) showed little de-

viation with frequency, except slight perturbations around 8 GHz where the board

was approximately one wavelength for each mode. (The modes could not be distin-

guished individually since the sample interval was 0.25 GHz.) The �gure of merit,

M , was very small as shown in Fig. 4.9. Eigenvector elements (E0) are shown in Fig.

4.10 and exhibit little deviation with frequency. Components � and � for each mode

were extracted; results are shown in Fig. 4.11. All of these NMP values agree well

with those computed using a quasi-static RLGC tool [49], which are also plotted as

discrete points.

Per-unit-length parameters were also computed from the NMPs using known
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quasi-static relations [33]:

Z = E�1 ��m �E �Zc
ch; (4.58a)

Y =H�1 ��m �H � Y c
ch; (4.58b)

where Z = R+ j!L and Y = G+ j!C are the distributed parameters. Matrices L

and C were extracted, with results shown in Fig. 4.12, where the board resonance

is also evident. Fig. 4.13 shows the non-negligible conductance values from G which

were interpolated for clarity. Extracted loss was slightly greater than the calculated

quasi-static loss, which is partly attributed to the greater transverse �eld components

in a system with moderately lossy conductors and dielectrics.

Though all extracted results are su�cient for approximate modeling, they could

be improved and compared with other simulation strategies and software, as well as

measured data. At present we believe these inaccuracies result from the sensitivity

of the S-parameters to the single-point port de�nitions and the inherent ambiguity

of distributed circuit representations of waveguiding structures with signi�cant cross-

sections.

4.3.3 Coplanar lines

To improve upon distributed circuit models for coupled coplanar lines, our method

for NMP/RLGC extraction was applied to a set of three lines surrounded by two

ground swaths. The layout and dimensions of this structure are shown in Fig. 4.14.

The gallium-arsenide (GaAs) substrate has a relative dielectric constant �r = 12:0

and tan � = 0:001. The gold conductor strips above have conductivity � = 4:1� 107.

Each of the three center conductors have width w = 24 �m, thickness of 1 �m

and separation between each and the ground planes is s = 14 �m. Overall length

was l = 2 mm.

The �rst step was to simulate the 10-port shown in Fig. 4.15 to extract the 10�10

S-parameter matrix. Second, this matrix was embedded into the schematic window

such that the appropriate ports could be grounded. In this case, the four ports on the

outside lines (ports 7, 8, 9, and 10) at each end must be connected to the RF ground.

Figure 4.16 shows the schematic of Agilent's Advanced Design System (ADS) that

was used to generate and interpolate the 6 � 6 S-parameters from the Momentum

simulation.

Results show that all of the NMPs and RLGC values are extracted with con�-
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dence. First, the extracted characteristic impedance matrix is shown in Figs. 4.17 and

4.18. Since the imaginary values are so small, they are more suspect. The real parts,

however, behave as expected and even exhibit frequency dependence. Above 25 GHz,

they su�er from large error as the board length approaches �=2. Higher impedance

values result for these extracted characteristic matrices than for those in microstrip,

given the higher mutual inductances and lower mutual capacitances. Low �gure of

merit shows good optimization (Fig. 4.19). Eigenvector elements are typical, showing

�eld con�gurations for the three distinct modes in Fig. 4.20. Attenuation and phase

constants are shown in Fig. 4.21. As expected, the phase constants are almost all

identical, given that the �eld con�gurations of the three modes in coupled-coplanar

di�er only negligibly in their con�nement or exclusion from the dielectric. Mode 3

loss is greatest, since the coupling between adjacent lines is strongest, con�ning the

current to conductor edges to a greater degree than the other modes.

Inductance and capacitance matrices converted from the NMPs using (4.58) are

both shown in Fig. 4.22, while the resistance and conductance elements are shown

in Fig. 4.23. Notice that conductance is negligible in these coplanar lines, as the

�eld con�gurations are not as heavily con�ned to the substrate as those in coupled

microstrip. Consequently, most of the loss results from the thin metallization and is

captured in the resistance matrix elements, which increase as functions of frequency

due to skin e�ect.

4.4 Conclusions

We have introduced a novel extraction procedure applicable to an arbitrary num-

ber of uniform coupled lines. It requires only the length of the coupled line section and

the S-parameters of this section referenced to an arbitrary but known impedance ma-

trix. The method determines three normal mode parameters of interest: the charac-

tertistic impedance matrix, the eigenvector matrices, and the propagation constants.

These parameters were extracted with minimal error for low-loss lines. Measure-

ments, detailed error analysis, and extension of the method to more coupled lines are

the topics of a future paper.

We suggest that such a method, in conjunction with broadbanded S-parameter

measurements, could yield not only frequency-dependent normal mode parameters,

but also distributed circuit parameters, notwithstanding issues of interpretation.
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These would be especially useful in lossy, high-frequency systems where the quasi-

TEM regime is not valid, and critical given the practical need to retain circuit models

for devices with strong electromagnetic (as opposed to quasi-static) behavior.

Table 4.1 Percent error for characteristic impedance, eigenvectors, and propagation

constants.
Lossy

Element Lossless
real imag

[ ~Z
c

ch]11 4� 10�4 5� 10�4 4.21

[ ~Z
c

ch]12 3� 10�3 3� 10�3 13.6

[ ~Z
c

ch]13 1� 10�2 1� 10�2 4.68

[ ~Z
c

ch]22 6� 10�4 6� 10�4 4.21

[ ~E]11 3� 10�4 4� 10�3 -

[ ~E]12 6� 10�4 5� 10�4 -

[ ~E]21 2� 10�11 6� 10�10 -

[ ~E]31 1:5� 10�4 3� 10�4 -

[ ~E]32 4� 10�4 4� 10�4 -

[ ~H ]11 3� 10�4 1:5� 10�4 -

[ ~H ]12 3� 10�4 4� 10�4 -

[ ~H ]21 7� 10�10 2� 10�10 -

[ ~H ]31 5� 10�4 4� 10�4 -

[ ~H ]32 4� 10�4 3� 10�4 -


1 1� 10�10 1� 10�5 4� 10�6


2 5� 10�11 1� 10�5 1� 10�5


3 4� 10�10 1� 10�5 2:5� 10�5
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Figure 4.16 Simulation schematic and grounding for three-coupled coplanar layout
S-parameter calculations.
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CHAPTER 5

MATCHING STRATEGIES

Little work has been presented regarding general matching strategies for coupled

microstrip given mismatched MTL terminations. Ponchak and Katehi [15] applied

tuning stub matching to coplanar waveguide systems on silicon. Kuo and Tzuang

[5] reduced re
ections below -30 dB using matched termination networks on six-line

closely coupled microstrip circuits. Amari and Bornemann [6] minimized re
ected

power numerically by determining an optimum resistive termination based on random

and deterministic source excitations. Sun [16] presented a multiconductor quarter-

wave transformer.

In this chapter, we synthesize several types of matching networks for symmetric

mismatched terminations in symmetric, uniform, coupled-line microstrip structures

in the quasi-TEM regime. Employing MTL theory, stubs, reactive elements, and

transformers will be extended to coupled-line systems. Reasonable engineering ap-

proximations are utilized in simulation and measurement where necessary, and the

matching methods will be applied to a three-coupled line system to exemplify match-

ing for general n-line applications. These may include transistor ampli�er circuits

substituting microstrip for coplanar technology, optoelectronics packaging, chip- and

package-level interconnections, and parallel data buses.

This chapter is organized as follows: in Section 5.1 we overview necessary MTL

longitudinal relations. In Section 5.2 we present several matching strategies. In

Section 5.3 numerical results and simulations of the synthesized matching networks

are presented. Finally, the matching is validated with measurement results presented

in Section 5.4.

5.1 Multiconductor Transmission Line Equations

Focusing on the microstrip structure shown in Fig. 5.1, we assume symmetry

about the x = 0 plane and generalize the results to n lines (excluding the ground
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plane) where possible.

It should be stressed that this theory does not apply in a strict sense to mi-

crostrip lines, given that they are inhomogeneous and therefore do not support TEM

modes. However, at su�ciently low frequencies, the lines support quasi-TEM modes

which approximately satisfy the MTL equations [7]. In quasi-TEM analysis of n

coupled lines, n modes propagate. These are obtained though the uncoupling of the

telegrapher's equations [1], [3], [4] usually via numerical eigenanalysis, though other

methods for computing the propagation constants exist [11].

Under the quasi-TEM approximation, the propagating modes are interpreted as

physical system voltages and currents [1]. The wave equations are solved with a

linear transformation and change of variables (between line and mode) given by the

relations [9]

vm(z) = Evc(z) (5.1a)

im(z) =Hic(z) (5.1b)

where E and H are (n � n) matrices whose ith rows are the voltage and current

transformation vectors associated with the ith mode. Transformations E and H

must simultaneously diagonalize both Z and Y [3] to uncouple the MTL equations,

and obviously be nonsingular [3], [10] to enable transformation between mode and

state variables. The n column vectors vm and Im are the modal voltage and current

vectors which relate to the electric and magnetic �eld con�gurations for the n modes.

Decoupling the MTL equations yields

EZY E�1 =HY ZH�1 = �2
m; (5.2)

where �2
m is the (diagonal) eigenvalue matrix for ZY and Y Z. Matrix �m contains

the ordered complex propagation constants 
i=1;2;:::;n for modes i = 1; 2; : : : ; n. Inho-

mogeneous media (microstrip) generally yields n distinct eigenvalues [1] resulting in

mode delays [44]. We easily solved (5.2) using numerical eigenvalue routines.

The conductor characteristic impedance and admittance matrices Zc
ch and Y c

ch

for the system are

Zc
ch = E

�1��1
m EZ () Y c

ch = Z
�1E�1�mE; (5.3)

which agree with [8], [10], [11] when Z is replaced with L for the lossless case.

The (n� n) mode re
ection coe�cient matrix is

�m
L =

�
�m +EZY c

LE
�1
��1 �

�m �EZY
c
LE

�1
�
; (5.4)
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while the (n� n) conductor re
ection coe�cient matrix (relative to Zc
ch) is

�c
L = [Zc

L �Z
c
ch] � [Z

c
L +Z

c
ch]

�1 : (5.5)

Correspondingly, the conductor re
ection coe�cient matrix that relates forward-

and backward-traveling conductor voltages v+ and v� is easily shown by de�nition

to be

�c
L = E

�1�m
LE; (5.6)

where c denotes conductor.

The longitudinal input conductor re
ection coe�cient matrix is [29]:

�c
L(z) = E�1Q(z)�m

LQ(z)E; (5.7)

and is related to the longitudinal input admittance matrix

Y c
in(z) = Y c

ch [1n + �c
in(z)]

�1 [1n � �c
in(z)] ; (5.8)

which when approximately \matched" to Y c
ch via reactive cancellation, will guide the

MTL matching network synthesis.

5.2 Matching Strategies

We de�ne unilateral matching as matching Y c
in to the characteristic admittance

matrix Y c
ch of the lines, in essence disregarding the source. Bilateral matching ac-

counts for the source and considers the output admittance matrix Y c
out looking to-

ward the source conjugately matched to Y c
in for some point a; i.e., [Y

c
in(z = �a)] =

[Y c
out(z = �a)]�. For n > 2, exact matching becomes impractical, especially when the

termination is limited to nearest-neighbor mutual impedances. For loose coupling,

the non-adjacent mutual admittance is negligible, though increasing frequencies, more

compact packaging, and complex terminations will result in signi�cant mismatches,

for which we present some approximate matching strategies.

Thus we will develop approximations to roughly match certain conditions. Ide-

ally, a \match" entails maximizing power transfer to the load. Here, voltage-wave

matching will only approximate this ideal since multiple propagating modes with

distinct phase velocities give rise to wavelength ambiguities. Consequently, we will

start from the given excitation, as per Amari and Bornemann [6], and will determine

the dominant mode to match. For moderate coupling a signal composed of multiple

modes can be well matched for short lengths since the mode velocities are relatively

similar. Though the unilateral, voltage-wave MTL matching to be considered here
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constitutes a limited set of real-world problems, it will provide a rudimentary con-

ceptual framework for general MTL matching synthesis.

5.2.1 Tuning stub application to simple mismatches

First, we consider applying open-circuited shunt stubs on the outside lines (1,

n) when the impedance between the outside lines and ground is mismatched at the

load to to the characteristic impedance. To elucidate this mismatch more clearly, we

resort to the \network impedance matrix" notation of [29]. This matrix is a compact

physical description of an (n+1)-terminal network where the ij entry represents the

impedance interconnecting nodes i and j when i 6= j or i to ground when i = j. For

example, the load network is given by ZL. The conductor characteristic impedance

matrix Zc
ch, if realized as a load for a perfect unilateral match, would be Zch, where

[Zc
ch]ij 6= [Zch]ij in general. This outside line mismatch is thus easily written as

[ZL]11;nn 6= [Zch]11;nn.

To match lines 1 and 3 using shunt stubs, we shift Y c
in(z) toward the generator

to a distance z = �d such that

<ef[Y c
in]11g = [Y c

ch]11: (5.9)

On a Smith chart, this corresponds to the intersection of the phase-shifted re
ec-

tion coe�cient and the 1 + jX circle, provided the source impedance approximately

equals the characteristic impedance (In practice, the designers may have 
exibility

in choosing Y c
S, and could choose Y c

S = Y c
ch to approximate unilateral matching if

possible). Figure 5.2 shows stub parameters in a three-coupled line microstrip.

We assume that the stubs do not couple to the interior lines. Their reference

admittance is then the self characteristic admittance of line 1 or n to ground as if they

were isolated. We de�ne this reference admittance Y0 = [Y c
ch]11 + [Y c

ch]12 + [Y c
ch]13.

Reactive cancellation is achieved if the normalized stub susceptance is

B = �j
=mf[Y c

in(z)]11g

<efY0g
; (5.10)

where we have made the substitution B = �jX; the re
ection coe�cient of the stub

is thus

�stub = �
1� B

1 +B
= j�stubje

j�stub: (5.11)

Stub length should be chosen to yield a susceptance to ground of �=mf[Y c
in(�d)]11g.

This calculation should utilize the propagation velocity of the dominant mode i

l = �
� � �stub

2 � =mf[�m]iig
: (5.12)
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Now, the input admittance of lines 1 and 3 is modi�ed to include the denormalized

stub susceptance,

[Y c
in(�d)]

0
11;33 = [Y c

in(�d)]11 +B (Y0) ; (5.13)

so that the stubs reactance cancels the imaginary parts of [Y c
in(�d)]11;nn

Again, we reiterate that this unilateral match cannot provide an exact match

unless Y c
S = Y c

ch. Approximate matching is attained if Y c
S � Y c

ch. If Y c
S has

zero-valued mutual elements (independent Thevenin excitations, for example) but

diagonal elements [Zc
S]ii � [Zc

ch]ii, a good approximate match still results in moder-

ately coupled microstrip which physically exhibits self admittances that are usually

an order of magnitude larger than the mutual admittances:

=mfYself(z)g � �=mf[Y c
in(z)]ijg; (5.14)

where the self-admittance of line 1 and n, like the reference admittance, is de�ned as

the sum of the �rst or last row or column: Yself(�d) = [Y c
in(�d)]11 + [Y c

in(�d)]12 +

[Y c
in(�d)]13 + : : : . For extremely tight coupling, the mutual admittances will be

much more signi�cant, and this approximation will be worse. Still, almost perfect

practical stub matching results for these simple mismatches.

5.2.2 Matching mutual admittance with interline reactance

Our strategy must be expanded to account for symmetric mutual interline mis-

matches at the load ([Y c
L]ij 6= �[Y c

S]ij), and mismatches on [Y c
in(z)]22;33;:::(n�1)(n�1).

We consider only mutual nearest-neighbor mismatches between lines. Perpendicular

shunt stubs are clearly impractical for the inside lines. Parallel stubs implemented in

coplanar waveguide [15] are di�cult to simulate and exceed our interest in simplicity.

An alternative such as a lumped reactive element, would enable similar susceptance

cancellation as is accomplished with tuning stubs. Chip capacitors, microstrip gap

capacitors, or variable-width trace inductance may be easily placed between mutu-

ally mismatched lines at an optimal distance z = �d such that reactive cancellation

occurs in one or more o�-diagonal term [Y c
in(z)]ij.

Given initial guesses (in terms of fractions of wavelength) for the distance from

the load, z = �dguess, several points d where condition (5.15)

<ef[Y c
in]ijg = �[Y c

S]ij (5.15)

holds may be determined numerically. The reactance at z = �dmay be canceled with

inductance or capacitance. A positive susceptance at z = �d implies inductive mis-

match, which is canceled with a capacitance determined by =mfYmut(�d)g = !C at
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the desired frequency !. Otherwise, inductance determined by =mfYmut(�d)g =

(!C)�1 cancels negative susceptance at z = �d and matches the conductances.

Matching via chip capacitance is restricted by availability of arbitrary valued capaci-

tors and limited by three-dimensional discontinuities; matching via trace inductance

is restricted by the line separation s (though the width is variable), and frequency

dependent �eld e�ects.

Note again that the matching condition (5.15) depends on the source impedance.

For our choice of Y c
S � Y c

ch and assuming that the distance between the matching

network is on the order of one-half wavelength or less, the output admittance is

approximately the characteristic admittance, Y c
out(z = �d) � Y c

ch.

A \center tune" reactive cancellation to match [Y c
in(z)]22;33;:::(n�1)(n�1) is found for

some z = �d where

<ef[Y c
in(z)]22;:::(n�1)(n�1)g = [Y S]22;:::(n�1)(n�1): (5.16)

For the three-line case with high impedance from line 2 to ground, we will show that

this results in superior matching compared to simple interline reactive cancellation

(5.15).

Finally, for next-neighbor matching where low impedance terminations \short"

the high characteristic mutual admittance, inductive air bridges or wire bonds may

be necessary. We will leave this synthesis problem for future work.

5.2.3 The quarter-wave transformer for coupled lines

Sun [16] examined the multiline quarter-wave transformer with two uniformly

coupled lines in homogenous media and derived impedance/admittance transforma-

tions using the load re
ection coe�cients and propagation constant matrices. A

quarter-wavelength of coupled line with admittance matrix Y q and terminated by

Y L is attached to the Y 0 input section. The input admittance matrix looking into

the quarter-wave section toward the load is equated to Y 0 and the solution obtained

is

Y L = Y q �Z0 � Y q: (5.17)

Sun does not address the presence of multivalued propagation constants; again, design

using the dominant mode is required.

Practical feasibility of this matching network is clearly limited by planar geom-

etry. Furthermore, optimization will require expensive, iterated circuit parameter
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extraction for the quarter-wave section of coupled lines. For certain cases, however,

the trasnformer may match reasonably well and be easily fabricated. An example is

presented in the next section.

5.3 Numerical Results

We now present results from numerical matching simulations performed on a

tightly coupled three-line microstrip structure as in Fig. 5.1 with dimensions t =

34:29 �m, h = 1:50 mm, s = 1:0 mm, and w = 2:6 mm and permittivity �r = 4:7.

Electrical parameters were extracted using a quasi-static moment-method RLGC

tool [49]. Parameters R and G were considered negligible given the relatively short

lengths of line and high coupling planned for the experiment. Matrices L and C

for the microstrip were designed for 50 
 elements in the diagonal of matrix Zc
ch

to approximately match the reference impedance. The MTL analysis was numeri-

cally implemented in computer code and the matching procedures used a Newton

optimization scheme to determined distances z = �d to satisfy the conditions (5.9),

(5.15), and (5.16).

For the outer line mismatch, two simple cases are examined. The �rst con-

siders lines 1 and 3 terminated at the load (z = 0) by an \open" (430 
) to

ground ([ZL]11;33 = 430 
). In the second case, lines 1 and 3 are terminated by

a \short" (20 
) to ground ([ZL]11;33 = 20 
). In both cases, line 2 is terminated

with the inverse self-characteristic admittance, [ZL]22 = <ef[Zch]22g � 69 
, and

all remaining mutual terminations are matched to the characteristic admittances

([ZL]ij = <ef[Zch]ijg). While di�cult to implement practically, these simple mis-

matches are easily stub-corrected and demonstrate the validity of the matching net-

work.

Matching parameters d and l were optimized for an operating frequency of 2.0

GHz in both cases. The T-junction was modeled using three series inductors of 0.1

nH and a shunt capacitor of 0.2 pF; the open-circuited stub was modeled using an

equivalent end-e�ect approximation for static-TEM approximations [50]. For the

given geometry of these boards, an end-e�ect length was approximated as 0.57 mm,

or a capacitance of 2.3 pF.

With the mismatch, matrix �c
L had large magnitudes of self-re
ections on lines 1

and 3, while re
ections into line 1 from lines 2 and 3 were minimal; no forward waves
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on line 2 were re
ected (column 2 all zero). Given that line 2 is matched to ground

and lines 1 and 3, this result is physically intuitive, and a zero column is possible

since conductor re
ection coe�cient matrices are generally asymmetric [3], even for

symmetric terminations.

Initial guesses were chosen with the aid of a Smith chart, using the wavelength of

the dominant mode of the given excitation. Table 5.1 shows a listing of the �rst two

initial guesses, optimized distances, and computed stub lengths for both mismatch

cases. Only one signi�cant digit was retained due to etching resolution of 0.005 in.

(0.127 mm).

For each case, the �rst optimal stub attenuated self- and interline re
ections. The

\short" mismatch (with parameter d = 7:3 mm), is superior since its d is half that

of the \open" case. Calculations using the simulated transformation matrix show

that the matching network signi�cantly reduces the self-mode and intermode voltage

re
ections. Figure 5.3 shows these simulated self-mode re
ections as functions of

frequency. The phase response clearly indicates the di�erence in modal propagation

constants. Re
ections are minimized for the optimization frequency, 2.0 GHz.

The mutual matching strategy was applied to a mismatched load where nearest

neighbors were \shorted" with 26 
 from their characteristic admittance-derived

value of 287 
. Three solutions sets were found to increase the absorbed power in

the three cases by an average of 28 %. Again, parameters and full power relations are

shown in Table 5.1. The \center tune" match, however, increases the absorbed power

by an average of 30% and almost perfectly matches this \short." Three solutions using

(5.16) were obtained.

Both interline reactance match criteria, (5.15) and (5.16), were also tested on a

more sophisiticated \ampli�er" termination, for which [ZL]22 � 20 k
, [ZL]12;21;23;32 �

500 
, and [ZL]13;31 � 10 k
. Such a termination could be encountered in a transi-

tor ampli�er application. The standard interline reactance o�ered only one solution,

which actually increased the mismatch. The \center tune" interline reactance in-

creased absorbed power 12% - 25%, with better matching for smaller d (see Table 5.1

for complete power relations and parameters).

Finally, the quarter-wave transformer strategy was tested on a mismatch. Non-

linear equation (5.17) is generally di�cult to solve when information about Y q is not

known a priori. However, reciprocity guarantees symmetric matrices, and symmetry
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about the x = 0 plane reduces the independent variables to four, since the matrix is

symmetric across the opposite diagonal. Thus, four nonlinear equations (quadratic

with respect to each variable independently) arise from (5.17). These may be easily

solved using Mathematica [51]. For one simulation, eight total solutions were ob-

tained, but four were immediately discarded due to nonphysical negative terms in

the impedance matrix; the remaining three violated the dominance condition on the

realizable admittance matrix [26]. One solution for an \ampli�er" type of termina-

tion with [ZL]22 � 2 k
 was obtained; line 2 was narrowed in several iterations and

an average increase of 19% absorbed power resulted.

In all cases, calculation of power quantities along the line veri�ed the e�ectiveness

of the matching networks. In Table 5.1, the forward-travelling power Pf and the

power absorbed the load (assuming the lines and matching networks are lossless) PL

demonstrate the matching. Certain solution sets were repeated for various initial

guesses and therefore omitted. In nearly all cases, the matching solutions nearer to

z = 0 resulted in greater absorbed power, as the e�ect of the mode delays decreased

with smaller coupling lengths.

Each matching network solution in the coupled-line system was checked on Agi-

lent's Advanced Design System. All power values were veri�ed with under 1% error;

these resulted from termination value truncations and substrate approximations.

5.4 Calibration and Measurement Results

To demonstrate the validity of the matching strategies on coupled three-line sys-

tems, several microstrip structures were constructed from the synthesized results

given in Table 5.1 and the dimensions given in the previous section. Focusing on

the stub-corrected \short" mismatch (solution 1: d = 7:3 mm, l = 10:5 mm), the

structure in Fig. 5.2 was �rst fabricated on Kepro FR-4 circuit boards.

Tight physical coupling between lines precluded adjacent connectors in Fig. 5.2.

Thus, the coupled lines were accessed with fan-ins and fan-outs, as shown in Fig.

5.4. Lines 1 and 3 were angled 20� from the z-axis and continued 17.58 mm from

the reference planes to the board edges. SMA 
ange mount connectors (female 3.5

mm coaxial cable to microstrip tab adapter) were then soldered directly to the lines

at these edges. The bend discontinuity su�ered a simulated mismatch of no greater

than 52 
; in fact the worst discontinuity measured via time-domain re
ectometry
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(TDR) was 55 
 for one case, which we believe can be attributed to a poor solder

connection.

We sought to validate the matching networks by measuring the conductor and

mode re
ection coe�cient matrices from measured S-parameters, performed on an

HP 84510C automatic network analyzer (ANA). Furthermore, characterization of the

coupled line sections in the multimode domain was essential. We therefore employed

the multimode TRL (MMTRL) algorithm [45] and a renormalization algorithm [38].

Three necessary standards (thru, re
ect, and line) with the same fan-in and fan-out

sections were also constructed on identical board material using an identical chemical

etching process. Identical SMA connectors and solder joints were also used.

For the conductor S-parameters, we used a hybrid \two-tier" calibration. First,

a 3.5 mm short-open-load-termination (SOLT) calibration de-embedded the test ca-

bles. Then, to de-embed the microstrip-coax junction, the input line, and the angular

discontinuity of each fan-in or fan-out line, we employed the common\thru-re
ect-

line" (TRL) [52]. Thus the calibration established reference planes at coupled-line

system inputs labeled in Fig 5.4. The major source of error in this calibration pro-

cedure is obviously that it did not account for coupling in the fan-in and fan-out

sections, where the lines undoubtedly couple, especially close to the reference planes.

Furthermore, this calibration involved six distinct TRL calibrations and eight dis-

tinct standards (the MMTRL standards were not used, and each fan-in or fan-out

line was isolated on a separate board) to measure the six sets of (2� 2) S-parameters

needed to extract the eight coe�cients and fully characterize the structure in Fig.

5.2. Though some of these results were redundant, they provided an understanding

of the symmetry limitations, which were tangible, but for our purposes, negligible.

The TRL coe�cients for each calibration con�guration were calculated in software

and graphically examined to save time in repeating measurements a�ected by bad

connections, though connections were shown to be repeatable. More importantly,

this process revealed resonance frequencies in certain thru and line calibration stan-

dard �xtures (one of which was the MMTRL thru) which a�ected results at certain

frequencies.

Symmetry and reciprocity of the structure in Fig. 5.2 reduces the total indepen-

dent S-parameters to 13. Furthermore, if D = 2d in Fig. 5.2 (which applied to our

measurements), symmetry reduces the required number of measurements to 8: S11,
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S12, S13, S14, S15, S16, S22, and S25.

Using the complete (6�6) conductor and mode S-parameter matrices, referenced

as per Fig. 5.4, we computed both (3 � 3) conductor and mode input re
ection

coe�cient matrices �c
in and �m

in seen by the source (z = �D) for prescribed load

terminations �c
L or �

m
L for the mismatched termination network corresponding to the

\short." The general expression applicable to both conductor and mode quantities is

�in = [S]11 + [S]12 �
�
[�L]

�1 � [S]22
��1

� [S]21; (5.18)

where S is the measured (6� 6) S-parameter matrix and [S]ij are its (3� 3) subma-

trices. Matrix �L accounts for the load mismatch at port 2' (the load in Fig. 5.2)

and is calculated from (5.5),

The mode and conductor characteristic admittances were the only quantities not

directly measured. Instead we applied the numerical approximation to Y c
ch (gener-

ated using RLGC and veri�ed with other quasi-static methods), which was used in the

simulations and synthesis. Results were negligibly sensitive to this approximation.

Good correlation between the simulated and measured �c
in(z = �D) results is ob-

served in Fig. 5.5. Re
ection minimization at the design frequency 2.0 GHz demon-

strates that re
ected power can be almost eliminated for the simple mismatch cases.

The disturbance at 3.8 GHz in Fig. 5.5 represents one of the resonant frequencies

encountered for a particular �xture (a thru) with no available substitute. Measured

phase followed the general trend, with deviation mainly con�ned to DC and high-

frequency regions. The major assumptions concerned consistent solder connections,

consistent substrate in each TRL standard, and matched terminations.

Finally, the MMTRL allowed mode re
ection coe�cient measurement as per

(5.18). Results are shown in Fig. 5.6 and are in good agreement with the simu-

lated values shown in Fig. 5.3. Only mode 3 appeared to su�er from large error;

this results from its relatively low re
ection in this stub structure. This arises due

to the �eld con�guration of mode 3, where more �eld energy between the center

and outer lines negates the e�ects of the stubs. Thus, we �nd unsurprisingly that

measurements are more sensitive for small re
ection. Propagation constants were ex-

tracted and compared to our simulation quasi-TEM values (generated from RLGC).

The phase constants are shown in Fig. 5.7, and clearly agree with the quasi-TEM

values with acceptable error. The attenuation constants are shown in Fig. 5.8 and

are somewhat higher than predicted by quasi-TEM simulations, but still acceptable
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and increase with frequency, as expected.

Several structures incorporating the interline reactance matching networks for

mutual mismatches were also fabricated. Measurments are currently being conducted

and will be presented in future work. The quarter-wave transformer should be ex-

pected to yield similar, though less signi�cant matching, as observed in simulations

(see Table 5.1). For now, the main goal of validating one of the matching networks

(tuning stubs) has been accomplished, and the stub strategy would clearly be appli-

cable to transistor ampli�ers or coupled-line bus systems with mismatched drivers on

the outer lines.

5.5 Conclusions

This chapter has introduced several new matching techniques for a coupled-line

microstrip structures. Practical applications will certainly include more complicated

mismatches and greater coupling lengths for which the matching methods detailed in

this paper may be individually less e�ective. However, the main goal was validation of

the techniques, made possible through frequency-domain measurements. Certainly,

more extensive measurements and more precise calibration procedures are under con-

sideration. Some error factors remain to be corrected or improved, and the impact

of several calibration and measurement assumptions will be further investigated.

Future work includes combination of these methods, hybridization with other

methods, and development of better optimization procedures. Speci�cally, optimiza-

tion of power functions given the excitations and boundary conditions will alleviate

the dominant mode concern and the voltage-wave matching approach, thereby fully

and unambiguously \matching" (maximizing the power delivered to the load). Bilat-

eral matching to achieve maximum power transfer is obviously desired. Also, parallel

stubs and other novel structures with possible matching capability should be inves-

tigated. Finally, full EM modeling will improve the discontinuity models and other

signi�cant e�ects arising with increasing application frequencies.
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Table 5.1 Optimized parameters for stub and reactive element tuning cases.

Solution z = �dguess z = d Pf PL Pf PL

Set (mm) (mm)
l or X V S (V) w/o match with match

Outer line \Open" mismatch with stub match

1 14.2 ( 3
16
�) 13.9 25.6 mm (1,1,1) 7.46 5.42 7.34 7.32

2 23.7 ( 5
16
�) 26.9 12.0 mm (1,1,1) 7.46 5.42 7.45 7.15

Outer line \Short" mismatch with stub match

1 4.7 ( 1
16
�) 7.3 10.5 mm (1,1,1) 6.96 5.78 7.38 7.36

2 33.2 ( 7
16
�) 33.3 27.4 mm (1,1,1) 6.96 5.78 7.56 7.45

Mutual mismatch \short" with interline reactance match

1 4.0 8.14 0.90 pF (0,1,0) 2.64 1.77 2.50 2.37

7 28.0 51.88 0.88 pF (0,1,0) 2.65 1.84 2.49 2.33

8 32.0 35.60 0.15 nH (0,1,0) 2.62 1.80 2.50 2.42

Mutual mismatch \short" with interline center-tune match

1 2.0 6.1 1.19 pF (0,1,0) 2.49 1.71 2.47 2.47

7 14.0 37.0 0.18 nH (0,1,0) 2.53 1.75 2.48 2.48

9 18.0 49.2 1.21 pF (0,1,0) 2.47 1.75 2.47 2.46

Realistic ampli�er mismatch termination with interline reactance match

1 8.0 48.0 0.14 pF (0,1,0) 2.59 1.56 2.53 1.36

Realistic ampli�er termination, interline center-tune match

3 6.0 55.6 0.21 nH (0,1,0) 2.23 1.55 2.62 2.16

5 10.0 26.5 1.45 pF (0,1,0) 2.57 1.37 2.72 2.07

6 12.0 15.1 0.25 nH (0,1,0) 2.41 1.30 2.66 2.09

Realistic termination with quarter-wave transformer match

1 - - - (0,1,0) 2.51 1.63 2.45 2.06
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Figure 5.1 Cross-sectional and top view of microstrip structure showing dimensions
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Figure 5.3 Modal re
ection coe�cient variation over frequency for mode self re
ection
terms [�m

L (z = �D)]11, [�
m
L (z = �D)]22, [�m(z = �D)]33. Stubs optimized for 2.0

GHz with open on termination elements [ZY
L ]11 and [ZY

L ]33: d = 7:32 mm, l = 10:58
mm.
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Figure 5.4 The device under test, with input and output sections, reference planes,
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L]11;33 at z = �21:1 mm, with \short" mismatch corrected by
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CHAPTER 6

MTL AMPLIFIER SYNTHESIS

Synthesis procedures for microwave transistor ampli�ers (MTAs) on two- and

three-coupled microstrip line structures are presented. This novel design utilizes cou-

pled microstrip with one or more of the lines grounded at the system input and

output. Coupled-line matching network design techniques are applicable. The ba-

sic idea is to utilize the fabrication advantages of coplanar technology while saving

conductor material. This alleviates the need for through-holes and vias necessary in

ordinary MTAs.

6.1 Introduction

Narrowband low- and medium-power microwave transistor ampli�er (MTA) de-

sign is necessary for a plethora of microwave devices and systems, including wireless

communications, signal generation, and radar. One of the most common and fun-

damental MTA designs utilizes microstrip technology. Here, closed-form expressions

are readily available to facilitate the design of the matching networks and biasing

circuits necessary for the ampli�er (e.g. [53], [54]).

Several recent works have addressed �nite-ground coplanar waveguide (FG-CPW)

lines [55], [15] and devices in FG-CPW lines [56]. In order to preserve the advantages

of planarity inherent to CPW technologies, while eliminating their large swaths of

conductor material, we explored the synthesis of ampli�ers in coupled-microstrip

technology, where one or more lines are connected to ground. However, this requires

considerably more numerical analysis [29] and coupled-line matching networks [44]

incorporated into well-known multiconductor transmission line (MTL) formulations.

The result applies the coupled microstrip matching networks [29] to a transistor

ampli�er for improved gain, and whose design requires no vias, through-holes, or

large substrate conductive planes at the signal level, which translates to fabrication

savings.
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Despite the topological similarities with FG-CPW (our three-line ground-signal-

ground structure is identical), coupled microstrip designs utilize the ground plane so

that propagating waves are con�ned mostly to the dielectric and may include parallel-

plate modes. The ground plane is not optional because our designs consider the

\ground lines" to be connected to ground at the input or output ports or both in the

system with vias, wraps, or some chassis or structural connection. Or, where these

connections are undesirable, FG-CPW-to-microstrip transitions may be employed

[57]. However, to preserve fabrication simplicity between these transitions, ground

equalization is not considered.

A comparative study between FG-CPW and three-coupled microstrip lines will

be warranted to clarify these design issues. We will not examine them here, however,

and we only emphasize that coupled microstrip devices and systems will be practical

as an alternative to FG-CPW in hybrid applications where multiple waveguiding

technologies are necessary.

We start the paper by overviewing the necessary theoretical formulations for

microwave transistor ampli�er design extended to the coupled-microstrip domain,

including the transistor discontinuity characterization and the simulataneous conju-

gate match in MTL systems. After describing the functioning prototype ampli�er, we

present a generalized methodology for coupled-microstrip ampli�ers. This will allow

accurate synthesis of ampli�ers and other devices in coupled-microstrip systems with

arbitrary numbers of lines.

6.2 Multiconductor Transistor Ampli�er Formulations

General synthesis of coupled-microstrip line ampli�ers follows from well-known

fundamentals for the single line case [54]. The ampli�er contains excitations, ter-

minations, matching networks, bias networks, and the transistor. Each section in

the MTL-MTA, however, is described by a (2n� 2n) immittance parameter matrix,

where n is the number of lines (see Fig. 6.1).

Practically, n will be limited in single-channel or single-signal analog applica-

tions. Our three-line ampli�er could also be realized with two lines, though several

engineering issues would di�er.
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6.2.1 The transistor discontinuity

The transistor and the coupled lines within its vicinity represent a discontinuity.

Ideally, this section (between points z = �tS and z = �tL shown in Fig. 6.2)

should be modeled or measured as a full 2n-port (or \n-dimensional two-port") in

the frequency domain, yielding a (2n� 2n) frequency-dependent S-parameter matrix

ST(!), shown in Fig. 6.1, and given by

ST =

"
S11 S12

S21 S22

#
; (6.1)

which is normalized to a 50-
 uncoupled system with characteristic impedance matrix

Z0 = 50 � [12n] 
: (6.2)

ST(!) is usually obtained from ANA frequency-domain measurements. How-

ever, for multiline systems with tightly coupled lines, this measurement requires the

MMTRL algorithm [45], or coupled line fan-ins and fan-outs [29], [33]. Furthermore,

the trend toward smaller device and system size necessitates microprobe measure-

ments and appropriate full-port characterization techniques [38].

For an initial prototype, our primary concern was to obtain a functioning ampli-

�er, without necessarily designing according to a comprehensive methodology. Thus,

given readily available apparatus for conducting two-port, single-line MTA measure-

ments of a biased transistor in the common-emitter con�guration, we consider a

two-port approximation of the 2n-port. In other words, the two-port S-parameter

description of the transistor is obtained directly by measurement, and embedded into

a coupled transmission line model, from which one obtains the 2n-port S-parameter

description of the transistor discontinuity. We will address the shortcomings of such

an approximation in Section 6.3.

6.2.2 Simultaneous conjugate matching

The simultaneous conjugate match (SCM) conditions necessary to achieve max-

imum transducer power gain for the ampli�er system in Fig. 6.1, where each each

block is a 2n-port, are

�S = ��
in; (6.3a)

�L = ��
out; (6.3b)

where �L and �S are the (n � n) line re
ection coe�cient matrices at the input

and output sides of the transistor discontinuity (at z = �tS and z = �tL) looking
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toward the source and the load terminations of the system, or the input and output

of the coupled-line ampli�er, respectively. The input and output re
ection coe�cient

matrices �in and �out looking into the transistor section are

�in = S11 + S12(�
�1
L � S22)

�1S21 (6.4)

�out = S22 + S21(�
�1
S � S11)

�1S12: (6.5)

In the scalar case, the SCM solutions to �L and �S are found using the quadratic

formula. For coupled lines, the nonlinear matrix system requires numerical optimiza-

tion for �L and �S. Several approaches to this optimization are possible, including

genetic algorithms to minimize the Frobenius matrix norm of (6.3). However, one

cannot optimize arbitrary re
ection coe�cients; these are constrained by passivity,

reciprocity, and realizability conditions for general lossy passive matching networks.

(Their stability, in fact, must be veri�ed by positive de�niteness of the equivalent

impedance and admittance matrices ZL and Y L.) Instead, one must maximize the

power delivered to the load as functions of the terminations, transistor description,

and matching network parameters. However, athough the transducer power gain in

single-line systems is given by the relatively simple formula [54]

GT = jS21j
2 1� j�Lj

2

(1� j�Sj2)j1� S22�Lj2
; (6.6)

the equivalent gain in MTA systems is a complicated matrix function that can be

derived using multiline signal 
ow graph analysis:

GT =
2PL

2PAVS
=
b�S �A

� � [1n � ��
L�L] �A � bS

b�S � ([1n � �S�
�
S]
�1)� � bS

; (6.7)

where PL denotes the power delivered to the load, PAVS denotes the available source

power, and the matrix A is given by

A = [1n � S22�L]
�1S21 (1n � �S�in)

�1: (6.8)

An important observation regarding (6.7) is its dependence on the source excitation

bS, which di�ers from the single-line scalar case (6.6).

6.3 Results

For our design, we used a Motorola MRF-901 bipolar junction transistor (BJT)

in common-emitter con�guration. As explained in the previous section, we approxi-

mated the transistor as a two-port that was measured using a separate �xture which

fastened the package to the board and signal lines for measurement. This �xture
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did not include ground lines adjacent to the signal lines, as would be the case in

the three-coupled line ampli�er. Instead, the emitters where grounded to a separate

block of conductor raised through the substrate from the ground plane. Therefore,

the �xture introduces error for high frequencies since the two-port representation

fails to accurately model the true coupled-line environment of the ampli�er. Thus

the (2n � 2n) S-parameter simulation of the measured transistor 2-port embedded

in three coupled lines will signi�cantly di�er from the actual (2n� 2n) S-parameter

description of the transistor discontinuity in three lines.

Synthesis of coupled-line matching networks in a standard MTL-MTA requires

formulations for longitudinal MTL functions [29]. Traditional matching network tech-

niques may be extended to coupled lines, and for this problem each matching network

consists of two chip capacitors of equal value, each interconnecting lines 2 and 1 and

lines 2 and 3 at locations z = �mS and z = �mL as in Fig. 6.2 (equal capacitances

maintain symmetry and suppress the odd mode). The chip capacitors used are made

by Dielectric Laboratories and have a width of 110 mils. Biasing voltages for this

transistor were supplied to the base and collector through ports 1 and 2 of the network

analyzer for both the transistor measurement and the �nal ampli�er measurement.

We must emphasize that for MTL matching, one network may not necessarily be

adequate. Given three lines, one of the aforementioned network of interline capacitors

does not generally provide a complete match. Consider an arbitrary number n of

coupled lines with strong enough coupling such that their (n � n) characteristic

admittance matrix is dense. A general, full, lossless match at some longitudinal

distance requires reactive elements interconnecting each of the n+1 nodes (the lines

and the ground plane). Tuning stubs are usually impractical for inside lines (the signal

line in our three-line ampli�er). Furthermore, for three or more lines, mismatches of

admittance between nonadjacent lines may not be practically matched unless bridges

are used. Therefore, perfect matching is generally not possible for n � 3.

For the transistor two-port to 2n-port model and the matching network opimiza-

tion, we used ADS. Gain, S21 was maximized while the re
ections S11 and S22 were

minimized by optimizing the capacitances CS and CL (limited to the discrete values

of 0.4, 0.8 and 1.2 pF) and the distances z = �mS and z = �mL (bounded only

by the the input/ouput connectors and transistor junction). The optimization and

�nal simulations included conductor thickness, substrate loss, end-e�ect capacitance,
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and T-junctions. The SMA connectors were accounted for in simulation via 70 mil

transmission lines. Their actual length was approximately 200 mils.

Figure 6.3 shows the �nal ampli�er with connectors, the transistor, and the

matching chip capacitors. Final matching network results (CS = 0:4 pF, mS � tS =

1040 mil, CL = 0:4 pF, tL�mL = 1550 mil) are compared to the unmatched ampli�er

in Fig. 6.4 to validate the design. Matching reduced S11 and S22 and increased gain

by 3.4 dB (from 1.8 dB to 5.2 dB) at the design frequency, 3.1 GHz.

Figure 6.5 shows a small discrepancy between the simulated matching network

optimum and the actual measured optimum (1.5 dB). This was likely the result of

the 2n-port discontinuity approximation from the two-port transistor measurement.

This is close to the maximum attainable transducer gain which we approximated as

8.7 dB, but as predicted, our optimization cannot achieve this �gure because a full

match is unattainable with only one interline capacitance network for each side.

6.3.1 Filtering, feedback, and mode delay e�ects

Coupled-microstrip con�gurations, while ideal for planarity and fabrication, are

susceptible to adverse �ltering e�ects. In particular, the nulls in the frequency re-

sponses of gain (e.g., 2.5 GHz, see Fig. 6.4) are the result of �ltering behavior where

the signal essentially bypasses the transistor. When the total board length (for our

case, 3800 mils) from input to output is an integer multiple of one-half wavelength,

there are essentially two quarter wave �lters on each side of the transistor, and a

signal launched at the input (line 2) couples to lines 1 and 3 (little appears at the

base of the transistor for ampli�cation) and then couples on the output side back to

line 2 to the output. To verify this �ltering, we removed the transistor package and

measured the passive three-line board. Results are shown in Fig. 6.6; clearly, the

ampli�er gain is compromised when the �lter transmission is maximum (at 2.5 GHz),

while the feedback, S21 for the �lter in Fig. 6.6, is very large around this frequency.

Obviously, the total structure could be reduced in size to mitigate the �ltering.

Again, this device is essentially conceptual, and would be realized in practice on a

much smaller scale. But provided that the device dimensions are electrically large,

such transmission line �ltering behavior occurs. Cascaded ampli�ers are one solution

which will increase bandwidth and gain, though at higher material cost.

Note that the matching networks may also increase feedback (> �15 dB) and

still result in relatively poor re
ection, particularly for the input. The obvious trade-
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o� seems to be bypassing for matching. For both sides, better matching sacri�ces

the signal magnitude incident upon the transistor gate and collector. For the input,

this causes signal bypass and gain degradation; for the output, the result is signal

feedback.

In this symmetric case where the transistor is removed, the nulls and peaks in

the �lter responses have neither consistent shape nor magnitude. While increasing

loss plays a role, the \mode delays" due to unequal propagation velocities are also

signi�cant. Of the three even quasi-TEM modes that propagate in this system, the

input signals excite two of these modes, the so-called even-even and even-odd modes,

whose relative delays result in a phase di�erence of 32� upon reaching the junction

at the design frequency of 3.1 GHz.

6.3.2 Matching network sensitivity

Matching network optimization should employ a method. Genetic algorithms

should be limited to problems with many parameters, such as double matching.

Otherwise, traditional gradient methods may su�ce. Consider the placement of the

chip capacitors after their optimized distances are determined.

For improved bandwidth, it is usually desirable to restrict the matching network

location to within a half-wavelength of the mismatch. Figure 6.7 shows a power

contour taken for the matching network that we presented in a previous work [29]

for a lossline interline capacitor matching case. Capacitance value and longitudinal

distance from the load are the horizontal and vertical parameters, while the white-

shaded areas correspond to higher power absorption in the load and better match.

The horizontal periodicity of the maxima correspond to the e�ective half-wavelengths

(where the e�ective propagating mode consists of some combination of the distinct

propagating modes whose delays are negligible). Note that load power absorption

falls o� for large matching capacitor value, since large capacitors increasingly appear

to short the lines.

Clearly, this power contour is smooth, and lends itself to traditional gradient

methods. Furthermore, this property incurs 
exibility in the value and the placement

of the capacitor. Figure 6.8 shows the measured ampli�er gain (S21) for the input-side

capacitor at four di�erent longitudinal locations, and veri�es that deviation of the

capacitor from the optimized location does not signi�cantly degrade the gain within

260 mils, although the alteration incurs some frequency shift in the maximum. A
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maximum increase of 6.5 dB for 3.22 GHz was observed for mS � tS = 1180 mil.

6.4 General Methodology

The aforementioned results have validated the synthesis of power ampli�ers in

MTL systems. With current trends toward smaller and faster interconnects at the

board, package, and chip levels, a general methodology for ampli�ers in these increas-

ingly coupled-line systems must be developed. While this will account for an arbitrary

number of lines, there will usually be only one input and one output. The remaining

ports will be terminated appropriately (usually to ground via wrap-arounds or to

other grounded �xturing).

Extending upon this work, a general methodology for an n-coupled line transistor

ampli�er proceeds as follows:

� Characterize the coupled microstrip system in terms of its normal mode parameters

or distributed circuit parameters [58].

�Measure the (2n�2n) scattering parameters of the transistor discontinuity (should

include any biasing circuitry to be present in the actual ampli�er) using appropriate

calibration techniques and algorithms.

� Numerically optimize passive, lossless matching network parameters for maximum

power transfer. These must be constrained by passivity, reciprocity, and realiz-

ability conditions. Two approaches are possible: a power function quantifying

power delivered to the load could be maximized, or the SCM conditions could be

minimized.

� Realize the matching networks.

� Simulate the �nal design, and measure a fabricated ampli�er using appropriate

calibration techniques and algorithms.

This methodology assumes that the lines are su�ciently short that �ltering e�ects

and transistor bypassing are negligible. It is even valid for devices with interline

coupling but electrically short longitudinal distances that do not exhibit transmission

line behavior.
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6.5 Conclusions

A novel coupled micostrip ampli�er in three lines has been synthesized, built,

and measured. We reiterate that this device's primary value is conceptual; a more

practical approach involves a smaller device fabricated on chip, for future work.

Measurements from a small MTL-MTA in three-coupled microstrip validate the

synthesis and lead to the formulation of a general methodology. This full coupled-

line ampli�er methodology involves a multimode TRL calibration of the transistor

discontuinuty (including biasing networks), a simultaneous conjugate match in the

MTL domain, and the synthesis of the matching networks. Unlike its single-line

counterpart, the coupled-line ampli�er concept requires no drill holes or vias result-

ing in fabrication savings. Furthermore, if designed properly, it could be a viable

alternative to similar coplanar devices for technologies which include ground planes.
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chip capacitors

Figure 6.3 Photograph of the matched three-coupled microstrip line transistor am-
pli�er.
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matched (solid line) ampli�er.
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CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary

This thesis concerned the synthesis of microwave systems in MTLs, focusing on

coupled microstrip technology. In Chapter 1 the circuit theory utilized in coupled

tranmission line systems was presented. Then, the full MTL theory was explained,

and relevant quantities were derived. All major circuit variables and quantities were

introduced, in both modal and state domains. Physical interpretation and expla-

nation accompanied these relations. All results were generalized to n-lines where

possible.

In particular, focus on longitudinal behavior of the MTL functions allowed nec-

essary understanding of the dynamics of terminated, source-driven MTL systems.

The e�ects of quasi-TEM mode delay on these longitudinal functions was fully de-

tailed. Comprehensive mathematical formulations coupled with physical interpreta-

tions showed passivity, reciprocity, and losslessness were preserved despite super�-

cially problematic bahavior, especially in the LIMFs. Though n-coupled line analysis

is far more complex than single lines, some of the basic tools and procedures of single

transmission line microwave theory apply.

Then, a normal mode parameter extraction method (or transformation) was de-

veloped for coupled tranmission line S-parameter representations. This method pro-

vides a mechanism to \extract" the RLGC parameters from the S-parameters or

transform the S-parameters to normal mode parameters under quasi-TEM conditions.

While theoretically important, this method has a signi�cant practical advantage: it

allows the characterization of a uniform MTL structure on which an ampli�er or

matching network was being fabricated. Thus, in the course of design, only one ad-

ditional measurement of the uniform coupled-line section would provide a validation

of the characteristics of the coupled-line dimensions, which would instill con�dence

in the software tools used in the synthesis.
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The above analyses and developments were necessary for the synthesis of active

devices in MTL coupled micostrip topologies. Naturally, these involved consider-

ation of matching networks in MTL systems; these were hence explored in depth.

This problem is fundamentally an extension of traditional trans mission line match-

ing network theory, and may employ reactive elements, stubs, and transformers.

Synthesis rules intially considered the unilateral case, where the matching strategies

required few numerical iterations and practical solutions were determined quickly

and accurately. They are easily visualized via Smith chart theory, which clari�es the

wavelengths and dominance of a propagating mode. Several matching strategies for

coupled-line systems in this case were synthesized and provided successfully matching

of several simple types of terminations.

However, unilateral approximations presented are useful when the source impedance

is relatively matched to the characteristic impedance of the lines; this places an obvi-

ously speci�c constraint on the problem. Therefore, in practical systems the bilateral

matching criteria should be used to account for both input and output terminations.

Furthermore, design of ampli�ers in MTL topology requires consideration of the tran-

sistor discontinuity, from which input and output matching networks are synthesized.

Finally, the fully object-oriented software tool XMatch was developed and intro-

duced. The purpose of this tool is to optimize matching networks for MTL systems

using direct searches, quasi-Newton methods, and genetic algorithms. It parses a user

input page and is capable of inputting frequency-dependent RLGC or normal mode

parameters for the transmission characterization. Results validate the tool's e�ec-

tiveness, and comparisions with synthesis approximations and independent software

tools validate its accuracy.

7.2 Future Work

Since the longitudinal MTL functions and governing parameters of coupled mi-

crostrip were thoroughly examined, scant theoretical work is further warranted. Much

of the background work including the LIMF and MTL investigation was motivated by

the desire to synthesize matching networks in coupled microstrip topologies with mis-

matched terminations. Preliminary matching network measurements for moderately

coupled lines functioned as expected.

Thus, while much was pioneered in this thesis, many interesting avenues for re-
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search remain. First, experimental validation of the mode delay e�ects upon LIMFs

is necessary. Furthermore, measurements of uniform coupled line systems, using the

multimode TRL algorithm and accounting imperfect re
ection in standards, are nec-

essary to validate the normal mode parameter extraction method presented. On

that note, full multiline, multimode calibration schemes and more re�ned measure-

ment techniques will increase accuracy of the frequency-domain S-parameter mea-

surements, and more thoroughly account for the �elds in the input sections and con-

nectors. Determination of the propagation constants and mode coe�cients, whether

by TDR or Fourier analysis of swept frequency measurements, will allow for a full

experimental characterization.

These measurements will likely be conducted in the frequency domain. Additional

types of matching networks should also be considered and tested in simulation, and

also measured for practicality. These include microstrip gap capacitances, low-Q

inductors, and broadband stubs.

In regards to simulation, the transmission line computer codes employed common

microwave engineering approximations where possible, particularly in modeling the

various discontinuities, and of course assumed quasi-TEM propagation. Certainly,

full EM simulation and experimental characterization is warranted, not only to ac-

count for frequency dependence of circuit parameters, but to estimate errors due to

modeling and assumptions.

XMatch must be expanded and streamlined for e�ciency. Currently, it can solve

problems using direct search and quasi-Newton methods, but it is time-consuming.

The genetic algorithm optimization is also extremely slow, and optimization typically

entails a number of parameters equal to twice the number of matching networks, so

this must be improved. Finally, multiobjective numerical optimization should be

considered for advanced ampli�er and oscillator design.

Finally, the methodology for a full MTL-topology ampli�er has been developed.

This will allow a considerably more accurate MTL ampli�er design than that pre-

sented in this thesis. The design will proceed in the detailed steps, including the

bias networks, from which the XMatch software tool will optimize the matching net-

works. The initial transistor discontinuity and �nal ampli�er will be measured using

the multimode TRL algorithm.
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APPENDIX A

PROOF OF S-PARAMETER SYMMETRY

Proof of the generalized S-parameter matrix symmetry in reciprocal systems is

given as follows.

The generalized S-parameter matrix given by (3.22) is repeated here for conve-

nience:

S = (Zc
ch)

1=2 [Zc
ch +Z

c
L]
�1 [Zc

L �Z
c
ch] (Z

c
ch)

�1=2 : (A.1)

This matrix describes a reciprocal system; its symmetry is proved as follows. Taking

the transpose of (A.1) results in

St = (Zc
ch)

�1=2 [Zc
L �Z

c
ch] [Z

c
ch +Z

c
L]
�1 (Zc

ch)
1=2 ; (A.2)

where each factor is symmetric by reciprocity. Now, if Zc
ch is nonsingular,

St = (Zc
ch)

�1=2
Zc

ch(Z
c
ch)

�1 [Zc
L �Z

c
ch] [Z

c
ch +Z

c
L]
�1
Zc

ch(Z
c
ch)

�1 (Zc
ch)

1=2 : (A.3)

To simplify the algebra, we let

A = (Zc
ch)

�1 [Zc
L �Z

c
ch] [Z

c
ch +Z

c
L]
�1
Zc

ch: (A.4)

Note that A is similar to a re
ection coe�cient. Now,

A = (Zc
ch)

�1Zc
L [Z

c
ch +Z

c
L]
�1
Zc

ch � [Zc
ch +Z

c
L]
�1
Zc

ch

= fZc
ch)

�1 [Zc
ch +Z

c
L] (Z

c
L)

�1Zc
chg

�1 � [Zc
ch +Z

c
L]
�1
Zc

ch

= f1n + (Zc
L)

�1Zc
chg

�1 � [Zc
ch +Z

c
L]
�1
Zc

ch

= f(Zc
L)

�1 [Zc
ch +Z

c
L]g

�1 � [Zc
ch +Z

c
L]
�1
Zc

ch

= [Zc
ch +Z

c
L]
�1
Zc

L � [Zc
ch +Z

c
L]
�1
Zc

ch

= [Zc
L +Z

c
ch]

�1 [Zc
L �Z

c
ch] : (A.5)

The derivation for A is obviously applicable to (3.8) and (3.9).

Using (A.5) with (A.4) and (A.3), we arrive at

St = (Zc
ch)

1=2
A (Zc

ch)
�1=2

= (Zc
ch)

1=2 [Zc
L +Z

c
ch]

�1 [Zc
L �Z

c
ch] (Z

c
ch)

�1=2 : (A.6)

Finally, we have that

S = St; (A.7)

which agrees with [59], who de�nes S according to (A.2).
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