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ABSTRACT

As semiconductor process technologies continue to scale and the demand

for ubiquitous computing devices continues to grow with paradigms such as

the internet of things (IOT), the availability of low-cost, low-power, high-

speed and robust communication interfaces between these devices will be a

major challenge that needs to be addressed. Even in traditional desktop

computing devices, the off-chip bandwidth does not scale as fast as the on-

chip bandwidth and has therefore been an important bottleneck to the growth

in processing speed. Thus, intelligent techniques will have to be developed

that allow the traditional lossy channels to be deployed at higher data rates,

while minimizing cost and power, without paying much of a performance

penalty.

Over the last decade and a half, a great amount of research has been done to

design monolithic transmitter and receiver integrated circuits (ICs) in silicon

complementary metal-oxide semiconductor (CMOS) technology as opposed

to traditional discrete SiGe, InP technologies owing to the low cost and ease

of integration of CMOS technology. A key component of the receiver is the

clock and data recovery (CDR) circuit, which extracts the clock from the

incoming data stream and samples the data. The performance of the CDR

is a major impediment to increasing data rates in a serial communication

system. Several CDR architectures have been proposed to ensure that the

performance is comparable to traditional discrete SiGe, InP devices.

In this thesis, three different CDR circuit architectures are designed in a

180 nm CMOS process with a target data rate of 2 Gbps and compared in

terms of performance, power and area. In order to provide a fair comparison,

the corresponding channel and transmitter blocks are also designed and the

entire serial communication link is simulated. The fundamentals of CDR

circuit design are introduced and a complete guide to analysis and design

of CDR circuits for high speed serial links is presented. The results of the
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comparison help to evaluate power, performance and area trade-offs during

the design phase and to choose the right architecture for a given application.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The information age is here, as is confirmed by the sheer magnitude of data

on the internet. As of 2013, it was estimated that the total volume of data

on the internet was 4.4 zettabytes (1 ZB = 1021 bytes = 1 billion terabytes)

and this is expected to multiply tenfold by 2020 thanks to the increasing

number of computing devices and new landscapes such as the internet of

things (IoT) [1]. It is also estimated that about 640 TB of data is transmitted

every minute on the internet [2]. A driving force behind this data explosion is

the scaling and advancement of semiconductor fabrication technology (SFT)

which has dramatically reduced the cost of computing and storage devices.

Figure 1.1 [3] highlights the trend, by showing the cost per gigabyte of hard

disk memory over the years.

Another key enabler of the information age is the steady increase in broad-

band access speeds due to advancements in fiber-optic communication sys-

tems. Figure 1.2 shows growth in average internet connectivity speeds of

end users in the United States [4]; clearly, we are at the cusp of the gigabit

internet era with some providers such as Google fiber providing fiber-optic

access lines to end-users.

While the internet backbone gets faster and massive data centers pile on

gargantuan amounts of data, the interface between computing devices and

the internet, such as network switches and processor-memory interface across

backplane channels, has been growing at a much slower pace, leading to a

bottleneck in computation speed. Figure 1.3 shows the trends in data rate

scaling of high speed input-output (IO) signaling links as forecasted by the

International Solid State Circuits Conference (ISSCC) 2011 [5]. The impor-

tant takeaway from the graph is that the data rate in inter-IC communication
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Figure 1.1: Cost per gigabyte of hard disk memory trend

Figure 1.2: Average end-user internet speeds in the United States
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Figure 1.3: IO signaling data-rate trends

links is growing by a factor of 2X every 4 years, which is not only slower than

the growth in internet speeds but also slower than Moore’s law [6], the trend

for semiconductor devices which predicts a 2X increase in the number of

on-chip transistors every 24 months.

Note that while the data rates in inter-IC communication links have been

increasing, the channel bandwidth remains the same. The increase in data

rate mandates an increase in the frequency of operation for the transmitting

and receiving circuits to the multi-gigahertz range and this leads to several

complications such as increased transmission line losses, cross-talk and, as

a result, intersymbol interference (ISI). This makes the circuits extremely

sensitive to timing uncertainties, and so the process of designing robust, low-

jitter CDR circuits is extremely arduous.

Another motivation is to evaluate a number of novel circuit architectures

that have been proposed for CMOS CDR circuits in terms of their perfor-

mance, power and area metrics in order to identify the way forward in design-

ing high speed serial interfaces. These architectures include static CMOS,

complementary logic and current mode logic (CML) as well as channel con-

figurations such as single-ended and differential designs.
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1.2 Thesis outline

The goal of this thesis is to provide a comparison between three different

circuit architectures for CDR circuits. In addition, it aims to provide a

reference manual for designing current mode logic circuits for clock and data

recovery circuits. The thesis is organized as follows:

• Chapter 1 provides an introduction to the research problem, describing

the need for high-speed serial links and providing the motivation for

this thesis.

• Chapter 2 provides an overview of high-speed links with an emphasis

on describing each of the building blocks, the figures of merit to char-

acterize these links and the motivation behind the industry-wide shift

from parallel to serial-link design for low power, cost-effective robust

I/O link design.

• Chapter 3 provides a strong mathematical framework to analyze the

CDR and to arrive at the optimal loop parameters.

• Chapter 4 describes the behavioral modeling of the CDR circuit using

Verilog-AMS to model the various building blocks.

• Chapter 5 describes the design of the single-ended CDR architecture.

• Chapter 6 describes the design of the complementary CDR architecture.

• Chapter 7 describes the design of the current mode logic CDR archi-

tecture.

• Chapter 8 presents the results obtained from the simulation of the

three CDR architectures and also provides a comparison between the

architectures.

• Chapter 9 concludes the thesis with a discussion of why current mode

logic is a superior circuit architecture for high speed applications and

also suggests some potential future work in this area.
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CHAPTER 2

HIGH SPEED SERIAL LINKS OVERVIEW

In this chapter, an overview of the various components involved in high speed

serial links is provided. We begin with a discussion of why serial links are

preferred to parallel links and this is followed by a detailed description of

a typical serial link. Next, we describe the various blocks of the SERializer

DESerializer (SERDES) system. Finally, some performance metrics for high

speed serial links are discussed.

2.1 Serial vs. parallel links

Traditional IO buses have been based on parallel links such as the IDE (inte-

grated drive electronics), PCI (peripheral component interconnect) and AGP

(accelerated graphics port) interfaces. These interfaces required one physical

conductor for each bit of the transmitted data word, resulting in wide data

buses that were usually limited in speed to less than 100 Mb/s. High per-

formance interconnects were limited to high-end work stations such as the

Cray supercomputer [7]. In the past decade and a half, increasing micro-

processor clock frequencies, the move to multicore processors and paradigms

like graphics processing units (GPUs) and system on chips (SoCs) have man-

dated much faster access to data than ever before. One way to increase the

bandwidth of a parallel link is to increase the number of conductors. How-

ever, this approach is prohibitive and at some point serial links become more

attractive [8]. This has led to the development of several new interface stan-

dards based on serial links such as PCI-express (PCI-e), Serial ATA (SATA)

and RapidIO, all of which can be commonly found in any desktop computer

today.

The move to serial links was only natural since, historically, several high

speed links such as fiber-optic and co-axial cables have operated serially owing
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Figure 2.1: Comparison of serial vs. parallel links for different CMOS
technology nodes

to cable cost and synchronization difficulties with increasing transmission

speeds and distances. In addition to increasing the IO bandwidth, serial

links are also efficient in terms of cost, area and power. They also eliminate

several problems faced in parallel links such as crosstalk, data skew and clock

transmission.

A study conducted by Dobkin [9] compared serial and parallel links in

terms of their area and power across several CMOS process nodes with dif-

ferent feature sizes and the results are illustrated in Figure 2.1. The key

takeaways from the comparison are:

• For a given CMOS technology, there is a limiting value of link length

beyond which serial links are superior to parallel links in terms of power

and area.

• The limiting value discussed above also scales down correspondingly as

the feature size of the CMOS technology scales down.

Therefore, as semiconductor fabrication technology continues to scale down,

serial links become more and more beneficial as compared to parallel links.

Another important point to note is that as the feature size scales down, the

supply voltages have also scaled down whereas the voltage levels required by

the legacy parallel bus have not scaled proportionately [10].

In addition, a serial link greatly reduces the number of printed circuit

board (PCB) traces on the motherboard as well as the number of IO pins

required by the processor. This has several benefits such as easier package

design for the microprocessor IC and better PCB design since a single trace
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occupies much less area and hence can be isolated better. Serial links do not

require the transmitter clock to be forwarded along with the data, thereby

saving an extra trace/pin and also eliminating the effects of clock skew that

are found in parallel links. At today’s transmission speeds, the tolerance for

data skew between the various conductors of a parallel link is extremely low

and has reached the practical limit for PCBs using FR4 substrates. Also, the

capacitive-inductive coupling between the multiple conductors on a parallel

link leads to severe cross-talk effects and causes signal integrity issues. This

problem is overcome in serial links by using only one conductor and providing

sufficient isolation.

Thus, serial communication has become the solution to higher and more

efficient data transmission in order to meet the demands and trends of higher

capacity of communication technology [11].

2.2 A simple serial link

Figure 2.2: A backplane trace between two line cards

Several serial links are used today such as fiber-optic cables, co-axial cables,

LAN cables and backplane PCB traces. Since the focus of this thesis is high

speed computing interfaces, we look at an example of PCB traces between

two line cards on a backplane shown in Figure 2.2 [12]. Such backplanes are

becoming extremely common in today’s big data servers and large routers.
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Line cards are used to communicate to the external world through either

fiber-optic or LAN cables. High speed SERDES chips receive data from a line

card and communicate it to the switch card which directs the input stream

to the correct line card depending on its address.

In this system, the chips are mounted on packages which are then soldered

to the line card. The line cards connect to the backplane using through-hole

connectors. The backplane has a number of traces which connect the line

cards and switch cards to each other. A cross-section of the system is shown

in Figure 2.3 that shows the complete signaling path [13].

Figure 2.3: A cross-sectional illustrated view of the backplane trace
between two line cards

In order to intelligently design the SERDES (SERializer DESerializer) sys-

tem, it is essential to understand the nature of the channel and the various

imperfections that it suffers from. The circuit designer does not have a lot of

control over the channel as the channel design is often performed by system

level engineers. However, the circuit designer should be able to accurately

predict the behavior of the channel and this is often accomplished by channel

models. One of the most commonly used channel models is the S parameter

model. The S parameters are frequency domain parameters that can be used

to completely characterize the channel response in the time domain. The S

parameters can be obtained by actual measurement in the laboratory using

a vector network analyzer (VNA). The S parameters can also be obtained

through numerical simulations of the channel geometry using electromagnetic

field solvers such as Q3D or ANSYS HFSS.

Once the S parameters of the channel are known it is possible to estimate

the amount of loss, intersymbol interference, crosstalk and jitter in the data
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Figure 2.4: Signal distortion due to channel imperfections

stream that arrives at the receiver. These factors affect the timing window in

which the receiver must sample the data and also how sensitive the receiver

needs to be. For example, Figure 2.4 [14] shows how the clean data from the

transmitter is corrupted by the channel when operating at 10 Gb/s. Thus,

it is the job of the circuit designer to design a high fidelity receiver that can

correctly sample the distorted data stream with minimal power and area,

while ensuring that the number of errors is infinitesimally small (about one

in every 1012 bits).

2.3 SERDES building blocks

The SERDES system refers to the complete assembly of transmitter, chan-

nel and receiver that constitute the high speed serial link. A typical block

diagram of the SERDES system is shown in Figure 2.5. We will now discuss

each of the blocks in detail.

2.3.1 Serializer

It is important to note that most computer data is in the form of words of

some length of bits: usually a power of 2 such as 16, 32, 64, etc. Thus,

the input to the SERDES system is a set of bitlines which are parallel in

nature, i.e., the bitlines are synchronous with each other. Every clock cycle,

a new word arrives on these parallel lines and the information on all of these

9



Figure 2.5: A typical SERDES system

lines must be transmitted before the next clock cycle, when a new data word

would arrive. This functionality is carried out by the serializer blocks. Thus,

a serializer converts a parallel stream of data into a serial stream, suitable for

transmission over a high speed serial link. Depending on the number of bits

serialized, the serializer is termed as 2N : 1 serializer, where 2N represents

the data word length, i.e., the number of input lines.

Figure 2.6: A simple multiplexer-based serializer

One possible implementation of the serializer is a 2N : 1 multiplexer, with
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Figure 2.7: A binary tree-based serializer

the select lines configured to change 2N times per clock period, i.e., the select

lines can be considered to be the output of an N-bit counter which works at

2N times the clock frequency. This implementation is shown in Figure 2.6.

There are several problems with this approach:

• A new clock will have to be generated with a frequency of 2N times the

clock frequency. For the case of N = 3, and a 1 GHz system clock, we

need to generate a new clock at 8 GHz. Designing phase locked loops

(PLLs) to work at such a high frequency is often cumbersome. Also,

as N becomes bigger, the problem blows up exponentially.

• Even if we successfully generate the new clock, we would still have to

design the 2N : 1 multiplexer fast enough to transmit a new data every

T/2N seconds, where T is the system clock period. For the previously

described example, this would come down to about 125 ps. Designing

multiplexers with such small delays could be extremely expensive and

sometimes even impossible, as is the case when N becomes larger.
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• Working at such a high frequency drastically increases power consump-

tion since the dynamic power is directly proportional to the frequency.

The problem is only made worse by the circuits being large to accom-

modate for short delay targets.

In order to overcome the above issues, a tree-based topology is used [15].

In this topology, the large 2N : 1 multiplexer is divided into N stages of

2:1 multiplexers, with the final stage operating at 2N−1 times the clock fre-

quency and each predecessor stage operating at one half of the frequency of

its successor. This distributed approach reduces the delay targets for each

stage and thus allows much smaller circuits. In addition, since a large part

of the design operates at much lower than peak frequency, there is a great

reduction in power consumed. The tree-based design is shown in Figure 2.7

and is the most commonly used topology today. Latches are used to hold

the data between stages.

2.3.2 Driver amplifier

The driver amplifier is used both at the transmitter and the receiver. At

the transmitter, it is used to amplify the input serial bit stream before it

is sent through the channel. Sometimes, a pre-emphasis block is included

in the transmit driver amplifier to boost certain components of the signal

which are liable to face high attenuation. Another important purpose served

by the transmit driver amplifier is to provide impedance terminations to

terminate the channel with its characteristic impedance which is typically 50

Ω. This eliminates reflections in the channel and improves the integrity of

the transmitted signal.

2.3.3 Phase Locked Loop (PLL)

A PLL is a negative-feedback system whose purpose is to take an input ref-

erence clock with frequency fin, and produce an output clock with frequency

fout , such that fout = αfin, where α(> 1) is the multiplication factor. PLLs

are needed since crystal oscillators can provide a high spectral purity ref-

erence clock only up to a frequency of about 200 MHz. At the microwave

frequencies, crystal oscillators produce intolerable amounts of jitter which

12



Figure 2.8: Block diagram of a typical PLL

render them unusable. Thus, the most important function of the PLL is to

produce clock signals with minimal timing noise, i.e., jitter (in time domain)

and phase noise (in frequency domain). Figure 2.8 shows the typical block

diagram of a PLL system. The phase-frequency detector (PFD) compares

the frequency and phase of the divided version of the generated clock with

the reference clock. The PFD produces pulse width modulated (PWM) out-

puts which are used to drive a charge pump (CP). Depending on the PWM

signals, the CP pumps or drains charge into/from the capacitor in the loop

filter (LF). The LF is usually second order low pass filter (LPF), which filters

out the high frequency components in the output of the PD and provides it to

the voltage controlled oscillator (VCO). The VCO produces a clock waveform

whose frequency is proportional to the control voltage applied. The divider

divides the frequency of the generated clock by a factor N, where N = α.

Thus, the steady state of the system is one in which the generated clock has

a frequency of αFin and is exactly in phase with the reference clock.

2.3.4 Channel

The channel is the physical medium that transports the signals from the

transmitter to the receiver. As discussed previously, a good example of a

serial link is the channel between two line cards on a backplane. Figure 2.9

[12] shows the S-parameter S12 (attenuation) of the various components of

the channel. An important observation is that the attenuation gets worse

as the frequency increases. Thus, as data rates increase, the degradation

suffered by the signal gets worse. A good way to visualize the effect of the

channel in the time domain is to look at eye diagrams. An eye-diagram is a

synchronized superposition of all possible realizations of the signal of interest,
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Figure 2.9: Frequency response of the various components of the channel

Figure 2.10: Eye diagrams at the output of the channel for operation at (a)
2.5 Gb/s and (b) 5 Gb/s

viewed with a particular signaling interval. Figures 2.10(a) and 2.10(b) show

the eye diagrams at the output of the channel when operating at 2.5 Gb/s

and 5 Gb/s [16].

Clearly, for the first case, the eye is sufficiently open, i.e., we have sufficient

voltage and timing margin to detect 0’s and 1’s accurately. For the second

case, the eye is almost completely closed, and the window to sample the data

is very narrow, with the difference in amplitudes between 0’s and 1’s being

negligible. This leads to gross bit errors in the receiver, which is generally

unacceptable in high speed serial links. The above effect can be attributed

to several factors such as attenuation, dispersion, reflections and ISI, all of
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Figure 2.11: Equalized eye-diagrams for the case of (a) boosting high
frequencies and (b) suppressing lower frequencies

which become even more pronounced at higher frequencies. Thus, the circuit

designer has to accommodate these imperfections in the design, which makes

the SERDES design even more challenging at higher frequencies.

2.3.5 Equalizer

As discussed in the previous section, channel behavior distorts the transmit-

ted pulses, leading to increasing bit errors as the data rates increase. One

of the circuit techniques used to combat this behavior is equalization at the

receiver. A commonly used type of equalization is to provide a response

that directly compensates for the channel’s frequency response. Since we

know that the channel attenuation is larger at higher frequencies, one possi-

ble equalization solution is to boost the higher frequency components which

have been severely attenuated. Another solution is to suppress the lower fre-

quency components without altering the higher frequency components. The

effect of both techniques on the 5 Gb/s eye diagram shown previously is

presented in Figures 2.11(a) and 2.11(b) respectively [16].

2.3.6 Clock and Data Recovery (CDR) circuit

In high speed serial links, the transmitter clock is not forwarded. Instead,

the clocking information is embedded in the transmitted data stream and the

receiver is expected to extract the clock from the received data and use it

to sample the data stream. A CDR circuit serves this purpose and a generic
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Figure 2.12: Block diagram of a typical CDR system

block diagram of the same is shown in Figure 2.12. Comparing the block

diagrams of the CDR and the PLL, we find that they are similar in several

aspects. However, a CDR is typically not used for frequency multiplication.

It is used to extract the clock from the received data at just the right fre-

quency and phase to sample the data optimally. Thus, the phase detector for

the CDR is significantly different from that of the PLL. While the PLL PD is

used to ensure that the phase difference between the reference and generated

clock is zero, the CDR PD is used to ensure that the phase difference is at a

constant value that allows optimal sampling, i.e., the center of the eye. The

other blocks in the CDR are very similar to that of the PLL, although there

is no divider in CDR or in other words, the generated clock is divided by

1. Once the clock is extracted, we can use a decision circuit such as a sense

amplifier flipflop to sample the incoming data stream. We will explore the

various blocks in more detail in the following chapters as the CDR design is

the focus of this thesis.

2.3.7 Deserializer

The deserializer performs the complementary function of the serializer. Since

the data at the receiving end needs to be processed in terms of words of a

specific length, it is important to convert the serial data stream back to its

native parallel form. This function is served by the deserializer. Thus, in

its most basic form, the deserializer is a 1 : 2N demultiplexer. However, as

discussed in the serializer section, this topology has several disadvantages

and therefore a tree-based deserializer topology is preferred.
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Figure 2.13: Different signaling schemes used in serial links

2.3.8 Encoding and signaling

Encoding refers to the process in which the data to be transmitted is mapped

onto a different set of data in a reversible manner. This is done since the new

set of data has several advantages over the previous one. For example, one of

the purposes of encoding is to ensure that there are no long streams of con-

secutive 0’s or 1’s since the CDR ideally needs a transition every clock cycle

to work perfectly. Encoding can also allow for DC balance by maintaining

a roughly equal number of 0’s and 1’s. Another important purpose served

by encoding could be error detection and correction. Whatever the reason

for encoding, it is also critically important that the process is reversible by

a decoder at the receiver in order to reclaim the original data. A commonly

used encoding scheme is the 8B/10B scheme, where 8 bits of incoming data

are mapped to 10 bits of the output data which allows a reduction in the bit

error rate (BER).

In addition to encoding, it is also important to describe how the binary

digits of 0’s and 1’s are electrically represented in the channel, and this

process is known as signaling. The most commonly used signaling protocol is

the non-return to zero (NRZ) signaling where a 1 is represented by a constant

high voltage and a 0 is represented by a constant low voltage. Other signaling

techniques, such as the PAM-4, allow a reduction in bandwidth by utilizing 4

different voltage levels. Some of the commonly used signaling techniques are

shown in Figure 2.13. It is important to remember that a complex signaling
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technique requires an equally complex receiver design.

2.3.9 HSSL figures of merit

The performance of a HSSL system depends on both the channel charac-

teristics as well as the circuit design. As data rates steadily climb up, the

channel degrades the data even more severely, and it is becoming an increas-

ingly complex task to design HSSL systems. A key concern for HSSL systems

is robustness, and several metrics are used to characterize the link including

bit error rate (BER), jitter and cross-talk [17].

BER in modern HSSLs is typically between 10−12 and 10−15 and it is

the main metric used to gauge the integrity of the received data. A BER

of 10−12 implies that there is only a single bit error when receiving 1012

bits. Measurement/simulation of BER is one of the major challenges faced

by designers, since in order to accurately conclude that a link has a BER

of 10−12, we would have to actually transmit/simulate 1012 bits, which is

almost impossible in state-of-the-art simulators/equipment. Therefore, most

simulators use statistical methods to collectively analyze the effects of various

deterministic noise sources such as ISI, supply-noise, timing jitter, etc., as

well as random noise sources such as white-thermal noise and random jitter

when estimating the BER.

Another metric that is often used is eye-diagram masks. Each link standard

has a certain characteristic mask, such as the OC-48 mask used for SONET

(Synchronous Optical NETworks) systems which is shown in Figure 2.14.

The eye diagram needs to have a predetermined width, height, jitter, SNR,

etc., to meet the mask specifications and any HSSL system that meets these

specifications will be compatible with the other links in the system.

Finally, the last major metric in calculating the timing margin of a HSSL

is the jitter. Characterization of deterministic as well as random timing jitter

in a clock output is very important to a link designer. Essentially, jitter is

the time-domain variation in the clock-signal as shown in Figure 2.15 [18].

A commonly used method for jitter calculation is to close either side of the

eye horizontally by the amount of peak clock jitter. While this method can

be helpful in evaluating the effects of jitter at the receiver end, it is often an

overly optimistic approximation of noise margin degradation for transmitter
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Figure 2.14: The OC-48 eye mask

Figure 2.15: Timing jitter example

jitter. Due to the need for integration of clock generators such as PLLs in

large digital chips, clock jitter is dominated by power-supply and substrate

noise, neither of which scales with technology. Therefore, as data rates in-

crease, bit-periods become shorter and the performance of multi-gigabit links

will be limited by the clock jitter, thereby initiating the importance of accu-

rately analyzing the effects of clock jitter on high-speed serial links. Figure

2.16 provides a summary of common jitter profiles in a typical serial link.

19



Figure 2.16: Summary of common jitter profiles
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CHAPTER 3

CDR THEORY AND ANALYSIS

The clock and data recovery (CDR) circuit is the most important component

of the receiver and probably the most critical one in terms of performance.

Over the years, a tremendous amount of research has gone into the design and

analysis of this delicate block that has a profound effect on the performance

of a serial link. Along with channel imperfections, the performance of the

CDR is a key factor that limits the data rates in a HSSL. In this chapter,

we begin with a detailed look into the various components of the CDR block

and conclude with the rigorous analytical treatment of the same.

3.1 CDR building blocks

The block diagram of the CDR system is shown in Figure 3.1. We now look

at each of the blocks in detail.

Figure 3.1: Block diagram of a typical CDR system
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3.1.1 Phase detector

In a CDR, unlike many other feedback systems, the variable of interest

changes dimension around the loop: It is converted from phase to voltage by

the PD, from voltage to current by the CP, from current to voltage by the

LF and from voltage to phase by the VCO. In the locked state, the phase

relation between the incoming data and the generated clock is at a constant

value, irrespective of the magnitude of the loop gain. It is also important

that this constant value is such that we sample the data at the most optimal

point, i.e., the center of the eye.

The phase detector, as the name implies, compares the phase of the incom-

ing data and the generated clock and generates an output signal e(t) that is

directly proportional to the phase error φe. It serves as the error amplifier

in the feedback loop, minimizing the phase error and driving the loop to the

locked state. The loop is said to be locked when the phase error φe is a con-

stant. The design philosophy of the CDR should be to minimize the phase

error in the locked state, i.e., ideally we want the phase error to be zero. The

locking behavior of the CDR can be explained as follows. The PD produces

signal(s) whose DC value is directly proportional to the phase error φe. The

LF filters out the high frequency components of the PD output, allowing the

DC value to control the VCO frequency. Whenever the VCO frequency is

equal to the frequency of the incoming data but the phase error φe has not

established the required control voltage for the VCO, the loop will continue

the transient, temporarily making the frequencies unequal again, and this

process will continue until the phase error establishes the required control

voltage for the VCO. In other words, both frequency acquisition and phase

acquisition must be completed for the loop to lock [8].

It is important to note that while the above locking mechanism is straight-

forward, a simple PD cannot track step changes in the frequency of the input

data stream. Thus, in variable data rate applications, a second CDR loop is

used for coarse frequency acquisition, while the main CDR loop is used for

fine frequency and phase acquisition [19]. In this thesis, a single loop CDR

will only be considered since we are interested in constant data rate systems

only.

Several different types of phase detectors are proposed across the literature.

Generally speaking, these can be classified into two categories: linear PD and
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Figure 3.2: Phase transfer characteristics of (a) linear phase detector and
(b) binary phase detector

binary PD (or non-linear). A linear PD produces an error signal whose DC

magnitude is directly proportional to the phase error φe. On the other hand,

a binary PD produces an error signal whose value depends only on the sign

of the phase error φe. Figures 3.2(a) and 3.2(b) show the phase transfer

characteristics of the linear PD and binary PD respectively. The linear PD

has a linear phase transfer characteristic and the slope of the straight line

depends on the data transition density. If we have a data transition density

of 1, i.e., a transition every clock cycle, then the slope of the line is unity.

On the other hand, the binary PD has only two output levels: if the phase

error is positive, a high voltage is generated, if the phase error is negative,

a low voltage level is generated. Each of the two configurations has its own

merits and demerits. The biggest advantage of a linear PD is the low jitter

generation since the average output only changes slightly when the phase

error fluctuates around zero. However, it suffers from limited bandwidth and

a static phase offset error due to mismatch in up and down paths. A binary

PD typically has a higher PD gain and bandwidth, but is characterized by

high output jitter generation. This is because the average output changes

vastly when the phase error fluctuates around zero. Binary PDs work best

when employed with all-digital CDRs. In this thesis, an analog CDR is

considered and hence a linear PD will be used.
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Figure 3.3: Circuit diagram of a Hogge phase detector

Hogge phase detector

The Hogge phase detector [20] shown in Figure 3.3 is a linear phase detector

and will be the focus of this thesis. It consists of a positive edge-triggered

flipflop, a negative edge-triggered flipflop and two XOR gates. The data input

is served by the incoming serial data stream and the clock input is served

by the generated VCO clock. The PD indicates the phase error using two

output signals UP and DOWN. The DOWN signal is a reference signal that

produces a periodic pulse of a fixed width, i.e., one half of the current clock

period. The UP signal depends on the phase difference between the generated

clock and the incoming data. If the positive-edge occurs at the center of the

eye, the UP pulse will have the same width as the DOWN pulse, i.e., one half

of the current clock period. Depending on whether we sample at the left or

right of the eye, the UP pulse will have a lesser or greater width. Thus, the

PD produces pulse width modulated signals that indicate the phase of the

generated clock relative to the incoming data. In the locked state, the UP

and DOWN pulses should have equal width and hence the average PD output

is zero. The above described operation is shown graphically in Figures 3.4(a)

and 3.4(b) for the cases where the clock rising edge is at the data center and

the clock rising edge is to the right of the data center, respectively. It is

important to note that if we have consecutive 0’s or 1’s, both the UP and

DOWN pulses are not generated. While this may seem enough to maintain

the charge of the LF capacitor at a constant value, leakage current almost
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Figure 3.4: Waveform showing the operation of the Hogge PD when the
clock samples (a) at the center of the eye and (b) to the right of the center

always causes the charge to drain. Thus, a CDR has a limit on the maximum

number of 0’s or 1’s that are allowed in the incoming data and this is taken

into account at the transmit encoder.

The input-output relationship can be expressed as:

Ve = KPDφe (3.1)

where KPD is the phase detector gain and is given by:

KPD =
TD

π
(3.2)

where TD is the transition density and can be assumed as 0.5 for random

data.

3.1.2 Charge pump

A charge pump is a circuit that pumps or drains charge depending on the

value of the input signals. As discussed in the previous section, the PD

generates two pulse width modulated signals UP and DOWN. It is essential

to convert these signals into a voltage since the only way to control a VCO is

to adjust its input voltage. A charge pump serves this purpose. A conceptual
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Figure 3.5: Conceptual circuit diagram of a charge pump

diagram of the charge pump is shown in Figure 3.5. It consists of two current

sources, one to pump charge to the loop filter capacitor and the other to drain

charge from it. The pump/drain action is initiated by opening or closing an

electronically controlled switch using the UP and DOWN pulses. Thus, when

the UP pulse is high, the upper switch is ON and charge is pumped into the

capacitor. When the DOWN pulse is high, the lower switch is ON and

charge is drained from the capacitor. It is worth mentioning that when UP

and DOWN are both high or both low, no net charge should be pumped or

drained from the capacitor.

The electronically controlled switches are realized using transistors. It

is important to ensure that the two current sources are exactly equal in

magnitude to ensure that there is no mismatch which will lead to a phase

offset. While this may sound trivial, ensuring this requirement at the circuit

level is a herculean task.

Together with the phase detector, the S-domain transfer function of the

charge pump becomes the following for the case of a random data input:

H(s) = KPD =
icp
2π

(3.3)
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Figure 3.6: A simple passive first order RC filter

3.1.3 Loop filter

Loop filters are low pass filters which are used to filter out the high frequency

components in the PD output. Typically, loop filters are realized using pas-

sive RC networks. The capacitor in the loop filter also serves as the reservoir

into which the charge pump pumps or drains charge. Figure 3.6 shows a

simple first-order low pass filter. Typical CDR implementations use higher

order filters to track both frequency and phase accurately.

3.1.4 Voltage Controlled Oscillator (VCO)

VCOs are the most important and complex component of the overall CDR

design. The essential idea behind a VCO design is to generate a clock sig-

nal based on the Barkhausen criteria for oscillation, which state that the

magnitude of the VCO transfer function at the oscillation frequency is 1,

while the phase is -180 degrees. Two of the most popular VCO topologies

are ring-oscillator based and LC-tank based. The ring-oscillator is a digital

circuit which consists of a cascade of odd number of inverters, arranged in a

feedback path. By utilizing the fact that the delay of each inverter depends

upon the amount of current it can sink in, which in turn can be made to

depend on the control voltage, the frequency of oscillation can be controlled.

Figure 3.7 shows a simple ring oscillator with 3 stages.

The LC-tank based VCOs utilize the resonant frequency of a series or

parallel resonant circuit to produce oscillations at that frequency. At the

resonant frequency, the energy lost from the capacitor is completely trans-

ferred to the inductor and vice-versa, and this leads to sustained oscillations.
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Figure 3.7: A typical ring oscillator based VCO

The resonant frequency is given by:

ωr =
1√
LC

(3.4)

By utilizing a varactor diode capacitor, the capacitance can be made to be

dependent on the control voltage and the resonant frequency of the circuit

can be controlled.

VCO is the device that generates the target clock. Ideally, its output

frequency should be linearly related to the input control voltage. The Laplace

transform function of the VCO is derived as follows:

ωout(t) = KV COvctrl(t) (3.5)

L[ωout(t)] = ωout(s) = KV COvctrl(s) (3.6)

φout(t) =

∫ t

0

ωout(τ)dτ =

∫ t

0

KV COvctrl(τ)dτ (3.7)

L[φout(t)] = φout(s) =
ωout(s)

s
=
KV COvctrl(s)

s
(3.8)

Thus, the Laplace transfer function of the VCO is:

HV CO(s) =
φout(s)

vctrl(s)
=
KV CO

s
(3.9)

where KV CO is the VCO gain.
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3.2 Analysis of a simple CDR in locked state

In this section, we obtain the transfer function of a simple CDR with a first

order loop filter. The open loop transfer function of the CDR is equal to

HO = KPDGLPF (s)KV CO

s
, yielding a closed-loop transfer function of H(s) =

φout(s)
φin(s)

= KPDKV COGLPF (s)
s+KPDKV COGLPF (s)

. In its simplest form, the loop filter is a first

order filter which has a transfer function of the form GLPF (s) = 1
1+ s

ωLPF

,

where ωLPF = 1
RC

. Thus, the closed loop response of the CDR is obtained

as H(s) = KPDKV CO
s2

ωLPF
+s+KPDKV CO

, indicating that the system is of second-order,

where one pole is contributed by the VCO and the other by the LPF. Here,

K = KV COKPD is termed the loop gain and is expressed in rad/s. In order

to understand the dynamic behavior of the CDR, the denominator of the

second-order closed-loop response is converted to a form commonly used in

control theory: s2 + 2ζωns + ω2
n , where ζ is the damping factor and ωn

is the natural frequency of the system. Therefore, the closed-loop response

can now be expressed as H(s) = ω2
n

s2+2ζωns+ω2
n
, where ωn =

√
ωLPFK and

ζ = 1
2

√
ωLPF

K
. Note that ωn is the geometric mean of the −3dB bandwidth

of the LPF and the loop gain. Typically, in a well designed second order

system, ζ is usually greater than 0.5 and preferably equal to 1√
2

so as to

provide an optimally flat response. Thus K and ωLPF cannot be chosen

independently; for example if ζ = 1√
2
, then K = ωLPF

2
. If s → 0, we

note that H(s) → 1 ; i.e. a static phase shift at the input is transferred to

the output unchanged. We can examine the “phase error transfer function”

defined as He(s) = 1 − H(s) = φe(s)
φin(s)

= s2+2ζωns
s2+2ζωns+ω2

n
, which drops to 0 as

s→ 0, thereby achieving phase and frequency lock.

3.3 Analysis of a CDR with a second order loop filter

Now we derive the transfer function of a CDR with a second order loop filter

such as the one shown in Figure 3.8 . This will be the type of CDR designed

in this thesis.

The open loop transfer function of the CDR is given by:

HO(s) = KPDGLPF (s)
KV CO

s
(3.10)
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Figure 3.8: A second order low pass filter

This gives a closed loop transfer function:

H(s) =
φout(s)

φin(s)
=

HO(s)

1 +HO(s)
=

KPDKV COGLPF (s)

s+KPDKV COGLPF (s)
(3.11)

The transfer function of the second order LPF is given by:

GLPF =
s+ 1

RC1

C2s(s+ ωLPF )
(3.12)

where ωLPF = 1
RCeq

is the −3dB bandwidth of the LPF and Ceq = C1C2

C1+C2
.

Thus, the closed loop transfer function of the CDR is given by:

H(s) =
K(s+ 1

RC1
)

C2s3 + ωLPFC2s2 +Ks+ K
RC1

(3.13)

where K = KV COKPD is the loop gain.

Since the coefficient of the s3 term is C2, which is of the order of 10−12F

typically, the s3 term can be neglected without any significant loss in accu-

racy.

Thus, the closed loop transfer function of the CDR can be approximated

in the standard form for a second order system with one zero:

H(s) =
ω2
n

α
(s+ α)

s2 + 2ζωns+ ω2
n

(3.14)

where ωn =
√

K
C1+C2

, α = 1
RC1

and ζ = 1
2
ωn

α
.

30



We now show that the CDR can track step changes in the input frequency.

Suppose a frequency step is applied at the input, i.e., ωin(s) = ∆ω
s

. Then

φin(s) = ∆ω
s2

. The phase error transfer function defned as He(s) = 1−H(s) =
φe(s)
φin(s)

= 1
1+HO(s)

.

Applying the final value theorem, we find the steady-state error to be:

φFstep
ss = lim

s→0
s.He(s).φin(s) (3.15a)

= lim
s→0

s.
1

1 +HO(s)
.
∆ω

s2
(3.15b)

= lim
s→0

[RC1C2s
2 + (C1 + C2)s]∆ω

RC1C2S3 + (C1 + C2)s2 +Ks+ 1
(3.15c)

=
0

1
(3.15d)

= 0 (3.15e)

The above equations prove that the CDR with a second order LPF can

track step changes in the input frequency and establish a relock with zero

steady-state phase error. This would not have been possible with a first order

LPF which can only track step changes in phase.

3.4 Loop design procedure

Now that we have studied a mathematical treatment of the CDR blocks, we

should be able to suitably select the loop parameters such that we obtain

a stable system that rapidly locks on to the incoming data stream. In the

previous section, we derived the closed loop transfer function of the CDR in

the form of a standard second order system with one zero given by equation

3.14. The phase margin of such a system is given by:

φM = arctan (
ωugb
α

)− arctan (
ωugb
ωLPF

) (3.16)

where ωugb is the unity gain bandwidth.

One way to maximize the phase margin is to place the zero (α) below

the unity gain bandwidth and place the pole(ωLPF ) above the unity gain

bandwidth by the same factor. Let the scaling factor be β. Thus, α = βωugb
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and ωLPF =
ωugb

β
. The phase margin can now be expressed as:

φM(β) = arctan (β)− arctan (
1

β
) (3.17)

The design procedure is outlined as follows:

1. Choose the desired unity gain bandwidth (ωugb) , charge pump current

(icp), VCO gain (KV CO) and phase margin (PM)

2. Using Eqn 3.17, obtain the value of β that gives the desired phase

margin

3. Calculate the loop gain K = KPDKV CO, where KPD = icp
2π

4. Calculate the value of C2 given by C2 = K
βω2

ugb

5. Calculate the value of C1 given by C1 = (β2−1)K

βω2
ugb

6. Calculate the value of R given by R = β
ωugbC1

The values of KV CO and icp are determined by the limitations of the circuit.

For example, the value of the charge pump current is determined by the

charge pump design. It is desirable to choose the maximum possible value of

charge pump current that can be maintained for the entire range of operating

voltages without suffering any mismatch between the up and down currents.

Although this improves the phase detector gain, this will lead to increased

power dissipation. Thus, it is up to the circuit designer to find the sweet spot

that achieves the best tradeoff between power and performance. Similarly,

KV CO is determined by the VCO architecture. Typical values for Fugb are

between FREF

20
and FREF

15
, where FREF is the reference frequency, i.e., the

frequency of the incoming data stream. The phase margin determines the

settling time of the system. A positive value of phase margin is required for a

stable system. Theoretically, a phase margin of about 55◦ will give the least

settling time. However, several circuit non-idealities often cause an offset

and the optimum value of phase margin is often quite different.

Thus, several iterations of the above-described design procedure might be

required; therefore, the procedure is implemented as a MATLAB function to

automate the process.
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CHAPTER 4

BEHAVIORAL MODELING OF THE CDR

In the previous chapters, we have analyzed the behavior of the CDR from a

mathematical as well as from a qualitative point of view. The mathematical

analysis allows us to formulate a systematic design procedure for CDR loop

design. Although the mathematical model is fairly accurate, the loop pa-

rameter design often requires several iterations before we can obtain realistic

values. To assist with the iterative design, we seek the help of behavioral

modeling.

4.1 Why behavioral modeling?

Traditionally, transistor level circuit simulations have been carried out with

SPICE (Simulation Program with Integrated Circuit Emphasis). SPICE em-

ploys a form of nodal analysis, applying Kirchhoff’s current law at the var-

ious nodes in the circuit. The equation is often expressed in the standard

matrix form representation of a system of linear equations. Thus, the so-

lution requires matrix inversion, which is a fairly complex operation with a

computational complexity between O(n2) and O(n3). Consequently, SPICE

simulations take rapidly increasing computation time as the number of nodes

in the circuit increases. Therefore, it is desirable to have a faster method of

simulation to perform back-of-the-envelope calculations for transistor-level

circuit design. Behavioral modeling serves this purpose.

Behavioral modeling is not a completely new paradigm since behavioral

modeling languages such as Verilog and VHDL have been in use for the

past 25 years to model digital circuits. This has rapidly diminished the

turnaround time for digital circuit designs and allowed increasing levels of

design automation. In fact, a majority of digital design today is completely

automated, with the user having to specify only the behavioral model of
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Figure 4.1: Typical digital circuit design flow

the circuit using a hardware description language (HDL). This model is of-

ten termed the register transfer level (RTL) model, since the behavior is

described as the movement of data between registers, while being operated

on by intermediate logic. This RTL model can be directly translated to

transistor-level circuits by a process known as logic synthesis. This requires

a library of transistor-level gates which can be used in the design and some

design constraints such as timing and power constraints, in addition to the

RTL model of the circuit. Figure 4.1 shows the digital circuit design flow

using behavioral modeling and logic synthesis.

In recent years, there has been an industry-wide trend to extend the con-

cept of behavioral modeling to the design of analog and mixed signal circuits,

to harvest the same benefits obtained from the abstraction of digital circuit

designs. An important point to note is that the behavioral models for ana-

log and mixed signal circuits are not synthesizable by CAD (computer aided

34



design) tools. Instead, they are used for blackbox modeling of these circuits,

allowing circuit designers to emulate the functionality of an analog block

without actually getting into the nitty-gritties of the transistor-level design.

Such modeling techniques have several advantages:

• They are several times faster to simulate than traditional SPICE sim-

ulations since there are no numerically complex operations being per-

formed.

• They offer powerful techniques for system level design. In the case of

the CDR, they allow different loop configurations such as the charge

pump current, VCO gain, etc., to be tested quickly and iteratively.

This allows system designers to arrive at the optimum loop parameters

efficiently.

• Behavioral modeling can be easily interfaced with traditional SPICE

simulations, allowing unique design optimization techniques. For ex-

ample, it is possible to test a new architecture for the phase detector

by using a transistor level model for the phase detector along with be-

havioral models for the other blocks in the system. This technique also

has immense value for debugging individual blocks.

• They offer a higher level of abstraction which leads to much faster

turnaround time. For example, the charge pump current can be altered

by changing the value of a variable in the design, whereas in traditional

SPICE simulations, the entire circuit will have to be redesigned and

resized to allow for a new current.

• The transistor-level models of a circuit are highly dependent on the

technology used. Thus, as we move across technology nodes, a complete

redesign of the circuit is required. This is not the case with behavioral

models, which can be easily ported to different technologies.

In view of these advantages, we will first perform a behavioral modeling

of the CDR system and obtain the various loop parameters. These will be

used as starting points for the actual transistor-level design of the CDR.
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4.2 Verilog-AMS

Verilog-AMS [21] is a high-level hardware description language (HDL) used

to describe the structure and behavior of analog and mixed-signal systems.

It is an extension to the IEEE 1364 Verilog HDL standard and is very power-

ful in providing fast prototyping capabilities for mixed-signal systems. The

key advantage of circuit modeling using Verilog-AMS is that it provides a

single language and simulator ecosystem that can be shared between ana-

log, digital and system-level designers. Verilog-AMS leverages the superior

speed and capacity offered by traditional Verilog and allows event-driven

capabilities within analog model simulation, making it an attractive choice

when simulating highly complex mixed-signal circuits such as PLLs, CDRs,

ADCs, and DACs. The only pitfall of using Verilog-AMS is that it cannot re-

place traditional transistor-level SPICE simulation completely as it does not

have synthesis capabilities like its digital counterpart Verilog. However, at

the onset of the design phase, using Verilog-AMS for circuit modeling is very

powerful for a mixed-signal circuit/system design engineer as it offers fast

prototyping/verification for behavioral level simulation, thereby expediting

the time-to-market for the system.

Verilog-AMS combines both Verilog-D and Verilog-A including a few ad-

ditional mixed-signal constructs to provide a HDL language capable of per-

forming truly mixed-signal simulation. Cadence has been the front-runner

in promoting the language, making it an industry standard, and has led the

majority of the advancement efforts ever since its release in 2003. The power

of Verilog-AMS simulator in Cadence Virtuoso is that it can perform co-

simulation among behavioral analog/digital blocks described by correspond-

ing Verilog-A and Verilog-D models, respectively, as well as transistor-level

circuit blocks by running the Spectre simulation. When a circuit consist-

ing of transistor-level circuit elements, analog behavioral modules written

in Verilog-A and digital behavioral modules written in Verilog-D is simu-

lated, the AMS simulator in Cadence partitions the testbench into analog

and digital components. The simulator then merges the analog simulation

results from Spectre with the digital simulation results from NC-SIM and

the resulting output is plotted just like that in the case of traditional Spectre

simulation.
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Figure 4.2: Behavioral modeling of the Hogge phase detector

4.3 Behavioral modeling of the CDR blocks

We look at the behavioral modeling of the various CDR blocks and model

them for 2 Gbps operation.

4.3.1 Hogge phase detector

The working of the Hogge phase detector was detailed in section 3.1.1. It

is important to note that the Hogge phase detector is a completely digital

circuit and is therefore modelled using traditional Verilog or Verilog-D. The

two flipflops are instantiated using the “reg” specifier of the Verilog language

and the XOR gates are represented through the ˆ operator. The Verilog AMS

model of the Hogge phase detector is shown in Figure 4.2 and the testbench

is shown in Figure 4.3.

Figures 4.4 and 4.5 show the simulation waveforms for the case when the

clock samples to the left and right of the center of the eye, respectively. In

this testbench, the clock has completed frequency acquisition and only suffers

from a phase misalignment. It can be clearly seen that the width of the UP
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Figure 4.3: Testbench used for the phase detector

Figure 4.4: Waveforms showing the PD operation when the clock samples
to the left of the center of the eye

pulse reflects the phase relation between the data and the clock, whereas the

DOWN pulse has a constant width and is used as a reference.

4.3.2 Charge pump

The working of the charge pump was described in section 3.1.2. The charge

pump is a mixed signal circuit. It accepts digital inputs in the form of

the UP and DOWN pulses and provides an analog output, i.e., the current.

Therefore, the charge pump must be modeled using Verilog-AMS constructs

as shown in Figure 4.6. The first thing to note here is that the charge pump

current is parameterized and is set by the real variable “curr”. By changing

the value of the variable, different charge pump currents can be obtained.
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Figure 4.5: Waveforms showing the PD operation when the clock samples
to the right of the center of the eye

The code itself is fairly similar to Verilog-D and is straightforward to un-

derstand. The key analog statement is the transition function, which is used

to determine how the current will transition from one value to another. In

this case, the rise time and fall time for the transition are specified as 10 ps.

Figure 4.7 shows the testbench which includes the phase detector described

previously.

Figures 4.8 and 4.9 show the simulation waveforms for the case when the

clock samples to the left and to the right of the center of the eye, respectively.

As seen previously, the phase detector modulates the width of the UP pulse

based on the phase relation between the data and the clock. The charge

pump pumps out current when UP is high and pulls in current when DOWN

is high. When UP and DOWN are both high or both low, the net current

coming out or going in to the charge pump is zero.

4.3.3 Filter

The filter is a completely analog circuit made of passive components, i.e.,

resistors and capacitors. Thus, we implement the filter with actual resis-

tors and capacitors, rather than using any sort of behavioral model. This
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Figure 4.6: Behavioral modeling of the charge pump

Figure 4.7: Testbench used for the charge pump
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Figure 4.8: Waveforms showing the operation of the PD+CP when clock
samples to the left of the center of the eye

Figure 4.9: Waveforms showing the operation of the PD+CP when clock
samples to the right of the center of the eye
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Figure 4.10: The low pass filter used in the design

is an important advantage of Virtuoso’s AMS simulation engine which lets

you mix and match physical and behavioral components. The values of the

filter elements are chosen according to the design procedure outlined in the

previous chapter. Figure 4.10 shows the filter that was used.

4.3.4 Voltage Controlled Oscillator (VCO)

The VCO is the most critical component of the CDR system and perhaps

the most difficult to model. This can be attributed to the VCO being a

completely analog circuit and the need to model jitter as accurately as pos-

sible, including random jitter such as white noise jitter. Thus, the VCO is

modelled using Verilog-A constructs which are a subset of Verilog-AMS and

is shown in Figure 4.11.

As in the case of the charge pump, the key variables such as frequency

and voltage ranges are parameterized and hence can be easily changed. The

analog portion of the code is used to model the behavior of the VCO, i.e.,

how the voltage controls the frequency, how much jitter it accumulates, when

the zero crossings occur, etc.

Figure 4.12 shows the testbench for the VCO. Figures 4.13 and 4.14 show

the waveforms for control voltages of 500mV and 950mV respectively. Clearly,

the latter has a greater frequency and the VCO is functioning correctly.
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Figure 4.11: Behavioral modeling of the VCO

43



Figure 4.12: Testbench used for the VCO

Figure 4.13: Waveforms showing the operation of the VCO for a control
voltage of 500 mV

Figure 4.14: Waveforms showing the operation of the VCO for a control
voltage of 950 mV
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Figure 4.15: Testbench for the complete CDR simulation

4.4 Complete CDR simulation with jitter

Now that we have verified the functionality of the various blocks involved in

the CDR, it is possible to simulate the complete system, all using behavioral

models. Such simulations are useful to get some early feedback and allow

rapid prototyping of the design. It also helps to compare different architec-

tures, loop parameter configurations, etc. Figure 4.15 shows the test bench

used to simulate the CDR system.

Figures 4.16 shows the simulation waveform of the control voltage settling

to the correct value to generate a clock at 2 GHz to sample the 2 Gbps

data stream, which is 500 mV in this case. It is important to note that the

control voltage does not actually settle at 500 mV but has a 50 mV ripple

with a DC value of 500 mV. The ripple can be attributed to the charging

and discharging of the capacitor in the loop filter which causes small changes

in the control voltage. This ripple effect is not desirable and will affect the

VCO by causing jitter at the output.

Figure 4.17 shows the waveforms after lock has established. Clearly, the

rising edge of the clock samples the data at the center of the eye, which is

what we desired. The bottom trace shows the charge pump current waveform.

It is obvious that an equal amount of current is being pushed and drained

by the charge pump, therefore keeping the control voltage almost constant,

except for a small 50 mV ripple.

Figure 4.18 shows the eye diagram of the generated clock, measured after

lock acquisition. The width of the transition region gives the peak jitter of
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Figure 4.16: Waveform showing the locking behavior of the control voltage

Figure 4.17: CDR Waveforms after frequency and phase lock has been
established
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Figure 4.18: Eye diagram showing jitter in the generated clock after lock
acquisition

the circuit and in this case it is 3.434 ps. Note that this value is obtained from

random jitter due to white noise alone without considering other sources of

jitter. Once we include other effects such as transistor-level jitter, source-side

jitter, etc., the value is expected to be much higher.

Thus, the behavioral model has verified the functionality of our CDR and

given us starting values for the various loop parameters which will be used

to design the actual transistor level circuits. However, this model does not

account for any non-idealities that are present in an actual circuit, which are

bound to affect the operation of the CDR. Thus, manual tuning is inevitable

in the design of analog mixed signal circuits.
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CHAPTER 5

SINGLE-ENDED CDR DESIGN

In this chapter, we discuss the transistor level design of the single-ended

SERDES system depicted in Figure 5.1. In addition to the CDR, several

other blocks such as the transmit driver, channel, receiver amplifier, etc., are

also designed in order to form a complete system whose performance can

be fairly evaluated. The serializer and deserializer blocks are not discussed

and it is assumed that a serialized bit stream is available at the transmitter

side. The data recovered by the CDR can be deserialized using the generated

clock.

Figure 5.1: The single-ended SERDES system

5.1 Transmit driver

As discussed previously, the driver amplifier is used to amplify the serial bit

stream to make it suitable for transmission over the channel. In addition, it

also provides 50 Ω terminations for the channel to eliminate reflections. The

input to the driver comes from the serializer whose last stage is typically a

current mode logic (CML) circuit which has differential outputs. In this case,

the input signal to the driver is assumed to have a voltage swing of 500 mV,

with logic high being represented by 1.8 V and logic low being represented

by 1.3 V respectively.
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Figure 5.2: Transistor level schematic of the transmit driver

The transistor level schematic of the driver amplifier is shown in Figure

5.2. It is essentially a differential amplifier, with the pull up resistors being 50

Ω in order to provide impedance matching with the channel. It is important

to note that only the Yp output is used to drive the channel, since we are

dealing with a single-ended channel. It is assumed that the signal transmitted

through the channel will need a voltage swing of 400 mV, i.e., the difference

between the high and low logic levels. This is often determined by the type

of channel, the sensitivity of the receiver, etc., and therefore a reasonable

value is chosen.

All current sources depicted in this thesis were designed using current

mirror circuits to accurately model the effects of tail current variation due

to channel length modulation etc. It is assumed that the logic high voltage

will be the same as the supply voltage for the 180 nm technology, i.e., 1.8

V. Thus, the voltage level for logic low should be 1.4 V for a 400 mV swing.

The value of the current source is chosen as follows:

By Ohm’s law, ∆V = IR, where R is effective resistance seen between

VDD and the output node. In this case, this consists of a 50 Ω resistor

at the transmitter side in parallel with a 50 Ω resistor in the receiver side

termination as shown in Figure 5.3. Thus, R = 25 Ω and ∆V = 400mV .

Consequently, I = 16mA.
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Figure 5.3: Operation of the current mode transmit driver

The transistor sizes are chosen in such a way that they can sink 16 mA of

current, with the given input and output voltage specifications, while remain-

ing in the saturation region. It is also important to consider the fact that,

at any given point, only one of the transistors needs to be conducting, while

the other must be cutoff to ensure that the logic levels do not deteriorate.

Lastly, it is also necessary to consider the minimum voltage required by the

current mirror to provide 16 mA of current and ensure that the voltage at

the node does not fall below the minimum value.

5.2 Channel

The channel is the actual physical medium through which data is transferred

from the transmitter to the receiver. In this work, the channel is a simple

microstrip line on a PC motherboard. The channel is modelled using Q3D, a

2D electromagnetic field solver, which analyzes the geometry of the channel

and solves Maxwell’s equations numerically to obtain a circuit model of the

channel in terms of RGLC elements as a function of frequency. The circuit

model can be directly used in a circuit simulator such as Cadence Spectre

or to generate the S parameters of the channel, which can also be used in

Cadence Spectre. More complex channel geometries can be modelled using

tools such as ANSYS HFSS which support full 3D modelling and directly
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Figure 5.4: An illustrated 3-D view of the channel

Figure 5.5: Different PCB stack ups to obtain a 50 Ω microstrip line

provide the S parameters of the channel.

Figure 5.4 shows a view of the channel. For the single-ended case, a single

microstrip line with a characteristic impedance of 50 Ω is used. The channel

design is accomplished using the following equations [22]:

Z =
87√

εr + 1.41
. ln [

5.98H

0.8W + T
] (5.1)

if W>T : εeff =
εr + 1

2
+
εr − 1

2
.(1 + 12(

H

W
))−0.5 (5.2)

Figure 5.5 shows a variety of different PCB stack-ups that accomplish the

required characteristic impedance [23]. In this work, an FR4 substrate with

0.8 mm thickness is used to design an 8 inch long channel.
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Figure 5.6: The frequency response of the designed channel

Figure 5.6 shows the channel response, i.e., the S parameter S12 which

represents the loss or attenuation of the channel. Clearly, as the frequency

increases, the attenuation gets larger and equalization techniques have to

be used. Since we are dealing with a 2 Gbps system, we are concerned

with the channel attenuation at 1 GHz, which is about 2 dB, and therefore

equalization is not needed.

5.3 Receiver

The receiver interface circuit consists of an amplifier and a superbuffer.

5.3.1 Receiver amplifier

The receiver amplifier is used to amplify the swing of the incoming signal to

make it suitable for the receiver circuitry such as the CDR. It is typically

a high gain differential amplifier consisting of multiple stages. As shown in

Figure 5.7, we have a 3-stage differential amplifier that is used to increase the

swing from 400 mV to a full swing signal that can be processed by CMOS

logic circuits. The first stage is used to convert the single ended signal to
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Figure 5.7: The 3-stage differential amplifier used in the receiver

Figure 5.8: The super buffer used in the design

differential and to suppress the common mode from 1.6 V to about 1 V.

The subsequent two stages are used to amplify the signal while ensuring that

there is no significant rise time or fall time degradation. For further details

on the design of differential amplifiers, the reader may refer to extensive work

in the literature [24, 25].

5.3.2 Superbuffer

A superbuffer is a chain of cascaded inverters, which is often used to drive

a large load with minimal delay and rise/fall time degradation. In this case,

the CDR circuit offers a huge capacitive load that cannot be directly driven

by the amplifier stage. Hence, we use a chain of inverters, with gradually

increasing size, which can drive the load more efficiently as shown in Figure

5.8. The dimensions shown represent the width of the PMOS and NMOS
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transistor for each inverter. All transistors use a minimum length of 180 nm.

The inverters are sized to have equal delays for rising and falling transitions.

For more details on the design on superbuffers, the reader may refer to [26].

Figure 5.9 shows the waveforms from the receiver circuitry. Clearly, the

differential amplifiers amplify the input signal from the channel to CMOS

logic levels through the 3 stages. The superbuffer is then used to drive the

CDR, while also providing full voltage swing and sharpening the input pulses

so that the CDR can function efficiently.

Figure 5.9: Waveforms showing the operation of the receiver amplifier

5.4 Clock and data recovery (CDR) circuit

Figure 5.10 shows the block diagram of the CDR circuit with the incoming

data coming from the superbuffer. The design methodology used is the logical

effort technique [27], where we attempt to distribute the electrical effort

across the various blocks in order to reduce the delay and area of the circuit.

A key detail is that we attempt to design the block in a bottom-up manner,
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starting from the output. This way, we know the load that each block needs

to drive and can therefore size the block accordingly. We now look at the

design of each of these blocks in detail.

Figure 5.10: Block diagram of the CDR system

5.4.1 Filter

The values of the loop filter elements are chosen by using the design procedure

outlined in section 3.4 as a guideline. Manual tuning of the parameters was

done to account for the non-idealities in the circuit. Figure 5.11 shows the

loop filter circuit.

Figure 5.11: The loop filter used in the design
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Figure 5.12: A current steering charge pump with NMOS switches only

5.4.2 Charge pump

The charge pump is used to pump/drain charge to/from the loop capacitor.

The charge pump can be controlled electronically using the UP and DOWN

signals which are generated by the phase detector. The charge pump was

designed to have a pump/drain current of 500 µA. We make use of a dif-

ferential current steering topology for the charge pump as shown in Figure

5.12.

One of the key requirements of the charge pump is to maintain symmetry

between the push (UP) and pull (DOWN) currents across the entire range of

operating voltages. The differential current steering topology is advantageous

since we use NMOS transistors for both UP and DOWN currents, resulting

in a good matching of the currents. However, other effects such as channel

length modulation often cause a mismatch between the two currents resulting

in a static phase error, i.e., the clock may not sample the data at the center

of the eye. Thus, it is important to study the charge pump characteristics

across a full range of operating voltages. Figure 5.13 shows a plot of UP and

DOWN currents plotted against the voltage at the IN OUT node.

We observe that the currents are perfectly matched only at about 906 mV.

The UP current decreases with the voltage of the IN OUT node and the
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Figure 5.13: Variation of UP and DOWN currents as a function of the
output node voltage

DOWN current increases due to channel length modulation. If we define a

tolerance of 50 µA (10%), we see that the range of IN OUT voltage must be

restricted to between 600 mV and 1.2 V after lock-in, in order to avoid any

significant static phase error.

The sizing of the transistors is done so as to maximize the range of voltages

for which the charge pump can be used. A key concern is to provide sufficient

voltage drop to the current mirror circuit in order to provide roughly 500 µA

current.

5.4.3 Phase detector

As discussed previously, the phase detector is used to provide a measure of

the phase relation between the generated clock and the incoming data. We

implement a Hogge phase detector, which is a linear phase detector consisting

of flipflops and XOR gates. Figure 5.14 shows the block diagram of the Hogge

phase detector, which provides the phase information in the form of UP and
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Figure 5.14: Block diagram of the phase detector

DOWN pulses which can be used to control the charge pump. We will now

look into each block of the phase detector in detail.

Positive edge-triggered flipflop

The positive edge-triggered flipflop is realized using the True Single Phase

Clocked (TSPC) register architecture. This has the advantage of requiring

only a single phase of the clock as opposed to differential clock signals. In

addition, it requires fewer transistors than other flipflop designs. Figure 5.15

shows the implementation. Since the positive edge-triggered flipflop has a

bigger load, it is sized larger than the negative edge-triggered flipflop. A

PMOS sizing factor of 2 is used in the design.

Negative edge-triggered flipflop

The TSPC architecture is again used to implement the negative edge-triggered

flipflop, which is significantly smaller and is shown in Figure 5.16.

XOR gate

The XOR gate is realized using a transmission gate topology and is shown in

Figure 5.17. Since the charge pump requires differential inputs, two copies
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Figure 5.15: A TSPC positive edge-triggered flipflop

Figure 5.16: A TSPC negative edge-triggered flipflop
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Figure 5.17: Transmission gate XOR circuit

of the shown topology are used for each XOR gate with one copy performing

the XOR function and the other performing the XNOR function. The XNOR

function can be obtained by flipping the two drain inputs of the transmis-

sion gate. This ensures that the skew between UP (DOWN) and UP bar

(DOWN bar) is kept to a minimum.

A vital step during the transistor level design of the each circuit is to ensure

that it behaves exactly the way we want it to, by testing the circuit using

test waveforms. Each of the above circuits was rigorously tested to ensure

the same behavior as that obtained from the behavioral modeling discussed

in Chapter 4 to ensure correct system level functionality. The results are

presented in Chapter 8.
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CHAPTER 6

COMPLEMENTARY LOGIC CDR DESIGN

In this chapter, we explore the design of the CDR using complementary

logic, i.e., a logic family in which a single value is represented by two lines,

true and complement, also referred to as plus and minus. Although it is

tempting to think of this logic family as differential logic family, it cannot

be treated as a truly differential logic family since the voltage levels for the

high and low levels are designed to be VDD and GND respectively and the

signal is not represented as the difference between two voltages. However, the

topology is still advantageous from a signal integrity point of view since the

channel is still differential, allowing the common mode noise and interference

to cancel each other out. The block diagram of the system is shown in Figure

6.1. As before, several other blocks are also designed to completely evaluate

the system and the serializer-deserializer blocks are not considered. It is

important to note that each arrowhead in Figure 6.1 represents two lines:

true and complement.

Figure 6.1: Complementary logic SERDES system

6.1 Transmit driver

The transmit driver amplifier is shown in Figure 6.2 and is very similar to

the one discussed for the single ended case in Section 5.1. The only differ-

ence is that both Yp and Yn outputs are used to drive the two conductors
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Figure 6.2: Circuit diagram of the transmit driver

of the differential channel, thereby providing better noise immunity. The de-

sign procedure is identical to the single-ended scenario. The driver amplifier

terminates both the conductors with a 50 Ω impedance to minimize reflec-

tions. In addition to matching the single-ended impedance, it is also crucial

to match the differential impedance of the channel in order to truly elimi-

nate any reflections. Since it is not straightforward to accurately control the

differential impedance of the amplifier, we design the channel to ensure that

the differential impedance of the channel is identical to that of the amplifier.

We first measure the differential impedance of the amplifier using Spectre

simulations using the testbench shown in Figure 6.3. We first bias the circuit

at the typical operating point, i.e., INp at high (1.8 V) and INn at low (1.3

V). We now connect two test sources at the outputs, each with small signal

AC amplitudes of 1 V and -1 V, respectively, via switches which block DC

components and allow only AC components. Now we perform an AC simula-

tion and measure the currents through both test sources at 1 GHz, which is

our frequency of interest. Ideally, these two currents should be the same, but

due to transistor non-idealities, they are slightly different and hence we take

the average of the two currents. We then compute the differential impedance

of the amplifier using the expression:

Z(diff) =
V (diff)

Ione
(6.1)
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Figure 6.3: testbench used to measure the differential impedance of the
transmitter

Figure 6.4: Cross-section of the differential channel

The differential impedance of the amplifier was found to be approximately

91 Ω.

6.2 Channel

The channel is a pair of differential microstrip lines on a PC motherboard.

The channel is modelled using the 2D electromagnetic field solver tool Q3D.

Each of the two traces has a characteristic impedance of 50 Ω and is designed

using the same parameters as the single-ended channel in Section 5.2. The

new variable in this design is the spacing between the two lines, which affects

the coupling between them and hence the differential impedance. Since we

want to match the differential impedance of the channel to that of the am-

plifier, we design the channel to have a differential impedance of 91 Ω. The
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Figure 6.5: S parameters of the designed differential channel

differential impedance of the channel is given by [28]:

Zdiff = 2ZO(1− 0.48e
−0.96D

H ) (6.2)

where ZO is the characteristic impedance of each single-ended line which is

50 Ω in this case, D is the distance between the two conductors and H is

the height of the dielectric substrate.

Thus, for our PCB stack-up using a 0.8 mm thick FR4 substrate, we obtain

the spacing to be 1.394 mm. A cross-section of the channel is shown in Figure

6.4. The frequency response of the channel is shown in Figure 6.5

6.3 Receiver

The receiver again consists of an amplifier to increase the swing of the signal

and a superbuffer to drive the big load offered by the CDR circuit. Figure

6.6 shows the amplifier circuit, which is very similar to the one used in the

single-ended case in Section 5.3.1. The only difference is that the first stage
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Figure 6.6: The 3-stage differential amplifier used in the design

Figure 6.7: Super buffer circuit used to drive the CDR

has both inputs fed by the incoming differential signal instead of a single-

ended signal and a constant bias. Figure 6.7 shows the superbuffer circuit. It

is essential to realize that two copies of the circuit are used to drive the two

complementary signals to the CDR. The inverters in the superbuffer circuit

are sized to have equal rise and fall delays, in order to minimize the skew

between the two complementary signals.

6.4 Clock and data recovery (CDR) circuit

Figure 6.8 shows the block diagram of the CDR circuit, with the incoming

data coming from the superbuffer. Once again, the logical effort technique is

used to minimize the delay and area of the circuit, and a bottom-up design

methodology is used. Each arrowhead in Figure 6.8 represents two lines: true

and complement. The CDR loop parameters are chosen to be identical with
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Figure 6.8: Block diagram of the CDR system

the single-ended case in order to provide a fair comparison. We will now look

at each block in detail.

6.4.1 Filter

The filter is identical to the one used in Section 5.4.1 for the single-ended

case.

6.4.2 Charge pump

The charge pump is also identical to the one used in Section 5.4.2 for the

single-ended case. However, in this case the complementary signals are

directly available and hence have much smaller skew, thereby making the

charge pump more effective.

6.4.3 Phase detector

We implement a Hogge phase detector using complementary logic signals,

which is a linear phase detector providing complementary UP and DOWN

signals that reflect the phase relation between the clock and the incoming

data stream. It consists of flipflops and XOR gates as shown in Figure 6.9.
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Figure 6.9: Block diagram of the Hogge phase detector

Figure 6.10: Generic realization of a sense amplifier flipflop circuit

Positive edge-triggered flipflop

A flipflop typically consists of two latch stages: a master latch and a slave

latch. We make use of a sense amplifier (SA) latch for the master stage. For

the slave stage, we make use of a symmetric SR latch. The block diagram of

the flipflop is shown in Figure 6.10.

SA latch The transistor-level schematic of the SA latch is shown in Figure

6.11. It is a precharge type of latch, whose operation can be explained using

Figure 6.12. When CLK is low, the output nodes are precharged to high.

When CLK is high, the pull-down network is activated and depending on

the value of the inputs, one of the two output nodes is pulled down to low

faster than the other. This is referred to as the sampling phase. Once the

first output node is pulled down below a certain minimum value the cross

coupled inverters reinforce the change of state and cause that output node

67



Figure 6.11: Circuit diagram of a sense amplifier latch

to be pulled down faster, while pulling up the other output node. This is

referred to as the regeneration phase. Once the output nodes have been

pulled above or below the logic thresholds, subsequent circuitry can process

the information. This is referred to as the decision phase. The SA latch often

has a negative setup time, i.e., the input can change even after the CLK goes

high until a certain time. However, this will have an adverse impact on the

delay of the flipflop.

Symmetric SR latch The output of the SA latch can be processed by

a simple SR latch to produce complementary outputs Q and Q̄. However,

traditional SR latches have asymmetric delays between Q and Q̄, which cause

skew between the signals and can adversely affect the operation of subsequent

circuits. Thus, we make use of a symmetric SR latch topology proposed by

Nikolic and Oklobdzija [29] which is shown in Figure 6.13. The SA latch stage

produces the outputs S̄ and R̄ , and we make use of inverters to produce the

signals S and R which are not shown in the figure. The function of the SR
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Figure 6.12: Waveform showing the operation of the sense amplifier latch

latch can be explained through the truth table shown in Table 6.1. When

both S̄ and R̄ are high, the latch retains its previous value. Depending on

which one of S̄ and R̄ is pulled low, either Q or Q̄ is pulled high, respectively.

Having both S̄ and R̄ at low forces the latch into race condition, which results

in metastability, and this condition is avoided by careful design of the SA

latch.

Table 6.1: Truth table showing the operation of the symmetric SR latch

S̄ R̄ Q Q̄ STATE

0 0 X X
Race

condition
0 1 1 0 Set
1 0 0 1 Reset
1 1 Qprev Q̄prev Memory

Negative edge-triggered flipflop

The negative edge-triggered flipflop is constructed in a manner similar to

that of the positive edge-triggered flipflop. The SA latch used in this case is

now negative level sensitive and is the exact dual of the previously described

circuit and is shown in Figure 6.14. The SR latch is also very similar to the
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Figure 6.13: Circuit diagram of the symmetric SR latch

previously described circuit and is shown in Figure 6.15. It is to be noted

that the transistor sizes are much smaller than the positive edge-triggered

case, since the load is much smaller in this case.

XOR gate

We employ the same transmission gate XOR topology previously described

for the single-ended case in Section 5.4.3. The key difference is that we do not

need inverters to generate complementary signals since we use complemen-

tary logic in the preceding stages. The transistor-level schematic is shown in

Figure 6.16. Once again, we utilize two copies of the circuit to produce com-

plementary outputs, i.e., the XNOR function is implemented by swapping

the drain inputs of the transmission gates.

As before, the circuits are rigorously tested to ensure correct function-

ality with reference to the behavioral model to ensure correct system level

functionality. The results are presented in Chapter 8.
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Figure 6.14: Circuit diagram of the sense amplifier latch(neg)

Figure 6.15: Circuit diagram of the symmetric SR latch(neg)
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Figure 6.16: Circuit diagram of the transmission gate XOR
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CHAPTER 7

CURRENT MODE LOGIC CDR DESIGN

In this chapter, we look at the design of the CDR using the current mode logic

(CML) family. CML circuits are essentially analog circuits implementing

digital functions. They work by steering the current between two different

arms based on the value of inputs, providing differential outputs. Thus,

CML is a completely differential circuit, where each signal is represented by

the difference between two lines. It is different from complementary logic in

the sense that the voltage levels on the two lines are not full swing CMOS

voltages. Instead, the difference in voltage levels is much smaller, allowing

the circuit to switch much faster. The higher speed comes with the drawback

of increased power consumption since there is always some current flowing

between VDD and GND. Thus, CML is used in high performance circuits

where speed is critical and larger power consumption can be tolerated. Thus,

CML is a good candidate for CDR circuits, especially with increasing data

rates. The block diagram of the CML SERDES system is shown in Figure

7.1. Since CML circuits can work with smaller voltage swing, the need for an

amplifier at the receiver is eliminated, thereby providing some power savings.

We now look at each block in detail.

Figure 7.1: Block diagram of the SERDES system
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Figure 7.2: Block diagram of the CDR system

7.1 Transmit driver

The driver amplifier is identical to the one used for the complementary case

in Section 6.1. This is because the transmit driver used for the previous two

cases is essentially a current mode driver, which works by steering current

between the two arms. The voltage level for high is 1.8 V and that for low is

1.4 V. Thus, a logic high is represented by a 400 mV difference signal and a

logic low is represented by a -400 mV difference signal. We design the CDR

to work with the same voltage swing.

7.2 Channel

The channel is identical to the one used for the complementary case in section

6.2, since we only require a differential channel and the transmit drivers are

identical.

7.3 Clock and data recovery

The block diagram of the CDR circuit is shown in Figure 7.2. The major

difference from the previous architectures is that we now have a superbuffer

to drive the charge pump. This allows the phase detector to be much smaller

and have smaller drive currents, thereby saving power. We now look at each

block in detail.
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7.3.1 Filter

The filter is identical to the ones used in the previous two cases since we have

the same CDR loop parameters.

7.3.2 Charge pump

The charge pump is also identical to the ones used in the previous two cases

since we made use of a fully differential charge pump which is compatible

with CML voltage levels.

7.3.3 Superbuffer

Since the charge pump circuit offers a big capacitive load, we use a superbuffer

to drive the signals from the phase detector. This allows the phase detector to

be much smaller, thereby reducing the drive currents in the CML logic cells,

which helps to save power. It also reduces the load offered to the channel.

Figure 7.3: Circuit diagram of a minimum drive strength CML inverter

A superbuffer is a chain of cascaded inverters of progressively increasing

size or drive strength. In this case, the inverters are CML inverters. To

understand the operation of CML circuits, it is crucial to understand the
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operation and sizing of the CML inverter. Once the inverter is sized correctly,

other circuits can be sized using the equivalent inverter size method [30].

Figure 7.3 shows a CML inverter of minimum size and drive strength, which

will be referred to as INVD1, where INV stands for inverter and D1 stands

for unit drive strength.

The current source is realized with a current mirror circuit which is not

shown here. Clearly, regardless of the value of the inputs, there is a 30 µA

current flowing between VDD and GND. This leads to much higher power

consumption than static CMOS, where there is no direct path current at

steady state. Depending on which of Ap and An has a higher voltage, the

current is steered predominantly to that arm. Thus, if Ap is at 1.8 V and

An is at 1.4 V, the majority (if not all) of the current will flow through the

left branch, resulting in a much greater voltage drop across the resistor on

the left than that on the right. Thus, Yp will have a smaller voltage than

Yn and the signal has been inverted.

The sizing of CML circuits is very similar to the sizing of differential am-

plifiers. The values of the resistors, transistor widths and the current source

have to be chosen in accordance with the input and output voltage swings.

Let us assume that we want the output to have the same swing as the input

i.e. between 1.4 V and 1.8 V. In this case, we are essentially designing a unit

gain differential amplifier. First, we select the value of the current source to

Figure 7.4: The superbuffer circuit used to drive the CDR

be a reasonable value that can drive a minimum size inverter, i.e., 30 µA. By

using Ohm’s law, we can directly compute the value of the resistor:

∆V = IR (7.1)

where ∆V is 400 mV and I is 30 µA. This gives the value of the resistor as

13.33 KΩ.

Now we choose the width of the transistors such that one of them (the ON

transistor) will be in saturation region and the other will be cutoff. Another
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Figure 7.5: Block diagram of the Hogge phase detector

consideration is to provide the minimum voltage required by the current

mirror to provide 30 µA of current. A value of 270 nm is found to satisfy

the requirements and is therefore used for this minimum drive strength CML

inverter.

Once we design INVD1, designing higher drive strength inverters is very

straightforward. For example, INVD2 can be designed with double the tran-

sistor widths and drive current, with one half the resistor value. Thus, we

are now in a position to design an inverter of any required drive strength and

can therefore design the superbuffer.

The CML superbuffer chain is designed using standard supersbuffer sizing

techniques and is shown in Figure 7.4. Again, each line is a differential pair

with plus and minus signals. We use two copies of the circuit: one for the

UP signal and one for the DOWN signal.

7.3.4 Phase detector

Once again, we make use of the Hogge phase detector, which is a linear phase

detector that provides the UP and DOWN signals to control the charge pump.

As shown in Figure 7.5, it consists of flipflops and XOR gates, all of which

are realized using CML, as discussed below.
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Positive edge-triggered flipflop

Figure 7.6: Master-slave realization of a flipflop

The positive edge-triggered flipflop is constructed using the traditional

master-slave topology which is shown in Figure 7.6. This topology is slightly

different from the sense amplifier latch discussed in Chapter 6 in the sense

that both latches are clocked. The first latch is a negative level-sensitive

latch and second latch is a positive level-sensitive latch with respect to the

clock. Thus, the entire assembly behaves as a positive edge-triggered flipflop.

Figure 7.7: A CML latch circuit

Figure 7.7 shows the master latch circuit. When CLKn is high, the branch

on the left gets activated and depending on the value of the inputs Dp and
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Dn, the output states change. Once CLKn goes low, CLKp goes high, and

the values at the output nodes are retained using a cross-coupled inverter

configuration seen on the right. Thus, the circuit behaves as a negative-level

sensitive latch.

We size the latch according to the equivalent inverter width method. We

first decide to have a latch with a driving strength of 5X. Therefore, we use

a current source of 5 x 30 µA = 150 µA. Also, we need transistors with an

equivalent width of 5 x 270 nm = 1.35 µm. Since each branch of the latch

has two NMOS transistors in series, the equivalent width of each branch will

be half the width of each transistor. Thus, we obtain the width of each

transistor as 2.7 µm. Lastly, the value of the resistor is obtained by dividing

the value of the resistor used in the inverter by 5, yielding about 2.7 kΩ.

The slave latch is identical to the master latch in terms of sizing and

topology. However, the CLKp and CLKn inputs are swapped to ensure that

the slave latch is positive level sensitive to the CLK.

Figure 7.8: The CML latch used in the negative edge-triggered flipflop
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Negative edge-triggered flipflop

We again go for the master slave topology to implement the flipflop. The

difference is that the master latch is positive level sensitive and the slave

latch is negative level sensitive to the CLK. This ensures that the circuit acts

as a negative edge-triggered flipflop. Figure 7.8 shows the latch circuit used.

As expected, the circuit is much smaller than the one used for the positive

edge-triggered flipflop since the load is much smaller.

XOR gate

Figure 7.9: The CML XOR gate

Figure 7.9 shows the CML XOR circuit used in the design. The circuit

topology is very similar to the one used for the latch. This is because both

are implemented using a MUX circuit and the inputs are chosen accordingly.

Since a 2:1 MUX can be used to implement any logic function, we can there-
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fore design any arbitrary Boolean function using CML logic gates. The drive

strength of the gate can be easily modified by scaling the values of the cur-

rent source, transistor widths and the resistors accordingly. In this case, a

minimum drive strength XOR gate is used since we only need to drive the

superbuffer circuit which will drive the much bigger charge pump circuit.

As always, each block is verified to have the same behavior as that obtained

from the behavioral level models in order to ensure correct system-level func-

tionality. The results are presented in Chapter 8.
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CHAPTER 8

RESULTS

In this chapter, we present the results obtained from simulating the three

CDR designs. We also provide a comparison of the architectures which can

help to evaluate design tradeoffs. The designs are tested using a pseudo-

random bit sequence (PRBS) of length 232 − 1. Since we are operating at 2

Gb/s with a bit period of 500 ps, simulating the entire length of the PRBS

will take an unreasonable amount of time. Therefore, we simulate only 20000

cycles of the sequence, i.e., 10 µs. This is sufficient to characterize the system

with reasonable accuracy.

8.1 Single-ended CDR

Figure 8.1: Locking behavior of the control voltage

It is important to verify that the CDR actually locks to the frequency of the

incoming data stream and also locks at the right phase for optimum sampling.

This can be accomplished by looking at the control voltage as a function of

time as shown in Figure 8.1. Clearly, the control voltage starts from its initial
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Figure 8.2: VCO frequency as a function of time showing lock acquisition

value and climbs up to the value required to provide the correct voltage for

the VCO, which in this case is 1.5 V. Since we have designed a slightly over-

damped system, the control voltage quickly settles to the required value in

about 250 ns.

The locking behavior can also be verified by looking at the instantaneous

frequency of the generated clock as shown in Figure 8.2. The frequency

climbs up from 1.75 GHz to quickly settle at the desired value of 2 GHz. We

can also see that the ripples in the control voltage cause very slight changes

in the frequency of the generated clock, which get translated to jitter at the

output. However, the instantaneous frequency hovers closely around 2 GHz,

thereby sampling the data correctly.

Figure 8.3: Eye diagram at the output of the transmitter
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An important metric to characterize the various blocks of the SERDES

system is the eye diagram. The eye diagram gives important details such

as the peak-to-peak jitter and noise levels in the signal. The peak-to-peak

jitter can be obtained by looking at the time difference between the earliest

and the latest transition at the eye crossing points. The noise level can be

obtained by looking at difference between the highest and lowest values for

logic low or logic high at the ideal sampling point, i.e., the center of the eye.

The eye diagram at the output of the transmitter is shown in Figure 8.3. It is

easy to observe that the eye is very clean with minimal jitter and noise. We

can also see that there are almost no reflections from the channel, thereby

verifying that it is terminated correctly.

Figure 8.4: Eye diagram at the output of the channel

We now examine the eye diagram at the output of the channel in Figure

8.4. We can clearly visualize the non-idealities of the channel which lead to

dispersion, intersymbol interference, rise time degradation, etc., and distort

the eye. We can also notice that the channel has caused an increase in the

jitter and noise levels of the signal.

To characterize the actual performance of the CDR, we look at the eye

diagram of the retimed data which is shown in Figure 8.5. We can see

that the CDR has recovered the data correctly while compensating for the

non-idealities of the channel. However, this comes at the cost of slightly

higher jitter due to the rippling of the control voltage around the final value.

One noteworthy feature of the eye is the asymmetry between the rising and

falling transitions. This is due to the mismatch between the pull-up and pull-
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Figure 8.5: Eye diagram at the output of the CDR

down networks and duty cycle distortion caused by the receiver amplifier.

This property is undesirable since it leads to loss of integrity of the signal.

However, it does not significantly affect the operation of subsequent digital

circuitry.

Table 8.1: Summary of eye diagram characteristics for the single-ended
design

Table 8.1 summarizes the characteristics of the previously shown eye dia-

grams and provides values for jitter, noise margin, sampling window, etc. We

can also examine the offset from the ideal sampling point of the generated

clock as shown in Figure 8.6. We see that the clock samples the data about

80 ps to the left of the center of the eye.

We can estimate power consumption by calculating the average current

85



Figure 8.6: Waveform showing the phase offset in sampling the data by the
CDR

drawn from the power supplies. The total power consumption of the SERDES

system is about 34 mW and that of the CDR alone is about 3.5 mW.

8.2 Complementary logic CDR

Figure 8.7: Locking behavior of the control voltage

We now look at the performance of the complementary logic CDR. We first
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examine the locking behavior of the control voltage as shown in Figure 8.7.

Similar to the single-ended case, the control voltage quickly settles to its final

value within 500 ns. This is also confirmed by looking at the instantaneous

frequency of the generated clock as shown in Figure 8.8 and the results are

consistent.

Figure 8.8: VCO frequency as a function of time showing lock acquisition

Figure 8.9: Eye diagram at the output of the transmitter

We also present the eye diagrams from the transmitter, channel and the

CDR in Figures 8.9, 8.10 and 8.11 respectively. The eye diagram of the

transmitter is very similar to the single-ended case although one can see very

small mismatches in the differential impedance of the channel. This is well

within the accepted limits and is accounted for in the design.
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Figure 8.10: Eye diagram at the output of the channel

The eye diagram of the channel shows the signal degradation as previously

explained. This leads to increased jitter and noise levels.

Figure 8.11: Eye diagram at the output of the CDR

Looking at the eye diagram at the output of the CDR (Figure 8.11), we

notice that the data has been recovered correctly and we have excellent noise

margin. However, we see a significant increase in the jitter of the retimed

data which is roughly about 55 ps. This can be attributed to the fact that the

CDR is driven by a superbuffer, which is essentially two copies of an inverter

chain, and therefore the complementary signals are not exactly synchronized.
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This effect is compounded by the ripples in the control voltage, which amplify

the jitter in the circuit. However, the jitter is still close to 10% of the bit

period and is tolerable in some applications.

Table 8.2: Summary of eye diagram characteristics for the complementary
logic design

Table 8.2 summarizes the characteristics of the previously shown eye dia-

grams and provides values for jitter, noise margin, sampling window, etc. We

can also examine the offset from the ideal sampling point of the generated

clock as shown in Figure 8.12. We see that the clock samples the data about

50 ps to the left of the center of the eye.

Figure 8.12: Waveform showing the phase offset in sampling the data by
the CDR

As before, we can estimate power consumption by calculating the average

current drawn from the power supplies. The total power consumption of the

SERDES system is about 36 mW and that of the CDR alone is about 4 mW.
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8.3 Current mode logic CDR

Figure 8.13: Locking behavior of the control voltage

We now look at the performance of the CML CDR. We first examine the

locking behavior of the control voltage as shown in Figure 8.13. Similar to the

single-ended case, the control voltage quickly settles to its final value within

300 ns. This is also confirmed by looking at the instantaneous frequency of

the generated clock as shown in Figure 8.14 and the results are consistent.

Figure 8.14: VCO frequency as a function of time showing lock acquisition

We also present the eye diagrams from the transmitter, channel and the

CDR in Figures 8.15, 8.16 and 8.17. The eye diagram of the transmitter is

very similar to the complementary logic case since the same physical channel

is used with the same transmitter.
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Figure 8.15: Eye diagram at the output of the transmitter

Figure 8.16: Eye diagram at the output of the channel

The eye diagram of the channel shows the signal degradation as previously

explained. This leads to increased jitter and noise levels.

Looking at the eye diagram at the output of the CDR (Figure 8.17), we

notice that the data has been recovered correctly and we have excellent noise

margin. The jitter has been slightly amplified by the CDR and is about 25

ps, which is well within acceptable limits. The eye is perfectly symmetric,

which augurs well for the integrity of the signal as well as for subsequent

circuitry.

Table 8.3 summarizes the characteristics of the previously shown eye dia-

grams and provides values for jitter, noise margin, sampling window, etc. We

can also examine the offset from the ideal sampling point of the generated

clock as shown in Figure 8.18. We see that the clock samples the data about
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Figure 8.17: Eye diagram at the output of the CDR

Table 8.3: Summary of eye diagram characteristics for the CML design

100 ps to the left of the center of the eye.

As before, we can estimate power consumption by calculating the average

current drawn from the power supplies. The total power consumption of the

SERDES system is about 36 mW and that of the CDR alone is about 6.5

mW.

8.4 Comparison of CDR circuit architectures

We now have sufficient information to compare and evaluate the three differ-

ent architectures designed in this thesis. Table 8.4 shows a summary of the

comparison.

The lock-in time is the time taken by each CDR to achieve frequency and

phase lock when fed with identical PRBS sequences of length 232 − 1. It

is important to note that this depends on the initial voltage on the loop
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Figure 8.18: Waveform showing the phase offset in sampling the data by
the CDR

capacitor and also the final value to which the control voltage settles. Sim-

ulators such as Cadence Spectre often cannot accurately predict the initial

state of the system and the final state is highly dependent on the VCO de-

sign. Thus, this metric can often be misleading. In order to overcome this

problem, we introduce a new metric known as lock-in slope - defined as the

slope of the straight line that linearly models the rise or fall of the control

voltage. Clearly, we notice that the CML architecture settles faster to the

required value and can therefore recover data the fastest. It also helps the

architecture to quickly establish relock if for some reason the lock is lost.

An important consideration in the present age of mobile devices is power

consumption. The transmit powers are almost identical across the three

architectures because in all cases the transmitter is identical. The differential

channels consume slightly more power since we now have to send data on two

lines. We can also see that the single-ended design consumes the least system

power whereas the other two architectures consume slightly higher power.

When it comes to the CDR, the CML architecture consumes the greatest

power since we always have current flowing between VDD and GND, leading

to static power consumption. However, this is reasonably compensated by

the lack of receiver amplifier in the CML architecture.

We also notice that the CML architecture performs best in terms of jitter
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Table 8.4: Comparison of the three circuit architectures designed in this
thesis

and width of the sampling window. The single-ended architecture has simi-

lar jitter performance but suffers from asymmetry of rising and falling pulses

leading to a smaller sampling window. The CML architecture is completely

symmetric and overcomes this problem. The complementary architecture

has poor jitter performance and also suffers from a smaller sampling win-

dow. However, this architecture exhibits the smallest sampling offset, i.e.,

the offset from the center of the eye is only 50 ps. The other two architectures

have reasonable sampling offsets, and this can be adjusted by designing the

VCO to lock closer to the value of control voltage when the UP and DOWN

currents are symmetric.

Another important performance metric of the CDR is the number of con-

secutive 0’s/1’s it can tolerate without losing lock. Since the single-ended

and complementary architectures use logic signals with full CMOS voltage

swing, the switches for the UP and DOWN currents of the charge pump are

completely turned off when receiving consecutive 0s/1s. Thus, the only way

to leak charge from the capacitor is through leakage current which is of the

order of 10−9 A. Hence, it takes an extremely long time for the voltage on the

capacitor to decay, and for practical purposes it can be assumed that there is

no siginificant limit on the number of consecutive 0s/1s. In case of the CML

architecture, the voltage level for logic low is 1.4 V, which is sufficient to
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allow significant current to pass through the transistors in the charge pump,

thereby leaking or pumping charge from/to the loop capacitor. Hence, the

control voltage will gradually change with time and deviate from the required

value to produce a 2 GHz clock. For this specific design, it was observed that

we could receive up to a 100 consecutive 0s or 1s without losing frequency

and phase lock with the incoming data stream. This is sufficient for most

practical applications, especially with the use of encoding to increase the

amount of data transitions

It is also interesting to observe that the single-ended channel causes more

(2X) degradation of the transmitted data than the differential channels. This

is because differential channels allow us to cancel out the common mode

noise, whereas in the case of single-ended channels the signal is referred to

ground and any noise present will not cancel out. This becomes increasingly

important as we go to higher data rates and has mandated the use of low

voltage differential signaling (LVDS) as the standard for IO interfaces.

The last comparison metric is related to the area of the design which will

directly impact cost. Since the designs were simulated only at the schematic

level, it is not possible to accurately obtain the actual silicon area required.

This can be obtained only by performing the layout design of the transistors

and performing routing, etc. However, to obtain a rough idea, we can look at

the total width of the transistors used in each of the designs. All transistors

have a length equal to the minimum feature size, i.e., 180 nm. It is clear

that the CML architecture is superior both in terms of the CDR area as

well as the overall receiver area. This can be attributed to the fact that

CML circuits have transistors only in the pull-down network, which results

in a significant reduction in area as observed in the case of memory circuits

using pseudo-NMOS technology [31]. Secondly, the CML architecture does

not require the receiver amplifier and superbuffer stages, resulting in area as

well as power savings.

It is critical to note that the area numbers reported in Figure 21 do not

consider the area required to implement the resistors in CML circuits. Imple-

menting polysilicon resistors is often very expensive; therefore, a PMOS load

which is biased in the resistive region is used. This provides almost identical

performance with a large reduction in area. Secondly, the area required to

implement various current sources using current mirror circuits is also not

considered. These two effects will reasonably increase the area required by
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the CML architecture. It is also worth mentioning that the receiver ampli-

fier blocks in the single-ended and complementary logic architectures also

make use of resistors and current sources which have not been included in

the reported area numbers.

Overall, we see that the CML architecture provides superior performance

while providing significant reduction in area and consuming only slightly

more power. Thus, for performance critical high speed serial links, current

mode logic should be the circuit architecture of choice.
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CHAPTER 9

DISCUSSION

In this thesis we have designed and evaluated three different CDR circuit

architectures for 2 Gb/s operation using 180 nm CMOS technology. First,

a strong mathematical framework to analyze the CDR is presented and is

used to derive the optimal loop parameters. Next, a behavioral model of

the CDR is implemented using Verilog-AMS to rapidly prototype designs

and arrive at the ideal loop configuration. Finally, the behavioral model is

implemented at the transistor level using three different circuit architectures

and the results are compared. In this final chapter, we conclude with a

discussion of CML architectures and why they are superior and also highlight

some of the possible future work along these lines.

9.1 CML vs. single-ended

Based on the results presented in Chapter 8, the front runners in terms

of CDR circuit architectures were the CML and single-ended design. Both

architectures have almost identical jitter performance although the single-

ended case has asymmetric transitions resulting in a smaller sampling window

and a loss in the integrity of the signal. However, the single-ended case

utilizes CMOS circuits which have only dynamic power consumption and no

static power consumption. Thus, it is very power-efficient and this can be

confirmed by looking at the CDR power alone in which case the single-ended

case is 50% more power-efficient. However, at the system level it is only 4%

more efficient due to the large power consumption of the receiver amplifier

and the superbuffer blocks. Also, the single-ended architecture requires more

area than the CML architecture. Thus, except in the case of power critical

systems, the single-ended architecture is not preferable.

Another important reason for choosing the CML architecture is to combat
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the increase in data rates. There is an insatiable demand for faster data

access which necessitate an increase in the data rate of serial links. Thus,

in performance-critical systems, power takes a back seat and it is vital to

increase the data rate as much as possible. CML can prove to be extremely

superior in this regard since it uses fewer transistors and therefore has a

smaller load capacitance, which leads to faster switching. Also, the voltage

swing in CML is much smaller than the conventional CMOS case which oper-

ates with full CMOS voltage levels. These two factors allow CML circuits to

be a significantly faster than their conventional CMOS counterparts. Table

9.1 shows a comparison of unloaded delays of various fundamental digital

logic elements in CML as well as conventional CMOS. Each of the elements

is sized to have the drive strength of a minimum size inverter in the tech-

nology. A TSPC flipflop is used for conventional CMOS whereas a simple

master-slave flipflop is used for the CML family. The test waveforms have a

rise/fall time of 50 ps and full CMOS voltage levels are used for the conven-

tional CMOS family whereas a voltage swing of 400 mV is used for the CML

family. Thus, even though the rise/fall times are identical, the slew rate is

much smaller in the case of the CML family, which typically leads to larger

delays. From the comparison, it is clear that the CML family outclasses the

conventional CMOS family in terms of switching speed. The speed advan-

tage becomes more prominent as we scale down the device length and move

to advanced process nodes.

Table 9.1: Comparison of switching speed between CML and conventional
CMOS families

The only potential drawback of the CML architecture is the power con-

sumption. Although CML has a large static power consumption, the dy-

namic power consumption is much smaller than conventional CMOS due to
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the smaller voltage swing. As the frequency of operation increases, dynamic

power increases linearly, and this can result in the dynamic power consump-

tion of conventional CMOS circuits being comparable to static power con-

sumption of CML circuits, assuming conventional CMOS circuits are able

to operate at such frequencies. Regardless of the power consumption, CML

allows us to exploit a power-performance tradeoff which was not possible in

the case of conventional CMOS due to fundamental limitations of the tech-

nology. As long as we have performance-critical applications such as data

centers and servers, there will always be a demand for faster data access, and

CML meets that requirement.

It is possible to make the CML technology even faster by reducing the

voltage swing. In addition to faster switching speeds, this also provides

savings in dynamic power consumption since the capacitors are charged and

discharged to a lesser extent. Also, the smaller swing would imply smaller

bias current, which leads to less static power and also smaller transistors.

Thus, it is possible to make the CML technology faster, more power-efficient

and more area-efficient by reducing the voltage swing. However, this affects

the noise immunity of the circuit and must therefore be approached with

great caution.

9.2 Future work

The biggest takeaway from this thesis is that CML circuits are the way

forward in designing superfast serial links. A very basic version of the CDR

was implemented to verify the advantages offered by the CML architecture.

Several enhancements can be carried out, such as:

• Add a second CDR loop to perform coarse frequency detection. This al-

lows the CDR to work over multiple frequencies in an adaptive manner

and can therefore serve multiple applications.

• Implement more complex phase detectors. The Hogge phase detector

is a simple linear PD and can be made more efficient. For example, [32]

discusses a phase detector using latches instead of flipflops. This allows

for less delay in the phase detector as well as less power consumption.
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• Implement a half-rate/quarter-rate phase detector. In this thesis, the

CDR only sampled on the positive edge of the clock. We can have

the CDR sample at both the positive and negative edges, thereby dou-

bling the data rate without increasing the clock frequency. This re-

quires modifications to the phase detector [33]. The concept can be

extended and we can have the VCO produce in-phase and quadrature-

phase clocks, while sampling at both the positive and negative edges,

thereby providing a 4X increase in the data rate without increasing the

clock frequency.

• Consider using a charge pump and VCO with differential outputs. This

would greatly improve the phase noise and jitter performance of the

CDR.

• A completely different approach is to use all-digital CDRs [16]. In this

case, the incoming analog signal is first converted to a digital signal

using ADCs and then operations such as phase detection are performed

in the digital domain. Instead of a VCO, we have a digitally controlled

oscillator that produces different frequencies based on the control word.

Thus, we eliminate the need for a charge pump and the loop filter.

This has tremendous savings in terms of power since the charge pump

often has a large current in the order of 1 mA. It also has area savings

since the loop capacitor is in the order of 10−12F and often requires a

large area to implement. However, new challenges such as quantization

noise arise and need to be tackled efficiently to provide performance

comparable to that of analog CDRs. Another advantage of all-digital

CDRs is that they are fully synthesizable and can therefore be highly

automated in terms of the design process using hardware description

languages (HDLs) and synthesis tools.

100



REFERENCES

[1] IDC, “IDC Predictions 2013: Competing on the 3rd Platform,” Nov
2012. [Online]. Available: http://www.idc.com/research/Predictions13/
downloadable/238044.pdf

[2] “Cisco Visual Networking Index: Forecast and Method-
ology, 2012-2017,” White Paper, Cisco, May 2013.
[Online]. Available: http://www.cisco.com/en/US/solutions/
collateral/ns341/ns525/ns537/ns705/ns827/white paper c11-
481360 ns827 Networking Solutions White Paper.html

[3] M. Komorowski, “History of storage cost (update),” Mar. 2014.
[Online]. Available: http://www.mkomo.com/cost-per-gigabyte-update

[4] J. Nielsen, “Nielsen’s Law of Internet Bandwidth,” Apr 1998. [Online].
Available: http://www.nngroup.com/articles/law-of-bandwidth/

[5] D. Friedman, “International solid-state circuits conference trends
2013,” Feb 2013. [Online]. Available: http://isscc.org/doc/2013/
2013 Trends.pdf

[6] G. Moore, “Cramming More Components Onto Integrated Circuits,”
Proceedings of the IEEE, vol. 86, no. 1, pp. 82–85, Jan 1998.

[7] R. Vetter, D. Du, and A. Klietz, “Network supercomputing,” Network,
IEEE, vol. 6, no. 3, pp. 38–44, May 1992.

[8] B. Razavi, Monolithic Phase-Locked Loops and Clock Recovery Circuits.
Piscataway, NJ: IEEE Press, 1996.

[9] R. R. Dobkin, A. Morgenshtein, A. Kolodny, and R. Ginosar,
“Parallel vs. serial on-chip communication,” in Proceedings of the 2008
International Workshop on System Level Interconnect Prediction, ser.
SLIP ’08. New York, NY, USA: ACM, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1353610.1353620 pp. 43–50.

[10] J. C. Chen, “Multi-gigabit SERDES: The corner-stone
of high speed serial interconnects,” 2011. [Online]. Avail-
able: http://www.design-reuse.com/articles/10541/multi-gigabit-
serdes-the-cornerstone-of-high-speed-serial-interconnects.html

101



[11] M. Assaad, “Design and modelling of clock and data recovery
integrated circuit in 130 nm CMOS technology for 10 Gb/s serial data
communications,” Ph.D. dissertation, Univ. of Glasgow, Scotland, UK,
2009. [Online]. Available: theses.gla.ac.uk/707/1/2009assaadphd.pdf
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