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ABSTRACT

Simulation is an essential step in the circuit design procedure, helping to ver-

ify the behavior of a designed circuit and dramatically reducing the time and

effort required for debugging a given design. However, to analyze this behav-

ior, we require an interface between the circuit design and the computer’s

computational capabilities. This translation can be done in various ways de-

pending on what aspect of the circuit is desired to be modeled (steady-state,

transient, etc.). In this thesis, we explore two of these (steady-state MNA

formulation and State-Space formulation) as a first step towards transient

analysis.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Circuit simulation allows a designer to model the behavior of a designed cir-

cuit to verify behavior of the design. This is critical to designers to ensure

that a designed circuit will behave as intended before being fabricated or

built. In order to perform these simulations, we need a way to describe the

circuit elements and model their behavior. The circuit can be described using

a SPICE netlist, which is a textual way to describe the components of the

circuit and their interconnections. This can then be translated (stamped)

into a matrix form that describes the behavior of the circuit described. One

such formulation is Modified Nodal Analysis (MNA) formulation. The be-

havior of the circuit can then be modeled based on these matrices. In order

for this process to be efficient, however, we need to be able to automatically

generate the stamps from the circuit description1. This process is discussed

in depth in this thesis.

1.2 Outline

• Chapter 1 introduces the motivation behind this thesis.

• Chapter 2 describes the SPICE program and how to use netlists to

describe a given circuit.

• Chapter 3 explains the MNA formulation, focusing on the steady-state

analysis.

• Chapter 4 explains the State-Space formulation.

1Please contact the author for the Python code at visheshverma22@gmail.com
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• Chapter 5 discusses the implementation of parsing the netlist and col-

lecting basic circuit information.

• Chapter 6 describes the generation of the stamp of the steady-state

MNA formulation.

• Chapter 7 describes the generation of the stamp of the State-Space

formulation.

• Chapter 8 concludes the thesis with a summary

• Chapter 9 discusses future extensions on the described work.
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CHAPTER 2

WHAT IS SPICE?

2.1 The SPICE Program

The Simulation Program with Integrated Circuit Emphasis, more commonly

referred to as by its abbreviation “SPICE,” is a circuit simulation pro-

gram commonly used in both academia and industry to model behavior

of a circuit. All circuits, however, can only include certain circuit ele-

ments that are supported: resistors, inductors, capacitors, independent volt-

age sources, independent current sources, voltage-controlled voltage sources,

voltage-controlled current sources, current-controlled voltage sources, current-

controlled current sources, transmission lines, switches, diodes, MOSFETs,

BJTs, JFETs, and MESFETs. Any additional elements that a user wants to

implement must be modeled using the other existing circuit elements. Be-

cause of its widespread adoption, many companies have also produced an

external SPICE tool including models of their products, such as LTspice,

Pspice, and HSPICE. SPICE also currently supports three types of analyses:

DC, AC, and transient.

2.2 SPICE Netlists

A netlist is a textual description of a circuit. It describes the circuit by

listing each component and which nodes it is connected to along with any

additional information needed to describe the behavior of the circuit element.

Each type of component listed previously has a specific code associated with

it to identify it. The descriptions of each of the types of circuit components

of a SPICE netlist are given below in addition to a few additional relevant

instructions to this study. The full netlist is a combination of the elements

3



described below. The lines should include all elements in the circuit and

their connections in order to be a complete netlist [1], [2].

2.2.1 Resistors

The general SPICE netlist representation of a resistor appears as below, fol-

lowed by an example resistor in Figure 2.11 named R1 with resistance 10

kΩ connected between nodes a and b along with the corresponding SPICE

netlist line for resistor R1.

Rxxxxxxx Node1 Node2 Resistance

Figure 2.1: Resistor Schematic
R1 a b 10k

The node listed first of the two (Node1) is considered the positive terminal

of the resistor and the second listed node (Node2) is considered the negative

terminal. The units of the resistance are assumed to be ohms.

2.2.2 Inductors

The general SPICE netlist representation of an inductor appears as below,

followed by an example inductor in Figure 2.2 named L5 with inductance 45

nH connected between nodes 1 and 2 along with the corresponding SPICE

netlist line for inductor L5.

1All schematics in this thesis were generated using CircuitLab
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Lxxxxxxx Node1 Node2 Inductance

Figure 2.2: Inductor Schematic
L5 1 2 45n

The node listed first of the two (Node1) is considered the positive terminal

of the inductor and the second listed node (Node2) is considered the negative

terminal. The current through the inductor is defined to go from Node1 to

Node2. The units of the inductance are assumed to be henries.

2.2.3 Capacitor

The general SPICE netlist representation of a capacitor appears as below,

followed by an example capacitor in Figure 2.3 named C filter with capac-

itance 22 pF connected between nodes ckt out and filt out along with the

corresponding SPICE netlist line for capacitor C filter.

Cxxxxxxx Node1 Node2 Capacitance

Figure 2.3: Capacitor Schematic
C filter ckt out filt out 22p
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The node listed first of the two (Node1) is considered the positive terminal

of the capacitor and the second listed node (Node2) is considered the negative

terminal. The units of the capacitance are assumed to be farads.

2.2.4 Independent Voltage Source

The general SPICE netlist representation of an independent voltage source

appears as below, followed by an example voltage source in Figure 2.4 named

Vbias with voltage 5 V connected between nodes VDC and GND along with

the corresponding SPICE netlist line for voltage source Vbias.

Vxxxxxxx Node1 Node2 DC Voltage

Figure 2.4: Independent Voltage Source Schematic
Vbias VDC GND 10

The node listed first of the two (Node1) is considered the positive terminal

of the voltage source and the second listed node (Node2) is considered the

negative terminal. The units of the voltage across the source are assumed to

be volts.
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2.2.5 Independent Current Source

The general SPICE netlist representation of an independent current source

appears as below, followed by an example current source in Figure 2.5 named

Isource with current 10 mA connected between nodes input and ground along

with the corresponding SPICE netlist line for current source Isrc.

Ixxxxxxx Node1 Node2 DC Current

Figure 2.5: Independent Current Source Schematic
Isrc input ground 10m

The node listed first of the two (Node1) is considered the positive terminal

of the voltage source and the second listed node (Node2) is considered the

negative terminal. The units of the voltage across the source are assumed to

be volts.

2.2.6 Current-Controlled Current Source

The general SPICE netlist representation of a current-controlled current

source appears as below, followed by an example current-controlled cur-

rent source in Figure 2.6 named FCCCS connected between nodes iout and

iref that provides gain 2 from the current through the independent voltage
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source imeas along with the corresponding SPICE netlist line for the current-

controlled current source FCCCS.

Fxxxxxxx Node1 Node2 VSource0 Gain

Figure 2.6: CCCS Schematic
FCCCS iout iref imeas 2

The first listed node (Node1) is considered the positive terminal of the de-

pendent current source and the second listed node (Node2) is considered the

negative terminal. Therefore, current flows from Node2 to Node1. VSource0

is a voltage source in the place where the current reference is measured. If

there is not a voltage source at this location in the circuit already, it is easy

to add a 0 V voltage source in series in the location where the current is to

be measured and use that as the reference without affecting the behavior of

the rest of the circuit.

2.2.7 Voltage-Controlled Current Source

The general SPICE netlist representation of a voltage-controlled current

source appears as below, followed by an example voltage-controlled current

source in Figure 2.7 named GVCCS connected between nodes Ipos and Ineg

8



that provides gain 5 mA/V from the voltage between nodes Vneg and Vpos

along with the corresponding SPICE netlist line for the voltage-controlled

current source GVCCS.

Gxxxxxxx Node1 Node2 Node3 Node4 Gain

Figure 2.7: VCCS Schematic
GVCCS Vpos Vneg Ipos Ineg 5m

The first listed node (Node1) is considered the positive terminal of the

measured voltage and the second listed node (Node2) is considered the neg-

ative terminal. The current flows from the third node (Node3) to the fourth

node (Node4). The units of the gain across the source are assumed to be

amps/volt.

2.2.8 Current-Controlled Voltage Source

The general SPICE netlist representation of a current-controlled voltage

source appears as below, followed by an example current-controlled voltage

source in Figure 2.8 named HCCVS connected between nodes Vout and Vref

that provides gain 2x106 from the current through the independent voltage
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source imeas along with the corresponding SPICE netlist line for the current-

controlled voltage source HCCVS.

Hxxxxxxx Node1 Node2 VSource0 Gain

Figure 2.8: CCVS Schematic
HCCVS Vout Vref imeas 2M

The first listed node (Node1) is considered the positive terminal of the

dependent voltage source and the second listed node (Node2) is considered

the negative terminal. VSource0 is a voltage source in the place where the

current reference is measured. If there is not a voltage source at this location

in the circuit already, it is easy to add a 0 V voltage source in series in the

location where the current is to be measured and use that as the reference

without affecting the behavior of the rest of the circuit. The units of the gain

across the source are assumed to be volts/amp.

2.2.9 Voltage-Controlled Voltage Source

The general SPICE netlist representation of a voltage-controlled voltage

source appears as below, followed by an example voltage-controlled current

10



source in Figure 2.9 named EVCVS connected between nodes Vref+ and Vref-

that provides gain 2 V/V from the voltage between nodes Vneg and Vpos

along with the corresponding SPICE netlist line for the voltage-controlled

voltage source EVCVS.

Exxxxxxx Node1 Node2 Node3 Node4 Gain

Figure 2.9: VCVS Schematic
EVCVS Vpos Vneg Vref+ Vref- 2

The first listed node (Node1) is considered the positive terminal of the

measured voltage and the second listed node (Node2) is considered the neg-

ative terminal. The output dependent voltage source has a positive terminal

at the third node (Node3) and negative terminal at the fourth node (Node4).

The units of the gain across the source are assumed to be volts/volt.

2.2.10 Subcircuit

The SPICE netlist representation of a subcircuit requires two parts: the

subcircuit definition and the invocation of the subcircuit. The subcircuit

definition starts with the command .subckt, followed by the name of the

subcircuit (sub name) and a list of all the nodes to connect to the rest of the
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circuit. The number of externally connected nodes can be arbitrarily long.

This line is then followed by any collection of the previously listed circuit el-

ements that form the internal components of the subcircuit. The subcircuit

definition is considered terminated at the line .ends followed by the name of

the subcircuit sub name. The subcircuit definition follows the format below:

.subckt sub name node1 node2 . . . nodeN
....ends sub name

To invoke the previously defined subcircuit, the following netlist line is

used:

Xxxxxxxx node1 node2 . . . nodeN sub name

The list of nodes describes the nodes in the circuit that connect to the

corresponding subcircuit node listed previously. The last element is the sub-

circuit name sub name that refers to which subcircuit definition this instance

of a subcircuit should follow. Below is an example subcircuit definition and

invocation for a low pass filter subcircuit.

.subckt lowpass input vref output

Rin input N1 50

Cshunt N1 vref 15p

Lseries N1 output 8.2n

.ends lowpass

XLPF Port1 GND Port2 lowpass

2.2.11 End of Netlist

The Ends line, as the name implies, signifies the end of a section. It can be

used as described previously to end a subcircuit definition. It is also used to

end a netlist. In this second case, any lines that come after the Ends line

is ignored entirely. This can be in either lowercase or capital letters, as below.

.ends

.ENDS
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2.2.12 Comments

Comments are lines in the netlist that are only included in the file for read-

ability of the netlist. They are not part of the circuit implementation, though

they typically help anyone who has to read the netlist to understand some-

thing that may not be intuitive just reading the netlist alone.
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CHAPTER 3

MNA FORMULATION

Modified Nodal Analysis (MNA) formulation is a way of expressing the equa-

tions governing the behavior of a given circuit. Specifically, the MNA formu-

lation describes the circuit according to Kirchhoff’s current law (KCL) and

Kirchhoff’s voltage law (KVL). These equations are expressed in the form

of a matrix to allow for easier and more efficient computation, usually by a

computer. The MNA formulation follows the form shown in Equation 3.1:

[A] · [x] = [z] (3.1)

For this analysis, we will focus on just the most commonly used com-

ponents: resistors, inductors, capacitors, independent current sources, and

independent voltage sources. Here we will describe which components affect

which parts of Equation 3.1, and we will describe the exact details in Chapter

6, where the implementation is detailed.

The vector x is the list of our unknown parameters (voltages and currents)

in the circuit. We describe x in terms of two vectors vx and ix as in Equation

3.2:

[x] =

[
vx

ix

]
(3.2)

The vector vx lists all the node voltages in the circuit with the exception

of whichever node is defined as the Ground node. The Ground node does not

appear in the MNA formulation matrices. The vector ix lists all the currents

through voltage sources and inductors. These two concatenate to form the

vector x.

The matrix A describes the relationships between the node voltages and

currents in the circuit. We can divide this matrix into four sub-matrices that

we call G, B, C, and L according to Equation 3.3:

14



[A] =

[
G B

C L

]
(3.3)

Matrix G is a square matrix with size equal to the number of node voltages

in the circuit. Circuit elements that have a conductance will have this value

described here. The exact details of how these conductances are calculated

and placed in the matrix are described in Chapter 6.

Matrix B contains information about voltage sources including indepen-

dent sources, dependent sources, and inductors. Each component adds only

ones, zeros, or negative ones to the elements in the matrix. The implemen-

tation is described in Chapter 6.

Matrix C also contains information about voltage sources including inde-

pendent sources, dependent sources, and inductors. It is simply the transpose

of the B matrix.

Matrix L contains information about currents. This includes information

about both inductors and some dependent sources. Since dependent sources

were not implemented for this part of the project, non-zero values only appear

in this matrix when we have an inductor in the circuit.

The vector z lists all the known currents and voltages in the circuit. Sim-

ilarly to the x vector, this can be divided into iz and vz vectors, as shown

below in Equation 3.4. Vector iz contains the currents in and out of nodes

due to an independent current source, and vector vz contains the voltages

created by the independent voltage sources. These primarily come from in-

dependent current and voltage sources, whereas most other components do

not affect this vector [3]. The implementation is described in Chapter 6.

[z] =

[
vz

iz

]
(3.4)
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CHAPTER 4

STATE-SPACE FORMULATION

The State-Space formulation describes the time-domain behavior of a cir-

cuit in the form of a first-order ordinary differential equation. The general

expression for the State-Space formulation follows Equations 4.1 and 4.2 as

follows:

C · x′n = −G · xn + B · u (4.1)

y = LT · xn (4.2)

The vector xn is the list of our unknown parameters (voltages and currents)

in the circuit. We describe xn in terms of two vectors v and i as in Equation

4.3:

xn =

[
v

i

]
(4.3)

The vector v lists all the node voltages in the circuit with the exception

of whichever node is defined as the Ground node. The Ground node does

not appear in the Steady-State formulation matrices. The vector i lists all

the currents through voltage sources and inductors. These two concatenate

to form the vector xn. x′n is the derivative of xn.

The C matrix contains elements where the unknown currents and voltages

are related to the derivatives of the node voltages and currents respectively.

The G matrix contains element relationships between the node voltages

and currents in the circuit that are directly related to each other. This is

very similar to the A matrix from the Steady-State MNA formulation.

The B matrix combined with the u vector is to include known current and

voltage sources. The u vector contains the values of independent voltage and

current sources, and the B matrix notates which nodes in the independent

16



voltage or current source are the positive and negative terminals.

Similar to the combination of L matrix and u vector, the L matrix and y

vector combine to describe the unknown current and voltage sources. The y

vector contains the unknown currents and voltages through the independent

sources, while the L matrix notates which nodes in the independent voltage

or current source are the positive and negative terminals.

From the matrices defined above, we can also generate a matrix A as

described in Equation 4.4:

A = −G−1 ·C (4.4)

The inverses of the eigenvalues of matrix A provide the poles of the ad-

mittance function [4] defined in Equation 4.5:

Y(s) = LT · (G + sC)−1 ·B (4.5)

For this analysis, we will expand the base of components that we consider

in order to include additional common circuit elements: resistors, induc-

tors, capacitors, independent current sources, independent voltage sources,

current-controlled current sources (CCCS), current-controlled voltage sources

(CCVS), voltage-controlled current sources (VCCS), and voltage-controlled

voltage sources (VCVS). The implementations of these are discussed in Chap-

ter 7.
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CHAPTER 5

NETLIST PARSING IMPLEMENTATION

No matter which method we plan to use to analyze the behavior of a given

circuit, the starting point for programmatically representing the solution in

matrices is the same: interpreting the netlist. For the purpose of simplicity,

the netlist parsing was divided into two passes: the first pass collects infor-

mation about the circuit as a whole to be able to generate matrices, and the

second pass fills in these matrices to reflect the properties of the circuit.

5.1 First Pass

The goal of the first pass is to determine basic information about the circuit so

that the appropriate matrices can be created. First it is determined whether

or not the line contains relevant information to the circuit. Any blank lines,

comments (denoted by lines starting in ; or *), or lines that come after a

.ends command can be ignored as they are not part of the circuit.

Once it has been determined that the line contains a valid circuit com-

ponent, we then determine what component this might be. Based on the

component, we also collect additional information about the circuit that can

be determined from this, such as the nodes in the circuit to which the com-

ponent is connected. Each of the components and its relevant properties is

described below.

5.1.1 Resistor

The SPICE representation of a resistor appears as:

Rxxxxxxx Node1 Node2 Resistance

18



In the first pass for both Steady-State MNA and State-Space analysis, we

only need to collect the names of the nodes and add them to our list of nodes

in the circuit if it is not already included.

5.1.2 Inductor

The SPICE representation of an inductor appears as:

Lxxxxxxx Node1 Node2 Inductance

In the first pass for both Steady-State MNA and State-Space analysis,

we collect the names of the nodes and add them to our list of nodes in the

circuit if it is not already included. In the Steady-State MNA representation,

we also keep track of the number of inductors in the circuit. In the State-

Space analysis, we add an additional unknown current to the x vector for

the current through the inductor.

5.1.3 Capacitor

The SPICE representation of a capacitor appears as:

Cxxxxxxx Node1 Node2 Capacitance

In the first pass for both Steady-State MNA and State-Space analysis, we

only need to collect the names of the nodes and add them to our list of nodes

in the circuit if it is not already included.

5.1.4 Independent Voltage Source

The SPICE representation of an independent voltage source appears as:

Vxxxxxxx Node1 Node2 DC Voltage

In the first pass for both Steady-State MNA and State-Space analysis, we

collect the names of the nodes and add them to our list of nodes in the circuit

19



if it is not already included. In the Steady-State MNA representation, we

also need to increment the voltage source counter and add the known voltage

to the z vector. In the State-Space analysis, we also keep track of the number

of sources encountered in addition to adding the unknown current through

the source to both vectors xi and y and adding the source to a dictionary of

voltage sources. This dictionary is necessary later for any potential dependent

sources we come across later.

5.1.5 Independent Current Source

The SPICE representation of an independent current source appears as:

Ixxxxxxx Node1 Node2 DC Current

In the first pass for both Steady-State MNA and State-Space analysis, we

collect the names of the nodes and add them to our list of nodes in the circuit

if it is not already included. In the Steady-State MNA representation, we also

add the known currents into node Node2 and out of node Node1 both to the

z vector. In the State-Space analysis, we also note the current through the

source as a part of the xivector and the unknown voltage across the current

source to the y vector. Finally, the source counter needs to be incremented.

5.1.6 Current-Controlled Current Source

The SPICE representation of a current-controlled current source (CCCS) ap-

pears as:

Fxxxxxxx Node1 Node2 VSource0 Gain

In the first pass for State-Space analysis, we collect the names of the nodes

and add them to our list of nodes in the circuit if it is not already included.

In addition, we add two unknown currents due to the dependent source: one

on the input side and one on the output side. Because of this, we increase

our source counter by two. The Steady-State MNA analysis implementation

did not include current-controlled current sources but could easily be added
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if desired.

5.1.7 Voltage-Controlled Current Source

The SPICE representation of a voltage-controlled current source (VCCS) ap-

pears as:

Gxxxxxxx Node1 Node2 Node3 Node4 Gain

In the first pass for State-Space analysis, we collect the names of each of

the four nodes and add them to our list of nodes in the circuit if it is not

already included. Since it is a source, we also increment our source counter

and add the output (current source) side as a new unknown current to the

vector xi. The Steady-State MNA analysis implementation did not include

voltage-controlled current sources but could easily be added if desired.

5.1.8 Current-Controlled Voltage Source

The SPICE representation of a current-controlled voltage source (CCVS) ap-

pears as:

Hxxxxxxx Node1 Node2 VSource0 Gain

In the first pass for State-Space analysis, we collect the names of the nodes

and add them to our list of nodes in the circuit if it is not already included.

In addition, we add an unknown current due to the output current source.

We do not need to add the input reference voltage source as this is already

included from other aspects of the analysis. Because of this, we increase our

source counter by only one. The Steady-State MNA analysis implementation

did not include current-controlled voltage sources but could easily be added

if desired.
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5.1.9 Voltage-Controlled Voltage Source

The SPICE representation of a voltage-controlled voltage source (VCVS) ap-

pears as:

Exxxxxxx Node1 Node2 Node3 Node4 Gain

In the first pass for State-Space analysis, we collect the names of each of

the four nodes and add them to our list of nodes in the circuit if it is not

already included. Since it is a source, we also increment our source counter

and add the output (voltage source) side as a new unknown current to the

vector xi. The Steady-State MNA analysis implementation did not include

voltage-controlled voltage sources but could easily be added if desired.

5.1.10 Subcircuit

The SPICE representation of a subcircuit element appears as:

Xxxxxxxx node1 node2 . . . nodeN sub name

This must also be paired with a subcircuit definition which would appear

as follows:

.subckt sub name node1 node2 . . . nodeN
....ends sub name

This has not yet been implemented in the current code. However, it would

contain the same relevant information of a set of nodes that need to be added

to our list of nodes in the circuit if not already included [1], [2]. This would

then be followed up by parsing all the components included in the subcircuit

in the same ways as described in the earlier parts of this Chapter

5.2 Second Pass

In preparation for the second pass, the information gathered from the first

pass gives sufficient information to determine the necessary sizes of the ma-

22



trices for each different stamping method. This allows us to create static

matrices (typically initialized to zeros) without having to consider dynami-

cally allocating more memory.

For the Steady-State MNA formulation, the size of the square matrix A

becomes the sum of the number of nodes in the circuit (minus one for the

ground node, which is not included in the matrix) and unknown currents (in-

cluding both independent voltage sources and inductors) in each dimension.

The vectors x and z have the same height as the matrix A, but width of one.

For the State-Space formulation, we have many more matrices that must

be created between the two passes. The size of the vector x is the combined

size of xv (node voltages) and xi (unknown currents). Matrix C is a square

matrix with each dimension the same length as the size of vector x. Matrix

G is also a square matrix with the same dimensions as matrix C. Matrix B is

a rectangular matrix with width equal to the number of voltage and current

sources in the circuit, and height equal to the size of vector x. Matrix L

has the same dimensions as the transpose of matrix B. Finally, vector u has

length equal to the number of voltage and current sources in the circuit.

As can be seen, the majority of components have some sort of value at-

tached to them, such as a resistance, capacitance, gain, voltage, etc. When

these values are either very large or very small, it is typical to use a metric

prefix to the units to describe a power of ten, such as using “10k” in place

of writing out “10000” or using “5p” in place of “0.000000000005”. This im-

proves readability of the netlist. Both programs allow the use of this as well

for metric prefixes from “T” for “Tera-” as 1012 down to “f” for “femto-” as

10−15 in intervals of 103. The program also includes a few select additional

metric prefixes “d” and “c” for “deci-” and “centi-” respectively.

The final step of the second pass is to update each of the matrices for the

appropriate stamp based on the formulation method chosen. This process

is described in Chapters 6 and 7 for Steady-State MNA and State-Space

analyses respectively.
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CHAPTER 6

STEADY-STATE MNA FORMULATION
IMPLEMENTATION

As described in Chapter 3, the MNA formulation follows the form shown in

Equation 6.1. The matrix A can be broken up into submatrices G, B, C,

and L as shown below in Equation 6.2

z = A · x (6.1)

[x] =

[
G B

C L

]
(6.2)

6.1 Implementation

The implementation of the steady-state MNA formulation was built as a

stepping stone towards transient analysis, so only the most common and

simple circuit elements were implemented. These components included re-

sistors, inductors, capacitors, independent current sources, and independent

voltage sources. The procedure we followed to generate this formulation was

to break down the analysis into two passes. The purpose of the first pass is

to gather information about the circuit in order to determine the sizes of the

three matrices in Equation 6.1. This was described in depth previously in

Chapter 4, so in this section we will focus on the second pass.

6.1.1 Resistor

The behavior of a resistor is described by its resistance. This can be equiva-

lently described as a conductance. This can be included in the conductance

matrix G which is the upper left quadrant of the A matrix. The conductance

matrix has one row and column for each node in the circuit, so we can relate
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the nodes based on the conductance of the resistor and Ohm’s law, as shown

in Figure 6.1 for the example resistor.

V = I ·R→ (Vpos − Vneg) · (1/R) = I (6.3)

Figure 6.1: Resistor for MNA Formulation


1
R

. . . − 1
R

...
...

− 1
R

. . . 1
R

 ·

Vpos

...

Vneg

 =


 (6.4)

If the resistor has resistance 0 Ω, this model is ineffective as the conduc-

tance of the resistor goes to infinity. Since a 0 Ω resistor is simply a wire, we

can replace this with a more usable model of a 0 V independent DC voltage

source. The general implementation of a voltage source is described later in

this section.

6.1.2 Capacitor

The behavior of a capacitor is described by its capacitance. Its impedance

can be described as 1
jωC

, or equivalently by its admittance jωC. This can

be included in the conductance matrix G which is the upper left quadrant

of the A matrix. The conductance matrix has one row and column for each

node in the circuit, so we can relate the nodes based on the admittance of the

capacitor and Ohm’s law, as shown in Figure 6.2 for the example capacitor.

V = I · Z → (Vpos − Vneg) · (jωC) = I (6.5)
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Figure 6.2: Capacitor for MNA Formulation


jωC . . . −jωC

...
...

−jωC . . . jωC

 ·

Vpos

...

Vneg

 =


 (6.6)

6.1.3 Inductor

The behavior of an inductor is described by its inductance. Inductors can

be described by Equation 6.7. This translates to affecting the A matrix in

the submatrices B, C, and L. This is shown in Figure 6.3 for the example

inductor.

Vpos − Vneg − jωL = 0 (6.7)

Figure 6.3: Inductor for MNA Formulation
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1
...

−1
...

1 . . . −1 . . . −jωL


·



Vpos

...

Vneg

...

iL


=



 (6.8)

6.1.4 Independent Voltage Source

The behavior of an independent voltage source is defined by the voltage it

provides. There is a current through the independent voltage source that

moves from node Npos to node Nneg, and there is an increase in voltage by

V volts from node Nneg to node Npos as shown in Figure 6.4. This results

in adding two currents to the KCL expression, and one added to the KVL

expression (shown in Equation 6.9).

VNpos − VNneg = V (6.9)

Figure 6.4: Independent Voltage Source for MNA Formulation
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1
...

−1
...

1 . . . −1 . . .


·



Vpos

...

Vneg

...

iV


=


...

V


(6.10)

6.1.5 Independent Current Source

The behavior of an independent current source is a simple current injec-

tion. The outputs of the KCL expressions are decreased at node Node1 and

increased at node Node2 as shown in Figure 6.5. This can simply be repre-

sented by increasing/decreasing the current at the appropriate nodes in the

output vector z.

Figure 6.5: Independent Current Source for MNA Formulation


 ·


Vpos

...

Vneg

 =

 I

−I

 (6.11)
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6.1.6 End of Netlist

Any line that comes after the Ends line is ignored entirely. This can be in

either lowercase or capital letters.

6.1.7 Comments

Comments are lines in the netlist that are ignored. They are not part of the

circuit implementation, nor do they affect the generation of the stamp for

the circuit.

The matrices are smaller by one because the ground node is not included

in the steady-state MNA stamp. The row and column associated with the

ground node are removed, as are any values in those locations in the matrices.

The ground node in the existing code was determined to simply be the last

node named in the netlist, but can be prioritized to choose a node as ground

if it is named “gnd”, “GND”, or “0”, since these are the typical names for

the ground node [3], [5].

6.2 Sample Circuits and Stamps

6.2.1 Example 1

The circuit in Figure 6.6 was the first test used to verify the functionality of

the code for voltage sources and resistors. As the first test, it also ensures

that the code can correctly identify and separate different nodes and other

components of the netlist.

V1 1 3 5

R1 1 3 200

R2 1 2 100

R3 2 3 100

A · xn = z :

 0.015 −0.005 1

−0.005 0.015 −1

−1 1 0

 ·
V1

V3

V2

 =

0

0

5

 (6.12)

29



Figure 6.6: Sample Circuit Containing Voltage Sources and Resistors

6.2.2 Example 2

The circuit in Figure 6.7 was the second test used to verify the functionality

of the code for current sources after other voltage sources and resistors were

shown to work in the previous test. This was also used to ensure that nodes

not named numerically could be handled by the code.

I1 a b 1.1

V1 c d 10

R1 b e 1

R2 e a 2

R3 a d 3

R4 e d 4

R5 e c 5

A · xn = z :


0.83333 0 0 −0.3333 0

0 1 0 0 0

0 0 0.2 0 0

−0.3333 0 0 0.58333 −1

0 0 1 −1 0

 ·

Va

Vb

Vc

Vd

IV 1

 =


−1.1

1.1

0

0

10

 (6.13)
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Figure 6.7: Sample Circuit Containing Voltage Sources, Current Sources,
and Resistors for Testing the Steady-State MNA Formulation

6.2.3 Example 3

The circuit in Figure 6.8 was the third test used to verify the functional-

ity of the code for capacitors as well as testing if the program can handle

exponential notation in the component value.

C2 1 2 1e-3

V1 1 3 5

C1 1 3 2e-3

C3 2 3 1e-3

A · xn = z :

 3000000j −1000000j 1

−1000000j 2000000j 0

1 0 0

 ·
 V1

V2

IV 1

 =

0

0

5

 (6.14)
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Figure 6.8: Sample Circuit Containing Voltage Sources and Capacitors for
Testing the Steady-State MNA Formulation

6.2.4 Example 4

The circuit in Figure 6.9 was used to test and verify the functionality of the

code for inductors as well as testing if the program can correctly process

prefixes in the component value.

I1 a b 1.1u

L1 c d 10n

R1 b e 1m

R2 e a 2

R3 a d 3

R4 e d 4

R5 e c 5
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Figure 6.9: Sample Circuit Containing Current Sources and Inductors for
Testing the Steady-State MNA Formulation

A·xn = z :


0.833333 0 0 −0.333333 0

0 1000.0 0 0 0

0 0 0.2 0 1

−0.333333 0 0 0.583333 −1

0 0 1 −1 −10j

·

Va

Vb

Vc

Vd

IL1

 =


−1.1e− 06

1.1e− 06

0

0

0


(6.15)
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6.2.5 Example 5

The circuit in Figure 6.10 was an outside example [5] used to externally

validate the solution to be correct.

R4 1 3 4

R2 2 3 2

IS 4 1 1

VS 1 3 5

R1 1 4 1

R3 3 4 3

C1 1 4 1e-3

C2 2 4 2e-3

Figure 6.10: Example Circuit [5] for Testing the Steady-State MNA
Formulation
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A·xn = z :


(1.25 + 1000000j) −0.25 0 1

−0.25 1.083333 −0.5 −1

0 −0.5 (0.5 + 2000000j) 0

1 −1 0 0

·

V1

V3

V2

IV S

 =


1

0

0

5


(6.16)
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CHAPTER 7

STATE-SPACE FORMULATION
IMPLEMENTATION

As described in Chapter 4, the State-Space formulation follows the form

shown in Equations 7.1 and 7.2.

C · x′n = −G · xn + B · u (7.1)

y = L · xn (7.2)

7.1 Implementation

The implementation of the State-Space formulation was built as the sec-

ond step towards transient analysis, so more components were implemented

than in the steady-state MNA stamping described previously. The com-

ponents in the stamp implementation for the State-Space solution include

resistors, inductors, capacitors, independent current sources, independent

voltage sources, voltage-controlled voltage sources, voltage-controlled cur-

rent sources, current-controlled voltage sources, and current-controlled cur-

rent sources. The procedure we followed to generate this formulation was to

break down the analysis into two passes. The purpose of the first pass is to

gather information about the circuit in order to determine the sizes of the

three matrices in Equation 7.2. This was described in depth in Chapter 5,

so in this section we will focus on the second pass.

7.1.1 Resistor

The behavior of a resistor is described by its resistance. This can be equiva-

lently described as a conductance, which can be included in the conductance

matrix G. The conductance matrix has one row and column for each node
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in the circuit, so we can relate the nodes based on the conductance of the

resistor and Ohm’s law, as shown in Figure 7.1 for the example resistor.

V = IR→ (Vpos − Vneg) · (
1

R
) = I → 1

R
Vpos +

1

R
Vneg = I (7.3)

Figure 7.1: Resistor for State-Space Formulation

G · xn =


1
R

. . . − 1
R

...
...

− 1
R

. . . 1
R

 ·

Vpos

...

Vneg

 (7.4)

If the resistor has resistance 0 Ω, this model is ineffective as the conduc-

tance of the resistor goes to infinity. Since a 0 Ω resistor is simply a wire,

we recommend replacing this with a more easily implemented model of a 0

V independent DC voltage source. The general implementation of a voltage

source is described later in this section.

7.1.2 Capacitor

The behavior of a capacitor is described by its capacitance. This can be

described as shown in Equation 7.5, and can be represented in the C matrix

as shown in the example in Figure 7.2.

I = C
dv

dt
(7.5)

C · x′n =


C . . . −C
...

...

−C . . . C

 ·

V ′pos

...

V ′neg

 (7.6)
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Figure 7.2: Capacitor for State-Space Formulation

7.1.3 Inductor

The behavior of an inductor is described by its inductance. Inductors can be

described by equation 7.7. This can be represented in the G and C matrices

as shown in the example in Figure 7.3.

L
di

dt
= Vpos − Vneg (7.7)

Figure 7.3: Inductor for State-Space Formulation

G · xn =



1
...

−1

1 . . . −1


·



Vpos

...

Vneg

...

iL


(7.8)
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C · x′n =


L

 ·


V ′pos
...

V ′neg
...

i′L


(7.9)

7.1.4 Independent Voltage Source

The behavior of an independent voltage source is defined by the voltage it

provides. There is a current through the independent voltage source that

moves from node Npos to node Nneg, and there is an increase in voltage

by V volts from node Nneg to node Npos as shown in Figure 7.4. This is

represented by Equation 7.10.

VNpos − VNneg = V (7.10)

Figure 7.4: Independent Voltage Source for State-Space Formulation
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G · xn =



1
...

−1

1 . . . −1


·



Vpos

...

Vneg

...

ivs


(7.11)

B · u =



...

. . . −1 . . .


·


...

V
...

 ,L = BT (7.12)

7.1.5 Independent Current Source

The behavior of an independent current source is defined by the current it

provides. There is a voltage across the independent current source from

node Nneg to node Npos and a current from node VNpos to VNneg as shown

in Figure 7.5. This is represented by Equation 7.13.

INpos − INneg = I (7.13)

G · xn =



1
...

−1
...

. . . −1


·



Vpos

...

Vneg

...

iis


(7.14)

B · u =



...

. . . −1 . . .


·


...

I
...

 (7.15)
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L · x =



−1
...

. . . 1 . . .


·



Vpos

...

Vneg

...

iis


(7.16)

Figure 7.5: Independent Current Source for State-Space Formulation

7.1.6 Voltage-Controlled Voltage Source

A voltage-controlled voltage source provides a voltage based on a measured

voltage elsewhere in the circuit. The reference input voltage difference be-

tween two determined nodes is measured and a dependent voltage source

outputs a voltage that is larger than the measurement by a factor of Av as

shown in Figure 7.6. This is represented by Equation 7.17.

(Vref+ − Vref−) ∗ Av = (Vout+ − Vout−) (7.17)
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Figure 7.6: VCVS for State-Space Formulation

G · xn =



−1
...

1
...

−1 . . . 1 . . . Av . . . −Av . . .



·



Vpos

...

Vneg

...

Vref+

...

Vref−
...

ivs



(7.18)

7.1.7 Voltage-Controlled Current Source

A voltage-controlled current source provides a current based on a measured

voltage elsewhere in the circuit. The reference input voltage difference be-

tween two determined nodes is measured and a dependent current source
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outputs a current that is larger than the measurement by a factor of gm from

node Ineg to Ipos as shown in Figure 7.7. This is represented by Equation

7.19:

(Vref+ − Vref−) ∗ gm = Iout (7.19)

Figure 7.7: VCCS for State-Space Formulation

G · xn =



1
...

−1
...

. . . . . 1 . . . −1 . . . 1
gm



·



Vpos

...

Vneg

...

Vref+

...

Vref−
...

iis



(7.20)
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7.1.8 Current-Controlled Voltage Source

A current-controlled voltage source provides a voltage based on a measured

current elsewhere in the circuit. The reference current through a given inde-

pendent voltage source is measured, and a dependent voltage source outputs

a voltage that is larger than the measurement by a factor of gain as shown

in Figure 7.8. This is represented by Equation 7.21:

Iref ∗ gain = (Vout+ − Vout−) (7.21)

Figure 7.8: CCVS for State-Space Formulation

G · xn =



1
...

−1
...
1

gain
...

− 1
gain
...

. . . . . 1 . . . −1 . . .



·



Vpos

...

Vneg

...

Vref+

...

Vref−
...

iout



(7.22)
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7.1.9 Current-Controlled Current Source

A current-controlled current source provides a current based on a measured

current elsewhere in the circuit. The reference current through a given inde-

pendent voltage source is measured and a dependent current source outputs

a current that is larger than the measurement by a factor of gain from node

Ineg to Ipos as shown in Figure 7.9. This is represented by Equation 7.23:

Iref ∗ gain = Iout (7.23)

Figure 7.9: CCCS for State-Space Formulation
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G·xn =



−1
...

1
...

1
... . . .

−1
...

1 . . . −1 . . . −gain
...

. . . 1 . . . −1



·



Vpos

...

Vneg

...

Vref+

...

Vref−
...

iin
...

iout



(7.24)

7.1.10 End of Netlist

Any line that come after the Ends line is ignored entirely. This can be in

either lowercase or capital letters.

7.1.11 Comments

Comments are lines in the netlist that are ignored. They are not part of the

circuit implementation, nor do they affect the generation of the stamp for

the circuit [4].

7.2 Sample Circuits and Stamps

7.2.1 Example 1

The circuit in Figure 7.10 was the first test used to verify the functionality

of the code for voltage sources and resistors. As the first test, it also ensures

that the code can correctly identify and separate different nodes and other

components of the netlist.

V1 1 3 5
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R1 1 3 200

R2 1 2 100

R3 2 3 100

Figure 7.10: Sample Circuit Containing Voltage Sources and Resistors for
Testing the State-Space Formulation

C :

0 0 0

0 0 0

0 0 0

 ,G :

 0.015 −0.005 1.0

−0.005 0.015 −1.0

−1.0 1.0 0.0

 ,B :

 0.0

0.0

−1.0

 ,L :
[
0.0 0.0 −1.0

]
(7.25)

7.2.2 Example 2

The circuit in Figure 7.11 was the second test used to verify the functionality

of the code for current sources after other voltage sources and resistors were

shown to work in the previous test. This was also used to ensure that nodes

not named numerically could be handled by the code.

I1 a b 1.1

V1 c d 10
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R1 b e 1

R2 e a 2

R3 a d 3

R4 e d 4

R5 e c 5

Figure 7.11: Sample Circuit Containing Voltage Sources, Current Sources,
and Resistors for Testing the State-Space Formulation

C :



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,G :



0.833333 0 0 −0.33333 1 0

0 1.0 0 0 −1 0

0 0 0.2 0 0 1

−0.333333 0 0 0.5833333 0 −1

0 0 0 0 −1 0

0 0 −1 1 0 0


(7.26)
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B :



0 0

0 0

0 0

0 0

−1 0

0 −1


,L :

[
−1 1 0 0 0 0

0 0 0 0 0 −1

]
(7.27)

7.2.3 Example 3

The circuit in Figure 7.12 was the third test used to verify the functionality of

the code for capacitors as well as whether the program can handle exponential

notation in the component value.

C2 1 2 1e-3

V1 1 3 5

C1 1 3 2e-3

C3 2 3 1e-3

Figure 7.12: Sample Circuit Containing Voltage Sources and Capacitors for
Testing the State-Space Formulation
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C :

 0.003 −0.001 0

−0.001 0.002 0

0 0 0

G :

 0 0 1

0 0 0

−1 0 0

B :

 0

0

−1

L :
[
0 0 −1

]
(7.28)

7.2.4 Example 4

The circuit in Figure 7.13 was used to test and verify the functionality of

the code for inductors as well as whether the program can correctly process

prefixes in the component value.

I1 a b 1.1u

L1 c d 10n

R1 b e 1m

R2 e a 2

R3 a d 3

R4 e d 4

R5 e c 5

C :



0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1e− 08


,B :



0.0

0.0

0.0

0.0

−1.0

0.0


(7.29)

G :



0.833333333 0.0 0.0 −0.33333333 1.0 0.0

0.0 1000.0 0.0 0.0 −1.0 0.0

0.0 0.0 0.2 0.0 0.0 1.0

−0.3333333 0.0 0.0 0.5833333333 0.0 −1.0

0.0 0.0 0.0 0.0 −1.0 0.0

0.0 0.0 −1.0 1.0 0.0 0.0


,LT :



−1.0

1.0

0.0

0.0

0.0

0.0


(7.30)
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Figure 7.13: Sample Circuit Containing Current Sources and Inductors for
Testing the State-Space Formulation

7.2.5 Example 5

The circuit in Figure 7.14 was an outside example [4] used to externally

validate the solution to be correct. It also tests that comments are properly

ignored.

R1 1 2 1

R2 2 3 0.5

Cc 2 3 100

L1 3 4 10

V1 1 5 5

C1 2 5 1

C2 3 5 2

R3 4 5 0.25
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; I2 5 4 3

V2 4 5 10

Figure 7.14: Example Circuit [4] for Testing the State-Space Formulation

C :



0 0 0 0 0 0 0

0 101.0 −100.0 0 0 0 0

0 −100.0 102.0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 10.0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,B :



0 0

0 0

0 0

0 0

0 0

−1 0

0 −1


(7.31)

G :



1.0 −1.0 0 0 0 1 0

−1.0 3.0 −2.0 0 0 0 0

0 −2.0 2.0 0 1 0 0

0 0 0 4.0 −1 0 −1

0 0 −1 1 0 0 0

−1 0 0 0 0 0 0

0 0 0 0 0 0 −1


,L :

[
0 0 0 0 0 −1 0

0 0 0 1 0 0 0

]

(7.32)
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7.2.6 Example 5

The circuit in Figure 7.15 was used to test the functionality of a voltage-

controlled current source element.

Vs up gnd 5000000u

R1 up mid 1k

R2 up mid 0.003M

R3 mid gnd 0.1M

C1 up hi 3p

R4 gnd lo 10000c

G1 hi lo up mid 1m

Figure 7.15: Example Circuit for Testing the Voltage-Controlled Current
Source in the State-Space Formulation
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C :



3e− 12 0 −3e− 12 0 0 0

0 0 0 0 0 0

−3e− 12 0 3e− 12 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,B :



0 0

0 0

0 0

0 0

−1 0

0 0


(7.33)

G :



0.0013333333 −0.0013333333 0 0 1 0

−0.0013333333 0.0013433333 0 0 0 0

0 0 0 0 0 1

0 0 0 0.01 0 −1

−1 0 0 0 0 0

1 −1 0 0 0 1000.0


,LT :



0 0

0 0

0 0

0 0

−1 0

0 0


(7.34)

7.2.7 Example 6

The circuit in Figure 7.16 was used to test the functionality of a current-

controlled current source element.

Vs a 0 5

R1 a b 1k

R2 b e 5k

Vm e 0 0

C1 b 0 1p

C2 b c 1f

R3 c d 1k

R4 d 0 5k

Fs c 0 Vm 0.1m
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Figure 7.16: Example Circuit for Testing the Current-Controlled Current
Source in the State-Space Formulation

C :



0 0 0 0 0 0 0 0 0

0 1.001e− 12 0 −1e− 15 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 −1e− 15 0 1e− 15 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


,B :



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0


(7.35)
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G :



0.001 −0.001 0 0 0 1 0 0 0

−0.001 0.0012 −0.0002 0 0 0 0 0 0

0 −0.0002 0.0002 0 0 0 1 1 0

0 0 0 0.001 −0.001 0 0 0 −1

0 0 0 −0.001 0.0012 0 0 0 0

−1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 1 0 0 0 −0.0001 0

0 0 1 0 0 0 0 0 0


,L = BT

(7.36)

7.2.8 Example 7

The circuit in Figure 7.17 was used to test the functionality of a voltage-

controlled voltage source element.

Vs up gnd 5000000u

R1 up mid 1k

R2 up mid 0.003M

R3 mid gnd 0.1M

C1 up hi 3p

R4 gnd lo 10000c

E1 hi lo up mid 1m

C :



3e− 12 0.0 −3e− 12 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

−3e− 12 0.0 3e− 12 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0


,B :



0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

−1.0 0.0

0.0 0.0


(7.37)
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Figure 7.17: Example Circuit for Testing the Voltage-Controlled Coltage
Source in the State-Space Formulation

G :



0.0013333 −0.0013333 0.0 0.0 1.0 0.0

−0.0013333 0.0013433 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 −1.0

0.0 0.0 0.0 0.01 0.0 1.0

−1.0 0.0 0.0 0.0 0.0 0.0

0.001 −0.001 −1.0 1.0 0.0 0.0


,L = BT (7.38)

7.2.9 Example 8

The circuit in Figure 7.18 was used to test the functionality of a current-

controlled voltage source element.

Vs a 0 5

R1 a b 1k

R2 b e 5k

Vm e 0 0
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C1 b 0 1p

C2 b c 1f

R3 c d 1k

R4 d 0 5k

R5 f 0 1

Hs c f Vm 10k

Figure 7.18: Example Circuit for Testing the Current-Controlled Voltage
Source in the State-Space Formulation
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C :



0 0 0 0 0 0 0 0 0

0 1.001e− 12 0 −1e− 15 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 −1e− 15 0 1e− 15 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


,B :



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

−1 0 0

0 −1 0

0 0 0


(7.39)

G :



0.001 −0.001 0 0 0 0 1 0 0

−0.001 0.0012 −0.0002 0 0 0 0 0 0

0 −0.0002 0.0002 0 0 0 0 1 0.0001

0 0 0 0.001 −0.001 0 0 0 1

0 0 0 −0.001 0.0012 0 0 0 0

0 0 0 0 0 1.0 0 0 −1

−1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0


,L = BT

(7.40)
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CHAPTER 8

CONCLUSION

In this thesis, we have discussed how to generate the steady-state MNA

formulation and State-Space formulation stamps of a given circuit from its

netlist. The ability to generate these stamps is a critical step towards being

able to compute the behavior of the circuit in an efficient manner. The

stamp computation is broken up into two passes for both formulations. The

first pass is used to determine the size of the stamp and some stamp-specific

properties of the circuit such as the number of independent sources present.

The second pass then fills in the values in the matrices based on the circuit

elements and the formulation being used.

Having this program allows for the simple and automated analysis of multi-

ple circuits and parameter settings. This would be dramatically more efficient

than manually repeatedly modifying circuits slightly for each analysis that

needs to be performed, and it would allow the user to leave the simulation

to run and come back to a complete analysis. Further steps towards a fully

functional version of this program, in addition to further improvements and

enhancements that can be made to this code, can be found in Chapter 9.
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CHAPTER 9

FUTURE WORK

9.1 Improve Efficiency

Currently in progress is the ability to analyze the circuit by defining matched

ports. The idea behind this is as follows. Given a base white-box circuit, we

want to understand the response of the circuit at different ports to various

excitations at these ports. It would be very inefficient to recreate and recom-

pile a netlist for each setup when the base circuit is the same for all these

analyses. One solution to this is to create intermediate matrices that store

the formulation of the base circuit and simply modify that for each desired

ports-excitation combination. The ability to store this intermediate result as

a text file and read it back into the program has already been implemented,

as can be seen in the code in Appendix B. The full implementation of this

tool still requires the implementation of a configuration file. Contained in

this file would be the location of the intermediate result text files, the name

of the Ground node in the circuit (if any), the input port(s) that describes

the excitation(s) being provided to the circuit, the output port(s) where a

measurement is desired to be made, a list of all other ports in the circuit

that are neither an input nor an output, and the load impedance that is

considered a “match” load for all ports.

As alluded to earlier, an additional commonly used component of a SPICE

netlist is the subcircuit. It would be very beneficial to include its implemen-

tation for both steady-state MNA and State-Space formulations. This is

an important next step beyond the code developed here, especially for the

State-Space formulation example with ports from above, because the true

benefit of the method comes from not having to recompute a stamp from an

existing netlist. This difference is really only significant when recomputing

the stamp takes significant time, implying that the circuit used to generate it
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is very large. The vast majority of large circuits are broken up into combined

subcircuits, making its implementation a very beneficial next step.

While we are considering the efficiency of generating the stamps for these

circuits, it is easy to see that there is some inefficiency in the current process

of parsing the netlist two times, especially in the cases we considered above

where our netlists become very large or contain many subcircuits. This can

be done by using matrices with the ability to dynamically add additional

rows and columns. Alternatively, we can use a resizing scheme that doubles

the size of our matrix every time we run out of space. As discussed in data

structures courses, this method will on average result in a constant time

(O(1)) addition to the runtime, which is better in the long term than doing

a second pass which takes linear time (O(n)).

9.2 Additional Functionality

It would also be nice to be able to be able to stamp additional types of circuit

elements beyond what is already included. Specifically, we would like to

stamp components such as bipolar junction transistors (BJTs) (Qxxxxxxx),

metal oxide semiconductor field-effect transistors (MOSFETs) (Mxxxxxxx),

junction gate field-effect transistors (JFETs) (Jxxxxxxx), mutual inductors

(Kxxxxxxx), voltage-controlled switches (Sxxxxxxx), and current controlled

switches (Wxxxxxxx). Since these are nonlinear components, it is likely that

many of these would require a substitution of an approximate model of the

device, if at all possible in the first place.

Finally, it would be beneficial to develop a program to create a stamp

of the transient MNA formulation for completeness. After completing the

generation of all three stamp formulations from a SPICE netlist, the logical

progression would then be to generate the same stamps from the Latency

Insertion Method (LIM) description of the circuit. These would then all be

usable to take a circuit and efficiently generate a stamp, which could then

be used to compute the behavior of the circuit.
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