HIGH SPEED CMOS SERDES DESIGN AND SIMULATION USING
CADENCE VIRTUOSO AND HSPICE

BY

JERRY YANG

THESIS
Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Science in Electrical and Computer Engineering

in the College of Engineering of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

Professor José E. Schutt-Ainé

ABSTRACT

Input/output (1/0) has always played an important part in modern high speed applications.
As integrated circuits (IC) become smaller size and faster speed, traditional parallel
communication is not suitable due to cross-talk, data-skew, and other problems related to
electronic packaging and signal integrity. Serial 1/O has the advantage of faster speed, less
interference between adjacent links, fewer pin counts and thus lower packaging costs. A
Serializer/Deserializer (SerDes) is such a device that takes the parallel data link input and
condenses it into fewer lines of serial stream which would then deserialized and output as the
original recovered parallel data. SerDes is very beneficial because it solves the problems of many
traditional parallel data links and reduces the number of I/O pins and cost for connectors and
cables. Designing a robust, lower power SerDes that functions properly at high speed is very
challenging and requires knowledge from several different areas. As a result, this thesis serves as
an introduction to SerDes for beginners as well as a tutorial of mixed-signal integrated circuit
design, using an example of a Serializer circuit. Fundamental concepts and major components of
SerDes are covered, as well as the design flow of a Serializer from unit block design in Cadence

Virtuoso to simulation in HSPICE, using a 45nm CMOS process.

To my family, for their love and support.
To my adviser, for his attention, encouragement, guidance and support.

To my coworkers, for their advice and assistance.

ACKNOWLEDGMENTS

First and foremost, | would like to express my sincere gratitude to my adviser, Professor
José E. Schutt-Ainé, for providing me with the opportunity to work in this interesting topic and
research in the field of high speed circuit modeling and design. I thank him for all his attention,
encouragement, guidance and support during every stage of my research project. Working under

his supervision has been one of the most enriching experiences of my life.

I would like to give special thanks to Rishi Ratan, Da Wei and Jin Lei, for their immense
help and support on this project. Many thanks to my research group colleagues and friends,
Thomas Comberiate, Xu chen, Drew Newell, Si Win and Karan Bhagat, for their swift assistance

and many valuable discussions during the course of the research.

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ... tuttereereesreeeesseessessesssesssessesssessssssessssssssssssssssssssssssesssessssssssssesssssssssssssssasessssssesans 1
I 2 Tod 14 01 U TSP 1
0 o 00 10 1] PP 2
IS 2 0101 0o PP 2

CHAPTER 2.FUNDAMENTALS OF HIGH SPEED SERDESreereereeseereeseesseesessesssesseessennns 3
00 R0 =5 4 1= PP 3
2.2 Data traNSIMISSION ..cueuierierieerssessessessessessessssssssssssssessessessss s st s s bbb s bR bbb 3

2.2.1 Parallel data tranSfer ... sess s ss s sessssssse s s sssssasees 3
2.2.2 Serial data tranSTeT ... s s 4
2.3 High-SPEEA SEIDEScuieeeeereteesseeeessessesse s sssss s s eess s s bR 5
2.3.1 Serializer/ DeserialiZer DIOCKS ...t sesssssssssssesssessssssssssees 6
2.3.2 EQUALIZET ..ottt ettt sass s sses s e 7
2.3.3 Clock and data recovVery (CDR) .enissssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssnes 7
2.3.4 Differential AriVer and FECEIVET ... seesee s sssses s ssssssesssssssssssssssssssssssseas 8
2.3.5 Phase-10CKed 100D (PLL) wuererereesessssrssssssssssssssssssssssssessssssssssssesssessssssssssssssssessssssssssssssssees 8

CHAPTER 3. HIGH SPEED SERDES ARCHITECTURE AND DESIGNccmeemreererseesreseessensseenees 10
200 B0 125 4 1= PP 10
3.2 SETIANIZET ettt es s e s s s s s R AR 11

3.2.1 D-1atCh deSIZN .cvuieeceeeerireresssess s 12
3.2.2 MUItIPIEXET AESIGIN cuuveueueueeeereeretssiesseeses e ses st s st nsannanes 14

CHAPTER 4. SERDES CIRCUIT DESIGN TUTORIAL .. eeeereereerereesreneessensseesessesssessessseseessesssesees 17
0 0 1= 4 (P 17
4.2 SCREMATIC EQITOT ettt ssses s bbb bbb bbbt 17

4.2.1CTEatING LIDTATY covveeeeeeressetsetssesesses s s st 17
4.2.2 Creating SChematicC CEll VIEW ... seessessessesssessessssssessssssessssssessessnes 19
4.2.3 InStantiating SYMDOLS ...t sss e s s es e s 21
4.2.4 Creating teSt DENCH ... 29
4.2.5 Extracting HSPICE NEtliSt....ounriererereeresreessessssssssssesessessessssssssssssssssssesssssssssssssssssssssssssssens 34

CHAPTER 5. HSPICE MEASUREMENTS AND ANALYSIS .onsssssssssssssssssssssssssssenns 38

5.1 OVEIVIEW .coreeeereeeesreeeesseessesseessesseessesssessesssessssss s s esse e s s s s R R R s E bR 38
5.2 HSPICE SIMUIATION covuetieeeteeeseeeceseeeeeseeseeeessseeessesssesseessesssssessses s sssss s st sssssssans 38
5.3 Measurement and analySiS. ... ssnas 38
CHAPTER 6. CONCLUTION AND FUTURE WORK.....oscerieeereersersssssesssesssesssesssesssessssssssesssesssessssssns 40
] (5 1= Lol PPN 41

vi

CHAPTER 1. INTRODUCTION

1.1 Background

Nowadays, data rates on serial interfaces are increasing rapidly as the technology continuing
to advance. The input/output (1/0O) performance has become the bottleneck of the overall system
performance. Traditional parallel communication such as PCI and PCI-X, however, cannot meet
the standard for high-speed links for inter-Integrated Circuits (IC) data transmission. In parallel
communication, the difference in arrival time of simultaneously transmitted data is commonly
referred as skew. The tolerance of data skew between parallel signals is approaching the practical
limit, because of the increasing operating frequency of the high-speed data links, and data skew
can cause critical problems such as phase difference. In addition, the cross-talk, which refers to
the interference between adjacent parallel data links, is causing more problems as data rates going
higher and higher. What is more, the number of circuits that can be manufactured on a chip is
increasing year by year, as is predicted by Moore’s Law, and therefore extra pins associated with

parallel links would lead to higher packaging costs.

To circumvent the performance limitation of the traditional parallel communication, point-
to-point serial data communication is one of the possible solutions. Serial data transfer requires
fewer lines, which reduces board area. The cross-talk and data skew problems are much easier to
be solved in a serial link comparing to a parallel link. A device called SerDes
(Serializer/Deserializer) provides a mean to convert an n-bit parallel data bus to a single serial

stream with equivalent bandwidth. [1]

1.2 Purpose

The purpose of this project is to understand the concepts and theories behind SerDes as a
system as well as the components inside, in order to design and implement a SerDes within our
research group for further signal integrity analysis. This thesis details the fundamentals and basic
concepts of SerDes, as wells as design and analysis of a serializer circuit as an example. It will
also serve as a tutorial for the electronic design automation (EDA) tools such as Cadence Virtuoso
and HSPICE (SPICE stands for Simulation Program with Integrated Circuit Emphasis). This thesis
documents a step-by-step procedure for designing and simulating a mixed-signal design using both

Cadence Virtuoso and HSPICE through an example.

1.3 Outline

The thesis is organized as follows: Chapter 2 starts with the most fundamental and basic
concepts that are needed to understand for SerDes. Chapter 3 provides insight into the architecture
and functional blocks within a SerDes system, with focus on the Serializer design. Chapter 4
presents a detailed step-by-step tutorial on designing, implementing and simulating the Serializer
design, using Cadence Virtuoso IC 6.1.5. Chapter 5 shows the results obtained and
steps/procedures when testing the Serializer circuit using Synopsys HSPICE and CosmosScope.

Finally, Chapter 6 concludes this thesis with a summary and an outline of future work.

CHAPTER 2.FUNDAMENTALS OF HIGH SPEED SERDES

2.1 Overview

This chapter covers the most basic and fundamental concepts that are needed to understand
the rational of high speed Serializer/Deserializer (SerDes). Section 2.2 describes and compares the
two basic data transmission method — parallel and serial communication. Section 2.3 provides a
brief review of the basic features and functions of the high speed SerDes cores, which is essential

for the circuit design of SerDes covered in later chapters.

2.2 Data transmission

The two basic methods of data transmission between two chips on the same circuit board

or inter-circuit board are: parallel data transfer and serial data transfer.

2.2.1 Parallel data transfer

To transfer data from the inputs (or outputs) from one chip to another, the simplest method
is to directly connect the datapath between the two chips. In many cases, the datapath is more than

one-bit wide because the information of the data is beyond one bit.

Figure 2.1 Parallel communication

3

In figure 2.1, a simplified model of parallel data transfer is shown. Assuming there is an n-bit

datapath across the two chips A and B, an n-bit interconnect is needed in a parallel data bus.

The problems of parallel data transfer, however, includes: 1. Data skew, which could cause
serious problems like phase difference in modern high speed links due to high operating frequency.
2. Cross-talk, which refers to the interference between adjacent parallel data links. As the operating
frequency gets higher, the problem of cross-talk becomes more critical. 3. Multiple data links
consume board space. Extra pins associated with parallel links would lead to higher packaging

Costs.

2.2.2 Serial data transfer

The problems that are inherent to parallel data transfer as discussed in section 2.2.1 can be

eliminated with serial data transfer.

—_—

Figure 2.2 Serial communication

Serial data transfer requires much fewer data links, which reduces board space. Number of
1/0 pins would significantly decrease and therefore lowers the packing costs. Data skew and cross-

talk problems would be much easier to solve in a serial data link.

2.3 High-speed SerDes

A device called Serializer/Deserializer (SerDes) allows data to transfer in a serial manner,
and is now playing a more and more important role in modern high speed applications. Such device
is capable of converting data from parallel to serial and vice versa, as is illustrated in a simplified

model in Figure 2.3.

Figure 2.3 Generic function of a SerDes

A basic block diagram showing the transmitter slice and receiver slice of a typical high
speed SerDes is presented in Figure 2.4. Firstly the n-bit parallel data is serialized in the transmitter
slice through a Serializer. An equalizer is then used to ensure good signal integrity of the serialized
data, which will then be driven into a differential signaling pair. On the receiver slice, a differential
receiver receives the serial data, which is then fed into a Clock Data Recovery (CDR) circuit. After
the recovery and equalization circuitries, the data is finally restored back to parallel data bus

through a Deserializer circuit on the receiver slice.

Transmitter slice

Driver

0 Serializer R Equalizer

Recovery
-t and Ba

Equalization

Receiver Driver

v

A

Channel

Receiver slice

Figure 2.4 Basic block diagram of the transmitter and receiver slices of typical high speed Serdes

The following subsections provide generic descriptions of several circuits mentioned above

in more detail.

2.3.1 Serializer/ Deserializer blocks

The input to the serializer trasnsmit stage is an n-bit datapath, which is then serialized to a
one-bit serial data signal for application to the Feed Forward Equalizer (FFE) and driver stage.
The value of n is generally a multiple of 8 or 10, and may be programmable on some
implementations. Values of n which are multiples of 8 are useful for sending unencoded and/or
scrambled data bytes; values of n which are multiples of 10 are useful for protocols which use

8B/10B coding. The 8B/10B encoder is usually implemented by logic outside the SerDes core. [2]

The actual design of the datapath which is fed into the equalizer may be more than one bit

wide, and that results in more complex circuitries. However in general, the n-bit data input would

6

be serialized into an k-bit datapath, where n > k > 0. The k-bit data would be fed into the equalizer,

and further serialized at the driver stage if needed.

The deserializer block at the receiver slice, however, performs the inverse function of the
serializer at the transmitter slice. The serial data, after the Clock Data Recovery and Decision

Feedback Equalization block, is then deseralized back to an n-bit databus.

2.3.2 Equalizer

A channel refers to the interconnect between the transmitter and receiver slice. It could
distort the serial data signal to varying extents in real world situations. If the signal rate is above
the cut-off frequency, then the high frequency components will get reduced therefore the signal is
distorted. To decode the signal properly, an equalizer is needed to restore the signal. Usually,
equalizers can be added to either the transmitter or the receiver side. In many existing SerDes
designs, a Feed Forward Equalizer (FFE) is adopted in the transmitter side while a Decision
Feedback Equalizer is needed in the receiver side. An FFE is normally implemented as a low-
frequency de-emphasis process to reduce low frequency signal envelope in proportion to the
attenuation experienced by the high-frequency pattern in the channel. A DFE is used in receiver

slice and plays an important role for signal integrity of the entire SerDes.

2.3.3 Clock and data recovery (CDR)

In some modern digital data streams, especially high-speed serial data streams, strong
impairments and sever inter-symbol interference (ISI), which is due to frequency-dependent
channel loss, becomes a critical issue in high-speed interface design. I1SI causes degradation of the
eye opening and timing jitter, and subsequent aggravations of bit error rate (BER) and signal

integrity of the entire system. [3] Since there is no exclusively allocated clock signal in high speed

SerDes transceivers, and a clock signal whose frequency is the baud rate and whose phase is
aligned to the data centers is indispensable for correct data recovery. Clock and Data Recovery
(CDR) circuitries monitor transitions and select optimal sampling phase for the data at midpoint
between edges. It extracts clock information from incoming data stream and uses this regenerated
clock to resample the data waveform and recover the data. CDR is a non-linear circuit and is an
important component to limit jitter, noise within the SerDes circuit. Practical microelectronic

implementation of CDR is a tradeoff among many design considerations. [4]

2.3.4 Differential driver and receiver

The differential driver stage is an analog circuit which drives the true and complement legs
of the differential signal. Output data must be driven such that jitter is minimized. Recall the
definition of jitter, which is the difference in time of when something was ideally to occur and
when it actually did occur. It is a signal timing deviation referenced to a recovered clock from the
recovered bit stream. Jitter is measured in unit intervals and captured visually with eye diagrams.
There are two types of jitter: Deterministic Jitter and Random Jitter. Jitter can cause inter-symbol
interference (ISI), which occurs if time required by signal to completely charge is longer than bit
interval. To ensure high signal integrity, jitter is ought to be minimized. Differential receiver stage
is an analog comparator circuit which compares the true and complement legs of the differential

signal and output a “0” or “1” logic signal based on the relative signal voltages. [2] [5]

2.3.5 Phase-locked loop (PLL)

A Phase-locked loop (PLL) is a feedback system that generates an output signal whose
phase is related to the phase of an input reference signal. It is designed in such a way that the phase

error signal is reduced to zero. The phase-locked loop is basically a closed loop frequency

controlled system, which functioning is based on the phase sensitive detection of phase difference

between the input and output signals of the controlled oscillator. Figure 2.5 shows a classic

configuration of a PLL. The phase detector is a device that compares two input frequencies,

generating an output that is a measure of their phase difference. The phase detector produces an

output voltage that is proportional to the phase error, and the filtered output of the phase detector

is a dc signal, ant the control input to the voltage controlled oscillator (VCO) is a measure of the

input frequency. In some common designs of PLLs, a modulo-n counter is hooked between the

VCO output and phase detector, thus generating a multiple of the input reference frequency. [6]

Frequency
Output

Frequency
Reference
Input
I Voltage
Phase Detector | Loop Filter N Controlled
Oscillator
Divide by N
counter <

Figure 2.5 A classic configuration of a Phase-locked loop (PLL)

PLL is a core component in a SerDes because it is an essential building block of Clock and

Data Recovery (CDR) circuits, and it reduces clock skew and jitter in high speed serial interfaces.

CHAPTER 3. HIGH SPEED SERDES ARCHITECTURE
AND DESIGN

3.1 Overview

Several of the core components, major blocks and circuit basics of high speed SerDes
were introduced in the previous chapter. Here in Figure 3.1 [2], one of the classic high speed

SerDes core overview is shown.

1
1
1

16/20 Tx Slice
5
na:':";za Parallel > » TXP
1 To TxFFE
TCLK g—| Serial < p— TXN

5

REF% PLL Slice

T4 090

PFD

’—6

Divider
(N=16,20, 32, 40)

CLKGEN
Serial Loopback

16/20

32740 ~
RXD - Z Serial CDR
To RXP
RCLK -e—| Parallel fl” DEE RXN

Figure 3.1 Overview of the SerDes core

Here the Phase-locked loop (PLL) slice ensures that the clock signals for the transmitter
and receiver slice have low jitter. The transmitter (TX) slice performs parallel-to-serial conversion
through a Serializer circuit. The serialized data is then fed to a feed forward equalizer (FFE) to
ensure that the receiver input is a clean waveform. The receiver (RX) slice also requires
equalization after the serialized data being transmitted through the channel. A decision feedback

10

equalizer (DFE) is needed to improve the bit error rate (BER). After the signal is equalized, the
serial stream is driven through the Deseriazlier to perform the serial-to-parallel conversion. The

remainder of this chapter describes the design of Serializer in more detail.

3.2 Serializer

Serializer operation performs the parallel-to-serial conversion as shown in Figure 3.1. A

simplified schematic of a 2:1 Serializer is presented here as an example. [Figure 3.2]

2:1 Serializer

De

Deven D_Ii D Q L

2:1 MUX

_I—D Serial

Data

podd >—11—Jp a2Jo T | M

Figure 3.2 A 2:1 Serializer Circuit

Assuming the two bits of parallel data, Deven and Dood, are time-aligned into the Seralizer
and are synchronized to the half-rate C2 clock signal. The Parallel Deven and Dodd signals are
captured by the first two D-latches, which create the De and Do outputs on the rising edge of the
C2 clock signal. The Do’s signal is generated by resampling the Do signal on the falling edge of
the C2 clock signal. The select input of the 2:1 MUX is controlled by the C2 clock signal, so that

when the clock is low De input signal is selected, and when clock is high Do’s is selected.

11

3.2.1 D-latch design

A latch is an important component in the construction of several major blocks in high speed
SerDes, including the Serializer block, Differential Driver block, Phase Detector block,
Deserializer block, etc... A positive latch is a level sensitive circuit that passes the D input to the
Q output when the clock signal is high and it is said to be in the transparent mode. When the clock
is low, the input data sampled on the falling edge of the clock is held stable at the output for the
entire phase, and the latch is said to be in the hold mode. Similarly, a negative latch passes the D
input to the Q output when the clock signal is low. A register, however, is an edge-trigged
component contrary to the level-sensitive latches. A latch is an essential component in the
construction of an edge-triggered register. A flip-flop generally refers to any bistable component,
formed by the cross coupling of gates. Often in some textbooks, an edge-triggered register is

referred to as a flip-flop as well. [7]

Shown in Figure 3.1 is the transistor-level implementation of a positive MUX-based D-

latch built by using transmission gates.

Figure 3.2 A positive MUX-based D-latch using transmission gates

12

When the CLK signal is high, the bottom transmission gate is on, and the latch is
transparent — input signal D is copied to Q. During this time, the top transmission gate is off. When
the CLK signal is low, the bottom transmission gate is off while the top is on. The feedback ensures

the output is held as long as the CLK signal is low.

The problem of such MUX-based D-latch design using transmission gate is that it requires
both CLK and CLK_bar signal, which could lead to clock overlap and eventually cause race
condition to happen. A True Single Phase Clocked (TSPC) Latch [8] can overcome the problem

caused by clock overlap. Figure 3.2 shows the transistor implementation of a TSPC latch.

Figure 3.2 A True Single Phase Clocked Latch

For the positive TSPC latch shown above, when the CLK is high, the latch is in the
transparent mode, and corresponds to two cascaded inverters. When the CLK is low on the other

hand, both inverters are off and the latch is in hold mode.

13

A slightly different configuration of a TSPC with split out latch is used in the final design
of the Serializer as is shown in Figure 3.3. The advantage is that fewer transistors are needed in
this design, and thus lower power consumption of the overall system. Also smaller propagation
delay results in faster speed of the entire circuit. Again, no inverted clock signal is needed in this

design, so the circuit is free of clock skew issue.

Figure 3.3 A True Single Phase Clocked Latch with split output

3.2.2 Multiplexer design

The transistor-level schematic of a transmission-gate multiplexer is shown in Figure 3.4.
The idea behind this circuit is to use two transmission-gates as simple switches to propagate either
input A or input B directly to the output. An extra inverter is needed to generate the inverted select
signal S_bar. While the upper transmission-gate is activated by S, the lower transmission-gate is
activated by S _bar, due to the wiring of their control inputs. When S is low, only the lower
transmission-gate is conducting (because S_bar is connected to its n-channel and S to its p-channel
transistor gate inputs), while the upper transmission-gate is non-conducting. As a result the value

of B is passed through to the output of the multiplexer. When S is high, the upper transmission-

14

gate is activated, while the lower transmission-gate is non-conducting. Therefore the value of A is

passed through to the multiplexer output.

Figure 3.4 Transmission-gate multiplexer

However, traditional transistor sizing method and logical effort cannot be applied to this
transmission-gate multiplexer deisgn, and thus it is hard to find out the optimal transistor size for
maximum speed theoretically. Also, in order to lower the equivalent resistance Req, the
transmission gate must be made wide. The capacitance of the gates, however, will also be
increased, resulting in no reduction in the time constant of the transmission-gate multiplexer. As
a result, another design called Current Mode Logic (CML) Multiplexer is adopted and is shown in
Figure 3.5. The CML circuits are widely used in GHz range high speed bipolor driver or

multiplexer implementations.

The differential select signals, S and S_bar, select which of the two data-input A and B to
be connected to the output. When the select signal S is high (and S_bar is low), A directly affect

the output while B is disconnected. When the select signal S goes low (and S_bar high) B will be

15

connected to the output. Thus both levels of the clock will be used to multiplex the data. The
advantage of this CML circuit is that it has higher operating speed with constant power

consumption independent of operation frequency.

Figure 3.5 Current mode logic multiplexer

16

CHAPTER 4. SERDES CIRCUIT DESIGN TUTORIAL

4.1 Overview

In this chapter a 2:1 Serializer topology in a schematic is created step by step using Cadence
Virtuoso IC 6.1.5. This 2:1 Serializer circuit serves as an example which helps one to understand
the serialization operation. The step by step tutorial is meant to be written in a way such that any

circuit designer with no EDA tools experience can easily follow.

4.2 Schematic Editor

4.2.1Creating library

1. Create anew library. This is done by clicking File = New = Library, as is shown in Figure
4.1. There will be a new window where one may create a “library” by filling in a name. In
Cadence, a library is essentially a directory in the user’s home account containing all the

project files.

Virtuoso® 6.1.5-64b - Log: /home/natcsi/CDS.log

FHEN Tools Options Help cadence

Open., . .
Import
Export.

Refresh, ..
Make Read Onlu...

R: =chHiMouseFoplp{}

Bookmarks

& 1 MUY 2-1MUK_CML schematic

& 2 2-1Serializer Z2-1Serializer_[MLMUY schematic
& 3 Z2-15erializer 2-1Serializer_TB schematic

& 4 2-1Serializer Z2-1Serializer_CMLMUX_TB schematic
& 5 2-15erializer 2-1Serializer schematic

- o MUK 2il MUK schematic

& 7 D-latch_pos TSPC_DFF_Selit schematic

[2 M 2iimun sumbol

EE 9 2-1Serializer 2-1Serializer =sywbol

& 0 D-lstch_pos TSPC_DFF_Split_TB schenstic

Close Data...
Exit...

Figure 4.1: New library

17

2. Specify a library name. In this case, for example, the library is named as “D-latch_Demo”.

[New Library x
Library Technology File
Hame O-latch_Demo — Comnpile an ASCII techrology file

« Reference exizting techrolo lik
Directory tnon-library director = e

2 Attach to an existing techrology

Cacope

Desktop

Documents

Do load=s
ECE42Z_GROUPE_FIMAL_PROJECT
FresFDEdS L

fhomednatoei

« Do not need process information

Dezign Manazer: Mo DM

m Cancel Defaults Ao 1y He 1
T

Figure 4.2: Name the library and choose technology file
3. Once the name of the new library is filled in, choose “Attach Library to an existing
technology” in the Technology File section as is in Figure 4.2. From the technology library
list, select “NCSU_TechLib_FreePDK45”, which corresponds to a NCSU 45 nanometer

technology, then click “OK”. [Figure 4.3]

[Attach Library to Technology Library x

Mew Library D-latch_Demo

NCSLL_ Techl ib_ami06 =
NCSU_TechLib_amilé i

Techihology Library (¥R e IR ol ety]

MCSU_ Techl ib_hpds
HCSU_Techl ib_t=mc02
HCSU_Techl ib_tamcOZd

m Cancel Apply Help

Figure 4.3: Attach library to technology file
4. A new library called “D-latch_Demo” is now created and can be found in the Library
Manager [Figure 4.4]. If the Library Manager is not shown, one can click Tools and select

Library Manager. [Figure 4.5]

18

Library Manager: WorkArea: /fhome/natcsi

Be Edt Vew DeionMuagr Hep cadence

— v Categores | Srow Fies
Call Vi

Iverterd
Iverter |

MUR_TG

NESU_ A NC-verilog, .,

HESU_D

HESLD) VHOL Toolbox...

MCSU_Tg Mixed Signal Environment 3
HESLT:

mesur ADE L '
NESU_T ADE HL

HESLT ot .
NEEU T Characterization and Modeling »

NCSU_T§ AMS »

MCEU Ty Technology File Manager...

355”73“5‘;:; Display Resource Manager, ,,

ansloglibl Abstract Gererator. ..

basic

o | Set Cell Tupe... =
o v

Message oy | IDE,
W SKILL Development.,,,
gy Conuersion Tool Box...

Unigquify, ..

cadence

THFO ¢TECH-1800113: Design library 'D-latch Deno' successfully attached to techrolosy library ‘NCSU_Tschlib FresPOK4S ' .
*UARNTNG® delpclateLiblList,: Tt sppesrs that wou ars brying to run an DA sxecutabls on COB data. Library '482_Finslproject’]

L "
umouse L M Ri

no
1] > [
[¢] virtuoso || 7 Cadence Library Mana... |

Figure 4.5: Open Library Manager

4.2.2 Creating schematic cell view

1. Go to the library manager and highlight the library called “D-latch_Demo”.

2. Select File 2 New = Cell View in the Library Manager. This will bring up a new window
called “New File”

3. Specify a cell name by filling in the blank space to the right of “Cell". In this case, the cell

is named as “TSPC_Demo”. The view will read “schematic”, and the type is set as

19

“schematic”. Note that the “Application” is automatically set to “Schematics L” as is in
Figure 4.6. Then press “OK”, which brings a new window, “Virtuoso Schematic Editor L”.

A blank schematic editing window should be shown as in Figure 4.7.

] Library Manager: WorkArea: /home/natcsi

Fle Edit “ew Desigh Manager Help

_ Show Categories — Show Files

Library Cell View

DHateh_Demo

2-1 Serializer Miew -~ | Lock |
2-15erializer_Dem
2-1 Gerializer_Demo
4 -

D-latch_pos File

Ireverterd Snm D-latch_Deno

Inverter_test sy -
L Cell TEPC_Teno
MUK _TG

MNCEU_Analog_Parts
NESL_Devices_FreeF [K45
NC5U_Digital_Farts
NCSU_Techlib_FreePDK4S
NC 5L TechLib_smils L
NESL_TeshLib_ormil6 fipplication :

NESU Techlib_hp0s Open with Schenatics L B
NCSU_TechLib_tsmc02
NC 5L TechLib_tsmeozd _ Aluays use this application for this tup

MNCEU_Techlib_tsmed3

MCEU_Techlib_tsme03d Library path file

NCSU_TechLib_tsme04_4M2F
Serializer2:1 B b /home/natesisods. lib

Us_gths
anslogLib

View =schematic

Type schematic n

hasic
cdsDefTechLin

m LCancel | Help

Messages

- i Gl - T e e
"Warning: ciol Upclate LibaList: It appears that you are trying to run an 04 executable on CDB data. Library '482_final_project’ contains file Whome/natesif82_final_projectiorop =x' whi
DE was auta refreshed

Deleting 1 ibrary.

Figure 4.6: Create new cell view

ch_Demo TSPC_Demo schematic

Launch Eile Edit Wiew Create Cheek Dptions Mizrate HWindow Help cidence
U e e d 0 mx Q T ¢ -7 ¢ Q Q@ |l L e E
hd hd Morkspace: Basic n = ,ﬁ% TS :ﬁ IQ ATy Ty ‘ BQ Q- =
Havigator TE X R

Default B.
Q B-
Nane =l
5 TSPC_Deno

Property Editor [7/8 X

nouse Lt schSingleSelectPr() M: ddsHiCreatel dbraru() Re sehHiMausePoplp ()
acey | > | oz Sel: o

Figure 4.7: Virtuoso Schematic Editor

20

4.2.3 Instantiating symbols
1. To add new components, select Create = Instance in the Virtuoso Schematic Editor.

Alternatively, this can be done by clicking the button Instance 5 on the tool bar, as is

shown in Figure 4.8.

Virtuoso® Schematic Editor L Editing: D-latch_Demo TSPC_Demo schematic

Launch File Edit Yiew JEg

Check Options Migrate Hindow Help C é dence
1

. . - - 3 = ~ [b
=" ; s -7 7 |Q QAR LLE e
1 Hire (narrow? 2] 3 ' — "
. O Ly 1 r - -
1 Hire {wide Shift+H ‘% ﬁ Q -q} ']IE | |3% & n g
Havigator ZUEX sbc 1yive Nape, .. L
V" Default n e/ Hire Stubs and Hames Space
[=} n - Met. Expression...
Mame Zl|-® Pin,,. P
k= TSPC_Deno Block. .. B

Mapping Schematic,,.

Cellvieu L4
Solder Dot

Mote 4
Patchcord, ,

Frobe 4
MultiSheet., .,

Property Editor irall -l ¢

mouze L; =chSingleSelectPt(} M; ddsHiCreatel ibrary() F: =chHiMousePoplp .
a6y | > | s Se1: 0 I
T = T S P A R

Figure 4.8: Create Instance

2. In the Add Instance window, click “Browse”, which will bring up a new window called
“Library Browser — Add Instance”. Choose “NCSU_Devices_FreePDK45” on the library
list, and select the part needed. Make sure to select the “View”, “Symbol” as is shown in

Figure 4.9. If needed, fill in the proper values for the specific design.

21

15 Add Instance

Likwrary MCSU_Devices_FreePIKAS
Cell FMOS_VTG
View synbol

Names

x
r 7R Q& & 11

T NS

Brouse

| 6 Hire Stubs at:

__ Show Categories

< &ll terninals @ registered terming ... 1y Library Cell View
f— Rous 1 Colums 1 NCSLI_Devices_FreeFDKAS FMOS_VTG aymbal
2-15erializer MMOS_THKOK View -~ | Lock | Size
4 Rotate Ak Sicleuaus S Upside Dowr 2-15etializer_Dem [|NMOS_MTG ams
- -~ - S ~ 2-1Serializer_Dema MMOS_WTH Sy
452_final_project NIMOS_WTL
Model nans PMOS_YTG D-fateh_Demo PMOS_TH aulvs
= D-latch_pos I hspiceD
Width S0n M Inveerter4onm _ spectre
Inverter_test =| || PMOS_WTL gmool | | |
Length 50n M
MUE_TG
Source diffusion area 9.452-15 MCSU Aralog_Parts
NS _FreePDR4S i
Drain diffusion area 3.45e-15 NC5U_Digital_Parts —_— =

] Source diffusion peripher 3000 M
1 Drain diffusion periphert 3000 M
Drain diffusion res squa
Source diffusion res sou
Drain diffusion length 105n M
Source diffusion length 1050 M
Multiplier 1
Tewp riss fron anbient
| Bt iretes) emeretins rem B
U Hot-electron degradat ion ‘

\
v Source/drain selector

[T | Concel | Defaults | Help]

NCSU_TechLib_FreeFDK4S
NCSU_TechLib_ermiog
NCEU_TechLib_omil6
NESU_TechLib_hpos
NCSU_TechLib_tsmeD2
NCSU_TechLib_tsmenzd
NCSU_TechLib_tsmen3

- Clize » - Filters.. » - Digplay... » - Helpx »

o R: schHiMousePoplp ()
| Cnd: Instance Sel: o J'ECE

Hata. L\brar:v '482:ﬂna]33roject' containg file ‘Ihomematcsims2:ﬁnaijnroiectfprob #' which is
Cfata. Library 452 _final_project’ containg file hometatesi/da2_fina_projectiorop <= which is €

Figure 4.9: Add Instance

In this design, a TSPC D-latch with split output will be implemented.

Once the component has been selected, place it in the Virtuoso Schematic Editor window.
This can be done by selecting the part (in this case, “PMOS_VTG”), and then a PMOS

symbol will be attached to the cursor. Left click to place that symbol on the Virtuoso

Schematic Editor window. See Figure 4.10.

After a particular component has been properly placed, strike the “Esc” key to finish.

22

Bl Virtuoso® Schematic Editor L Editing: D-latch_Demo TSPC_Demo schematic -0 x

Launch Eile Edit View Creste Check Options Migrate MWindow Help cadence
= Add Instance x e R .

B-7 7T IR L L E
Likrary NCSU_Devices_FreePDKdG Brouse _

IEYEE R EYEYE B-|

Cell PHOS_VTE

Wiew sumbol
Hares Library Browser - Add Instance
W Ackd Mire Stubs at: bl i Ceimaons
_ all terminals ® registered terming ... jly Libesny Al e
NCSI_Devices_FresPDK4S PMOS_VTG| symisol
Array Rows 1 Columns 1 ST Berilzer TIMOB_THROT Wiew | Lotk |
21 Serializer_Dem ams
A2 Rotate Ak Sideways | = Upside Do 2-1 Gerializer_Demo e
= = = 482_final_project
D-iatsh_Dema alvs
Madel name PHMOS_Y TG DAateh_pos P B hspiesD
- — IverterdSnm spectre
Hidth 9on M Inverter_test =
Length Son M
Source diffusion arsa 9.45e-15
Drain diffusion area 9.d%e-15
HCSLU _Techib_miC6
Source diffusion perishe 200n M WCSU Techib_omil6
NC3U_TeohLib_hp0&:
Drain diffusion periphert 300n M HCSU Techib_tsmoti2
WCEL Techlib_tsmen2d
DD difrusing tes S . NESU Teshlin_tsmet3

Source diffusion res squ

_Close _Filters, _Display.._

Drain diffusion length 108

Souros diffusion length 106 M L
Multiplier 1

Tewg miss From ankisnt

Eskipntad oprabine stk B

Hot-slentron degradation @

Source/drain selector i
[T Concel)| Defaults)| Help

mouse L: mousefddPt it M: Rotate 90 R: schHiMousePoplpd)

Figure 4.10: Placing components

4. To size the transistor, right click the instance (PMOS_VTG or NMOS_VTG), and choose
“Properties”, or alternatively, click the instance and click Edit = Properties - Objects. In
the pop up window called “Edit Object Properties” as shown in Figure 4.11, change the

value of the transistor size.

23

cadence |

Browse

Property
Library Hame
Cell Mame
View Mame

Instance MName

CIF Paranster

| Model name

~~~ Instance

[ Stretch

L1 Copy

¥ Delete

[@) Properties, .,
Descerd Edit,,,
Descend Read...
Edit In Place

Create CellView...

Rotate

& Zoon To Selected

R: schHiMousePopUe ()

| Cmdty 521t 1

5. To connect components with wires, select Create = Wire (narrow), or alternatively click

the button “Create Narrow Wire”
of the wire to a node of one component, and then the wire can be routed to the other

component and attached in, as is shown in Figure 4.12. Strike the “Esc” key to terminate

this operation.

Width
M Length
C Source diffusion area

Drain diffusion ares

Source diffusion peripl

Shift.+E

E Drain diffusion periphe

Drain diffusion res sq

Source diffusion res s
Ctrl+T

Drain diffusion length
Source diffusion lengtl
Multiplier

Temp rise from ambient

Estinated operating re:

Figure 4.11: Transistor sizing

1

Edit Object Properties

fpply To only current [instance B3

Shaw _ systenm o user @ COF

Value
MCSU_Dewices_FresPIK4S
PHMOS_VTG
symbol

Me

_ hdd . Delste
Value
PHMOS_VTG
S0n M
S0n M
9,45e-15
9,45e-15
her 300n M
ery 300n M
i
L]
1080 M
b 106n M
1

sio -]

@ ol ieply | Defaults

_ Resst Instance Lshels Display

_ Madify

_Previous | _

Display

off
off
off

off

Dizplay

off
off
of f
off
off
off
aff
off
of f
off
off
off
off

off

Mext.

Figure 4.12 Connecting Components

24

_Help

on the tool bar. Left click the mouse to attach on end



6. To move objects, select Edit - Move, then center the cursor over the object until a
rectangle with sides appears. Left click to get a copy of the object, then move the object to
any point in the schematic. Once the object is located to the proper place, strike the “Esc”
key and the object will be deposited at that location.

7. Repeat step 1 to add another NMOS and PMOS components, or alternatively, copy from
the previously instantiated components. To copy, select Edit = Copy in the top menu, left

click the component and move the yellow copy to another point.

8. To add pins, select Create = Pin, or alternatively click the button Pin® . [Figure 4.13]

mthecg Options Migrate HWind

:'5 Instance, .. I
1 Wire {(narrouw} W b
1L MWire (wide) Shift+H F
B¢ Wire Name,.. L

Hire Stubs and Names Space

Net Expression...

- Pin,..
Block.,..
Mapping Schematic,..
Cellview 3
Solder Dot
Mote »
Patchcord, ..
Probe »
Mult iSheet, ..

Figure 4.13 Create Pins
In the pop up window called “Add Pin”, specify Pin Names and Direction (input, output,

etc...) from the dropdown list, as shown in Figure 4.14.

25



=} Add Pin X

Pin Names i

Direction input n Bus Expansion @ off _ on
Usage schemat ic n Placement & single o multiple
Signal Type signal n

Attach Net Expressior & No o Yes

Default Net Name

Font Height 0,0625 Font Style |gtick )

42 Rotate Jb Sideways | = Upside Dowr Show Sensitivity >>

Hide Cancel , Defaults | Help

Figure 4.14 Pin names and direction
To place power supply and ground symbols, go to Add Instance and choose the library
“NCSU_Analog_Parts”. In this case, use “vdd” for power supply symbols and use “gnd”

for ground symbols. [Figure 4.15]

Add Instance x

= Library Browser - Add Instance =L 3
i " Parts
Library HCSU_Analog Part. Browss L Show Categories
Cell wad Libsrary Cell View
View sunbol NCSU_Analog_Parts waid symibcl
21 Seric wrecs View ~ Leck
ML 2 Dem svevs i-
- 2 Dema e symbol publication
¥ Add Hire Stubs at: 4 pect ulwire
= ulwire
«w all terminals & registered terming ... )y D-ich_pos i
InverterdSnem e
Array Rows 1 Columns 1 Inrverter_test uSwire
MU ESmpn
3 MUE_TG Bepop
42 Rotate db Sideways | |3 Upside Dow NCSU.Anaiog. Parts vam
NCSU_Devices_FresPDRAS o
NCSU_Digital_Parts weEa
NCSU_Techlib_freePOKAS e
NCSU_Techbib_amids weed
NCSU_Techlib_amil6 Voes

NCSU_TechLib_hp0&

NCSU_TethLib_tsmel
NCSU_TethLib_tsmel2d
NCSU_TechLiby_tsmelrd
NCSU_Techlib_tsme0dd
b_tsmeOd_dMzP vddd

Close \Fitera. Deplay Help.

Cancel ;| Defaults | Help

-

@ cCocol . Feply, Defaults | Previous , Hext ,  Help

Figure 4.14 Power supply and ground

26



10. When schematic editing is finished, click File = Check and save, or alternatively click the

button Check and save M. If any error or warning message appears, refer to the log

window as is shown in Figure 4.15.

(c] Virtuoso® 6.1.5-64b - Log: /home/natcsi/CDS.log - 0 x

Eile Jools Options Help cadence

se Virtuoso_Schematic_Editor XL ("95115") was used to run Schematics L.

mouse L: mouseAddPt (L) M: Rotate 90 R: schHiMousePoplp(}

Click a property to edit.

Figure 4.15 Log window

To zoom the schematic that fits the full window, click the button Zoom to fit X The

complete TSPC D-latch is shown in Figure 4.16.

Figure 4.16 Schematic of the TSPC D-latch

27



11. To create a symbol from the schematic, choose Create = Cellview - From Cellview, and
a pop up window called “Cellview From Cellview” will appear as is shown in Figure 4.17.

Within the symbol, it contains the whole schematic of the TSPC D-latch.

=] Cellview From Cellview X
Library Name D-latch_Demc Brouwse
Cell Hame TSPC_Demol

From View Name Schematic n

To View Name synbo 1

Tool / Data TypeschematicSymbol n

Display Cellview¥

Edit Options v

m Lancel | Defaults | Apply | Help

Figure 4.17 Create a symbol from schematic

12. After clicking “OK”, a new window that shows the symbol of the D-latch will pop up, as

is shown in Figure 4.18.

Figure 4.18 Symbol of the TSPC D-latch

28



One can also change the name of the symbol by left click the name [@partName], then

D)

click the button Edit Properties™", and change the name on the Edit properties window.

To change the shape of the symbol, use the tools shown in Figure 4.19

& % » @ X\ @ / & [

Figure 4.19 Tools to edit symbol

13. Check and save @. Now the symbol of the TSPC D-latch has successfully been created,
and it should be shown under the view list of the TSPC D-latch along with the schematic,

in the Library Manager.

Library Manager: WorkArea: /home/natcsi

F#e Edit Wew Design Manager Help cadence
. Show Categories | Show Files

Library Cell View

D-latch_Demo TSPC_Demo syrriboll

2-1Serializer TSPC_Demo View -~ | Lock. | Siz
2-1Serinlizer_Dem 5 A% schematic | natesi@locainost Jocaldomain
2-_1_5enaJ|:eJ_Demo _

D-latch_pos
Irwverterd4 Snm

Figure 4.20 Symbol and schematic

4.2.4 Creating test bench
Once all the symbols have created, a test bench is needed to place all the symbols together in

one single schematic, connect them together using wires, and run simulations.

1. To create a test bench, choose File = New = Cell View. In the pop up window, specify
the cell name. In this case, this cell is named as “Demo”. Note that this cell is created in a

separate library called “2-1Serializer_Demo” as is shown in Figure 4.21.

29




i Library Manager: WorkArea: /home/natcsi =i
Fle Edit \ew Design Manager Help cader
. Show Categories — Show Files
Library I View
2-1 Serizizer_Demo schematic
-1 Sermhzer Fils View | Lock
2-1 Serkakzer_Dem Bl L ibrary 2-1Serializer_Devo [ £ schemalic | malcsiglocalhost locakdomain
4 t Call Demc
D-latch_Demo —

D-latch_pos View schemat ic

Irveerterd Snm

Inverter_test Tupe schematic

- coe B
MUX_TG Application

NCSU_Aralog_Farts
NC5U_Devices_FreePDK4S Open with Schematics L '

NCSU_Digital_Parts

NCSU Techlib FreePDK4S — Alvays use this application for this tupd
NCSU_TechLib_ami0s .
NCSU_TechLib_amil6 Library path file

NCSU_TechLib_hp0&
NCSU_TechLib_tsme02
NCSU_TechLib_tamciRd
NCSU_TechLib_tamc03
NC5U_TechLib_tamc03d
NCSU_TechLib_tamcD4_4M2P !
Serializer21 - m Cancel Halp
US_sths
analoglib
basic

crtsPefTachl i b I

/home/natcei/cds, lib

Figure 4.21 New schematic for test bench

2. Select Create = Instance to call the instances that have been created previously. Browse
in the library browser and select the symbols of the TSPC D-latch and other components

from the other libraries.

= Add Instance * ™ Library Browser - Add Instance - 0%
Library D-latch_Deso Browse
Cell TSPC_Deno cell View
View sumbol . TSPC_Demol pr—
: Vier T
Hanes TSPL_Demo_TB

o fidd Hire Stubs at:

o all terninals & registered terming ... ly

Array Rows 1 Columns 1

diRotate | dk Sideums = Upside Dowr

Clooe \Filters. Curpiny Hep

S —

Figure 4.22 Place the previously-made symbols

30



3. Connect all the symbols using wires, and create pins to the circuit as is shown in Figure

4.23.

Figure 4.23 2:1 Serializer circuit

4. To further simply the test bench, combine everything into one single symbol by choosing
Create = Cellview - From cellview, and a single symbol containing the whole 2:1

Serializer circuit has been created as shown in Figure 4.24.

Figure 4.24 Symbol of the entire 2:1 Serializer circuit

31



5. Create a new schematic as the test bench for the 2:1 Serializer circuit.

6. Create 2 Instance, choose “NCSU_Analog_Parts”, select “cap” for capacitor, and place
it on the test bench. Connect one end of the capacitor to the “Serial” output of the 2:1
serializer.

7. For signal sources, go to Create = Instance, select “vpulse” from “NCSU_Analog_Parts”
and place it on the test bench. Edit object properties, as is shown in Figure 4.25. Click
“OK” after changing the values in the pop up window. Connect the signal sources to the

inputs of the 2:1 Serializer circuit.

- Edit Object Properties x
Library Hame analoglib of f
Cell Hame vpulse P” '
View Hame sumbol PFF n
Instance Hame W1 of f n
Add Do late Modify
User Property Master Value Local Value Display
lveIgnore TRUE of £ n
CDF Parameter Value Display
Frequency name for 1l/peri of f n
Hoise file name of f n
Humber of noise/freq pair O of f n
IC voltage of f n
AC magnitude of f
AC phase of f ﬂ
HF magnitude of f '
PAC magnitude ' off '
PAC phase ; ?L_'
Voltage 1 oV of £ '
Voltage 2 1.2V QF_f n
Period dn s . of f ﬂ
Delay time 0s PL__'
Rise time 10p s PL__‘
Fall time 10p s C‘_Ff_n
Pulse width 2n s of £
Temperature coefficient 1 GL‘
Temperature coefficient 2 of f ﬂ
Hominal temperature g:_rf_f_'
Tuype of rising & falling |_ ' of f ' =3

m Cancel ,\ Ppply , | Defaults | Previous Hext. Help

Figure 4.25 Edit properties of signal sources

32



8. Place the power supply by selecting Create = Instance, browse library and choose “vdc”
from the “NCSU_Analog_Parts”. Change the DC voltage to 1.2V before placing it to the

test bench. Connect wires to the positive and negative nodes and leave them floating. Click

the button Create Wire Name — , type in “vdd!” for the name in the pop up window, and
then move the cursor to the floating wire connecting to the positive node of “vdc” and left
click to place the name to the wire. Now the wire connecting to the positive node of “vdc”
is connecting to all “vdd” nodes in all the symbols contained inside the 2:1 serializer circuit.
Add wire name “gnd!” to the wire connecting to the negative node of “vdc” so that all the

nodes named as “gnd” are now connected to the negative node of “vdc”. [Figure 4.28]

Add Wire Name

Hire Name

Net Expression

Names weldl 1]

Font Height  0,0625 Bus Expansion @ off o on

Font Style  stick n Placement & single o nultiplé

Just if icat ion lowerCenter n Purpose & label o alias LJ

Entry Style (fixed offset n ind] S rbl L zonta ¢ ‘

Daloadlba =

e i

Q@RI Cancel Defaults Help

Figure 4.28 Place the power supply and add wire names

9. The complete test bench for the 2:1 Serializer circuit is shown in Figure 4.29.

33



Figure 4.29 Test bench for the 2:1 Serializer circuit

4.2.5 Extracting HSPICE Netlist

1. To extract the netlist of the schematic for HSPICE simulation, select Launch = ADE L to

open Virtuoso Analog Design Environment L. [Figure 4.30]

Schematics L

Schemat ics HL

Create Model (SMG)
Diva

Hierarchy Editor
IC Pac (SiP)

Parasitics

Peell IDE

Simulation »

Figure 4.30 Launch Virtuoso Analog Design Environment

34



2. A pop up window called Virtuoso Analog Design Environment should appear. Choose

Setup - Simulatior/Directory/Host... as is shown in Figure 4.31

[l Virtuoso® Analog Design Environment (3) - 2-1Serializer 2-1Serializer CMLML - o0 x

Launch Session Analyses Variables Outputs Simulation Results Tools Help ¢ 5 dence

) - Design ...
B e

Design Variables High-Performance Simulation ... 18 ac
Name || ® Model Libraries ... Arguent.s =
i< Ienperature ... @
Y@ Stinuli ... t:'
Simulation Files ... §
MATLAB/Sinulink B

(3 Environment ...

Outputs (2 35,'
| Hame/Signal/Expr | Value|Plot| Save| Save Options

5 Plot after simulafuto n Plotting mocReplace '
nmouse L M: R:
24(28) | Simulator/Directory/Host ... | Status: Ready | 1=27 C | Simulator: spectre | |

Figure 4.31 Setup simulator in the ADE L

3. In the pop up window called “Choosing Simulator/Directory/Host”, selector “hspiceD”

from the dropdown list. [Figure 4.32]

@ Choosing Simulator/Directory/Host -- Virtuoso® Analog De x

Simulator hspiceD n
Project Directori spectre -
UltraSim
Host Mode @~ ~°°°°°7777° « distributed
ans
Host spectreVerilog
R UltraSinVerilog

Remote Directory

.-

m . Cancel Defaults | Apply Help

Figure 4.32 Choosing simulator

35



4. To include model libraries to the HSPICE netlist, select Setup - Model Libraries. In the
pop up window called “hspiceD4: Model Library Setup”, click the browse button to choose

the model files for the HSPICE netlist. [Figure 33]

=] hspiceD4: Model Library Setup x

|Model File |Sect.ion |
E-Global Model Files
Mek1t/m0dels£hq:uce!t.ran node ls/models_ss/NMOB_VTG. inc o AN
i JL_basekit/models/hspice/tran_models/models_ss/PMOS_VTG. i _—
<Cllc|-c here to add model file>

m Cancel Apply . Help

Figure 4.33 Model library setup
In this case, the model files are located in:
FreePDK45/ncsu_basekit/models/hspice/tran_models/models_ss/. Choose both

NMOS_VTG.inc and PMOS_VTG.inc, then click “OK”.

5. Last but not the least, go to Simulation - Netlist = Create, and the complete HSPICE

netlist should show up in a pop up window as is shown in Figure 4.34.

36



1Serializer 2-1Serializer CMLML _ O

[€] fhome/natcsi/simulation/2-1Serializer CMLMUX_TB/hspiceD/schematic/netlist/inf - o x 1

mﬂ!ﬂ Results Tools Helr ¢3adence | Eile Hele cadence
© Metlist and Run == Generated for: hspicel
=

Bun

© Stee

FAnalog Options L]

Display ...
Recreate

Output Leg

Convergence Rids »

afuto ‘ Plotting mocReplace '

=% Generated on: Apr 30 13:33:58 2013

#% Design library mame: 2-1Serializer

#* Design cell name: 2-1Serializer CMLMUK_TB
#= Dasign view name: schematic

JGLOBAL weid |

.TEMP 25.0

LINCLUDE */home/natcsi/FreePDKd5/ncsu_basek it /models/hspice/tran_models/models_ss/NMOS_VIG, inc®
LINCLUDE */home/natcsi/FreePIKdS/ncsu_basek it /nodels/hspice/tran_models/models_ss/PMOS_VTG. inc®

== Library name: D-latch_pos

## Cell nane: TSPC_DFF_Split

== Yiew name: schematic
subckt TSPC_DFF _Split clk d q

ends TSPC_DFF _Split

| 1=25.0 C |S.1|uu].ator‘: hspicel

wiccessful,

== End of subcircuit definition,

=% Library name: InverterdSnn
Cell name: InverterdSonm
#* View nane: schematic
.subckt InverterdSnm a
%0 u a vid! vid| PMOS_VTG L=50e-9 H=30e-9 AD=3.d5e-15 AS=9.d5e-15 PD=300e-3 PS=300e-9 M=1
ml gy a 00 NMOSVIG L=50e-9 W=90e-9 AD=9,45e-15 AS=9.45e-15 PD=300e-2 P5=300e-9 M=1
sends InverterdSnom
## End of subcircuit definition,

== Library name: MUY

## Call name: 2-1MUN_CML

=2 View name: schematic

Subckt _subl a a_bar b b_bar out out |

Gal

tPEL) M: sevhetlistFile{'s|

w5 retlB s_bar netlé O NMOS_VTG L=50e

| Cndl: Se

wd out b_bar netl8 O HMOS_VTG

File Tools Options Help

L
m3 out a_bar netld O HMOS_VTG L
w2 out_bar b net18 0 NMOS_VTG L
ml netld s netle 0 HMOS_VIG L=S0e-
w0 out_bar a netld O HMOS_VTG L=50s-9

compose simulator irmput file,
. .successful ,

rl vdd! out 1e3

r0 vdd! out_bar le3
il met1s O DC=100e-6
Lends _subd

=+ End of subcircuit definition,

| #* View nane:

== Library name: 2-1Serializer
=# Cell name: 2-1Serializer CMLMUX
schemat ic

Jsubckt _subl c2clk deven dodd serial
%12 netll netl19 netl2 TSPC_DFF_Selit

xil c2clk dodd net19 TSPC_DFF_Selit

xi0 c2clk deven netl TSPC_DFF_Selit

#i7 netlZ netls InverterdSon
wil at 1 nat 16 Taoact ardBee
2|

m4 q netl8 O 0 HMOS_VTG L=50e-9 H=20e-9 Al=9.45e-15 AS=9,45e-15 PD=300e-9 PS=300e-9 M=1

m3 netlB netld O O HMOS_VIG L=S0e-9 H=90es-9 AD=9,45=-15 AS=9.45e-15 PD=300e-9 PS=300e-9 M=1

2 netl5 cli netid netld NMOS_VTG L=50e-9 W=30e-3 AD=9,dSe-15 AS=3,d5e-15 PD=300e-9 P5=300e-9 M=i
ml netld netl) O O HMOS_VIG L=50e-9 H=90e-9 AD=9.45e-15 AS=9,45e-15 PD=300e-2 P5=300e-9 H=1

w0 retll d 0 0 HHOS_VTG L=S50e-2 W=20e-9 AD=9,45e-15 A5=9,45e-15 PD=300e-9 PS=300e-9 M=1

09 q netlB wdd! wdd! PMOS_VTG L=S0e-9 H=90e-9 Al=9.45=-15 RS=9.45e-15 PD=300s-9 PS=300e-9 M=1

8 neti8 netlS vddl vddl PMOS_VTG L=50e-3 W=30e-3 AD=9,d5e-15 A5=9,d5e-15 PD=300e-9 P5=300e-3 M
w7 netlS netll vdd! wdd! PMOS_VTG L=S0e-9 W=390e-9 AD=9.45e- .45e-15 PD=300e-9 PS=300e-9 M
imE metll d vdd! wdd! PMOS_VTG L=50e-9 W=90e-9 AD=9,45e-15 AS=9.45e-15 PD=200e-9 P5=300e-9 H=1

w5 netll clk netll metll PMOS_VTG L=S50e-9 W=90e-9 AD=9.45e-15 AS5=9.45=-15 PD=300e-9 PS=300e-9 M

Figure 4.34 Create HSPICE netlist

37




CHAPTER 5. HSPICE MEASUREMENTS AND ANALYSIS

5.1 Overview

In this chapter, the 2:1 Serializer circuit designed in Chapter 4 is simulated HSPICE.
Several measurements and analysis are performed after the simulation process and the results are

shown in cscope.

5.2 HSPICE Simulation

Once the HSPICE netlist has been successfully extracted, simulation process could be

performed by the following steps:

1. Open up a text editor (such as genit or xemacs) and enter the netlist extracted from the
schematic. Save it to the work directory with a file name extension of .cir. In this case, it
is named as 2-1Serializer_HSPICE.cir

2. In the Linux terminal, change to the directory where the HSPICE netlist is located.

3. To run HSPICE simulation, use the following command in the Linux terminal: hspice 2-
1Serializer_HSPICE.cir

After the HSPICE simulation run, four result files are created. The “2-
1Serializer_ HSPICE.ic0” file is the text file which contains the circuit initial conditions. The “2-
1Serializer_HSPICE.st0” file is the text file which contains a summary of the simulation. The *2-
1Serializer_HSPICE.swQ” file is the binary file which contains the cd sweep waveforms for the
voltage transfer characteristic plot. The “2-1Serializer HSPICE.tr0” is the binary file which

contains the transient analysis waveforms.

5.3 Measurement and analysis

To perform further measurement and analysis of the results of the simulation, the tool
CosmosScope is used in this section. Use the command in the Linux terminal: Cscope. Go to File
- Open -2 Plotfiles to view and analyze the results.

The timing diagram of the 2:1 Serializer is shown in Figure 5.1. The behavior of the 2:1
Serializer matches the expectation. When C2clk signal (the first waveform from top) is low, output

38



of the multiplexer (the fifth waveform from top) takes the De signal (the second waveform from
top). When C2clk signal is high, output of the multiplexer takes the Do’ signal (the forth waveform
from top), where the Do’ signal takes the previous Do signal (the third waveform from top) at

rising-edge of the C2clk.

Graphd

V) ()

vinetd)

V) (s

v(neti4)

Figure 5.1 Timing diagram of the 2:1 Serializer

39



CHAPTER 6. CONCLUTION AND FUTURE WORK

In summary, the work presented in this thesis laid down a path necessary to gain knowledge
of designing and building analog and digital circuits. A simple Serializer circuit is designed,
created and simulated using Cadence Virtuoso and HSPICE. The step-by-step “cookbook style”
tutorial of mixed-signal circuit design and simulation was shown, and could be applied to other
transistor level circuit design projects as well. The Serializer circuit presented in this thesis is not
only a key component in a SerDes system, but also serves as an example for one to understand the
serialization process. Other core components of a SerDes, including Deserializer block, Equalizers,
Clock and Data Recovery (CDR), Differential driver and receiver, and Phase-locked loop (PLL)

were also discussed.

The next step for this project is to finish all the other core components of the SerDes as
discussed earlier. The interconnection between each component would be the following step, and
eventually all major blocks would be integrated as one entire SerDes system, which functions
properly at the desired frequency. Meanwhile, alternative designs or topologies for any sub-circuits
such as D-latches, multiplexers, voltage controlled oscillator (VCO) is being explored and could
be replaced to our existing designs if the overall system speed is found to be increased.
Furthermore, transistor sizing and optimization are needed so as to increase the operating
frequency of the entire SerDes and minimize the propagation delay and power consumption.
Finally, signal and power integrity analysis would be done on the entire SerDes in order to find

out means to reduce the unwanted effects such as cross-talk and jitter/phase noise.

40



References

[1] Lattice Semiconductor Corporation, "Serdes Introduction,” China Distributor FAE
Training, January 2003.

[2] D. Stauffer, J. Mechler, K. Dramstad, C. Ogilvie, A. Mohammad, J. Rockrohr and M. Sorna,
High Speed Serdes Devices and Applications, New York: Springer, 2008.

[3] Y. Shim, W. Lee, E. Song, J. Cho and J. Kim, "A Compact and Wide-Band Passive
Equalizer Design," IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, vol. 20,
no. 5, pp. 256-258, May 2010.

[4] D. Chen, "SerDes Transceivers for High-speed Serial Communications," Carleton
University, Ottawa, Jan 2008.

[5] J. Schutt-Ainé, "Signal Integrity," Class notes for ECE451, Department of Electrical and
Computer Engineering, University of Illinois at Urbana-Champaign, 2009.

[6] T. Van Roon, "PLL Tutorial,” 19 October 2010. [Online]. Available:
http://www.sentex.ca/~mec1995/gadgets/pll/pll.html. [Accessed 30 June 2013].

[7] J. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated Circuits: A Design
Perspective, Prentice Hall, 2003.

[8] J. Yuan and C. Svensson, "High-Speed CMOS Circuit Technique," IEEE Journal of Solid-
State Circuits, vol. 24, no. 1, pp. 62-70, 1989.

41



