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ABSTRACT	

 Input/output (I/O) has always played an important part in modern high speed applications. 

As integrated circuits (IC) become smaller size and faster speed, traditional parallel 

communication is not suitable due to cross-talk, data-skew, and other problems related to 

electronic packaging and signal integrity. Serial I/O has the advantage of faster speed, less 

interference between adjacent links, fewer pin counts and thus lower packaging costs. A 

Serializer/Deserializer (SerDes) is such a device that takes the parallel data link input and 

condenses it into fewer lines of serial stream which would then deserialized and output as the 

original recovered parallel data. SerDes is very beneficial because it solves the problems of many 

traditional parallel data links and reduces the number of I/O pins and cost for connectors and 

cables. Designing a robust, lower power SerDes that functions properly at high speed is very 

challenging and requires knowledge from several different areas. As a result, this thesis serves as 

an introduction to SerDes for beginners as well as a tutorial of mixed-signal integrated circuit 

design, using an example of a Serializer circuit. Fundamental concepts and major components of 

SerDes are covered, as well as the design flow of a Serializer from unit block design in Cadence 

Virtuoso to simulation in HSPICE, using a 45nm CMOS process.   
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CHAPTER	1.	INTRODUCTION	

1.1	Background	

Nowadays, data rates on serial interfaces are increasing rapidly as the technology continuing 

to advance. The input/output (I/O) performance has become the bottleneck of the overall system 

performance. Traditional parallel communication such as PCI and PCI-X, however, cannot meet 

the standard for high-speed links for inter-Integrated Circuits (IC) data transmission. In parallel 

communication, the difference in arrival time of simultaneously transmitted data is commonly 

referred as skew. The tolerance of data skew between parallel signals is approaching the practical 

limit, because of the increasing operating frequency of the high-speed data links, and data skew 

can cause critical problems such as phase difference. In addition, the cross-talk, which refers to 

the interference between adjacent parallel data links, is causing more problems as data rates going 

higher and higher. What is more, the number of circuits that can be manufactured on a chip is 

increasing year by year, as is predicted by Moore’s Law, and therefore extra pins associated with 

parallel links would lead to higher packaging costs.  

To circumvent the performance limitation of the traditional parallel communication, point-

to-point serial data communication is one of the possible solutions. Serial data transfer requires 

fewer lines, which reduces board area. The cross-talk and data skew problems are much easier to 

be solved in a serial link comparing to a parallel link. A device called SerDes 

(Serializer/Deserializer) provides a mean to convert an n-bit parallel data bus to a single serial 

stream with equivalent bandwidth.  [1] 
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1.2	Purpose	

The purpose of this project is to understand the concepts and theories behind SerDes as a 

system as well as the components inside, in order to design and implement a SerDes within our 

research group for further signal integrity analysis. This thesis details the fundamentals and basic 

concepts of SerDes, as wells as design and analysis of a serializer circuit as an example. It will 

also serve as a tutorial for the electronic design automation (EDA) tools such as Cadence Virtuoso 

and HSPICE (SPICE stands for Simulation Program with Integrated Circuit Emphasis). This thesis 

documents a step-by-step procedure for designing and simulating a mixed-signal design using both 

Cadence Virtuoso and HSPICE through an example. 

 

1.3	Outline	

The thesis is organized as follows: Chapter 2 starts with the most fundamental and basic 

concepts that are needed to understand for SerDes. Chapter 3 provides insight into the architecture 

and functional blocks within a SerDes system, with focus on the Serializer design. Chapter 4 

presents a detailed step-by-step tutorial on designing, implementing and simulating the Serializer 

design, using Cadence Virtuoso IC 6.1.5. Chapter 5 shows the results obtained and 

steps/procedures when testing the Serializer circuit using Synopsys HSPICE and CosmosScope. 

Finally, Chapter 6 concludes this thesis with a summary and an outline of future work. 
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CHAPTER	2.FUNDAMENTALS	OF	HIGH	SPEED	SERDES	

2.1	Overview		

This chapter covers the most basic and fundamental concepts that are needed to understand 

the rational of high speed Serializer/Deserializer (SerDes). Section 2.2 describes and compares the 

two basic data transmission method – parallel and serial communication. Section 2.3 provides a 

brief review of the basic features and functions of the high speed SerDes cores, which is essential 

for the circuit design of SerDes covered in later chapters.  

2.2	Data	transmission	

The two basic methods of data transmission between two chips on the same circuit board 

or inter-circuit board are: parallel data transfer and serial data transfer.  

2.2.1	Parallel	data	transfer	

To transfer data from the inputs (or outputs) from one chip to another, the simplest method 

is to directly connect the datapath between the two chips. In many cases, the datapath is more than 

one-bit wide because the information of the data is beyond one bit.       

 

Figure 2.1 Parallel communication 
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In figure 2.1, a simplified model of parallel data transfer is shown. Assuming there is an n-bit 

datapath across the two chips A and B, an n-bit interconnect is needed in a parallel data bus.  

 The problems of parallel data transfer, however, includes: 1. Data skew, which could cause 

serious problems like phase difference in modern high speed links due to high operating frequency. 

2. Cross-talk, which refers to the interference between adjacent parallel data links. As the operating 

frequency gets higher, the problem of cross-talk becomes more critical. 3. Multiple data links 

consume board space. Extra pins associated with parallel links would lead to higher packaging 

costs. 

2.2.2	Serial	data	transfer	

The problems that are inherent to parallel data transfer as discussed in section 2.2.1 can be 

eliminated with serial data transfer.  

 

Figure 2.2 Serial communication 

 Serial data transfer requires much fewer data links, which reduces board space. Number of 

I/O pins would significantly decrease and therefore lowers the packing costs. Data skew and cross-

talk problems would be much easier to solve in a serial data link. 
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2.3	High‐speed	SerDes	

A device called Serializer/Deserializer (SerDes) allows data to transfer in a serial manner, 

and is now playing a more and more important role in modern high speed applications. Such device 

is capable of converting data from parallel to serial and vice versa, as is illustrated in a simplified 

model in Figure 2.3.  

 

 

Figure 2.3 Generic function of a SerDes 

 A basic block diagram showing the transmitter slice and receiver slice of a typical high 

speed SerDes is presented in Figure 2.4. Firstly the n-bit parallel data is serialized in the transmitter 

slice through a Serializer. An equalizer is then used to ensure good signal integrity of the serialized 

data, which will then be driven into a differential signaling pair. On the receiver slice, a differential 

receiver receives the serial data, which is then fed into a Clock Data Recovery (CDR) circuit. After 

the recovery and equalization circuitries, the data is finally restored back to parallel data bus 

through a Deserializer circuit on the receiver slice.   
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Figure 2.4 Basic block diagram of the transmitter and receiver slices of typical high speed Serdes 

The following subsections provide generic descriptions of several circuits mentioned above 

in more detail.  

2.3.1	Serializer/	Deserializer	blocks	

The input to the serializer trasnsmit stage is an n-bit datapath, which is then serialized to a 

one-bit serial data signal for application to the Feed Forward Equalizer (FFE) and driver stage. 

The value of n is generally a multiple of 8 or 10, and may be programmable on some 

implementations. Values of n which are multiples of 8 are useful for sending unencoded and/or 

scrambled data bytes; values of n which are multiples of 10 are useful for protocols which use 

8B/10B coding. The 8B/10B encoder is usually implemented by logic outside the SerDes core. [2] 

The actual design of the datapath which is fed into the equalizer may be more than one bit 

wide, and that results in more complex circuitries. However in general, the n-bit data input would 

Channel

Channel 

Serializer  Equalizer  Driver n 

Receiver 
Recovery 

and 

Equalization

Driver  n

Transmitter slice 

Receiver slice 
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be serialized into an k-bit datapath, where n > k > 0. The k-bit data would be fed into the equalizer, 

and further serialized at the driver stage if needed.  

The deserializer block at the receiver slice, however, performs the inverse function of the 

serializer at the transmitter slice. The serial data, after the Clock Data Recovery and Decision 

Feedback Equalization block, is then deseralized back to an n-bit databus. 

2.3.2	Equalizer	

A channel refers to the interconnect between the transmitter and receiver slice. It could 

distort the serial data signal to varying extents in real world situations. If the signal rate is above 

the cut-off frequency, then the high frequency components will get reduced therefore the signal is 

distorted. To decode the signal properly, an equalizer is needed to restore the signal. Usually, 

equalizers can be added to either the transmitter or the receiver side. In many existing SerDes 

designs, a Feed Forward Equalizer (FFE) is adopted in the transmitter side while a Decision 

Feedback Equalizer is needed in the receiver side. An FFE is normally implemented as a low-

frequency de-emphasis process to reduce low frequency signal envelope in proportion to the 

attenuation experienced by the high-frequency pattern in the channel. A DFE is used in receiver 

slice and plays an important role for signal integrity of the entire SerDes.  

2.3.3	Clock	and	data	recovery	(CDR)	

 In some modern digital data streams, especially high-speed serial data streams, strong 

impairments and sever inter-symbol interference (ISI), which is due to frequency-dependent 

channel loss, becomes a critical issue in high-speed interface design. ISI causes degradation of the 

eye opening and timing jitter, and subsequent aggravations of bit error rate (BER) and signal 

integrity of the entire system. [3] Since there is no exclusively allocated clock signal in high speed 
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SerDes transceivers, and a clock signal whose frequency is the baud rate and whose phase is 

aligned to the data centers is indispensable for correct data recovery. Clock and Data Recovery 

(CDR) circuitries monitor transitions and select optimal sampling phase for the data at midpoint 

between edges. It extracts clock information from incoming data stream and uses this regenerated 

clock to resample the data waveform and recover the data. CDR is a non-linear circuit and is an 

important component to limit jitter, noise within the SerDes circuit. Practical microelectronic 

implementation of CDR is a tradeoff among many design considerations. [4] 

2.3.4	Differential	driver	and	receiver	

 The differential driver stage is an analog circuit which drives the true and complement legs 

of the differential signal. Output data must be driven such that jitter is minimized. Recall the 

definition of jitter, which is the difference in time of when something was ideally to occur and 

when it actually did occur. It is a signal timing deviation referenced to a recovered clock from the 

recovered bit stream. Jitter is measured in unit intervals and captured visually with eye diagrams. 

There are two types of jitter: Deterministic Jitter and Random Jitter. Jitter can cause inter-symbol 

interference (ISI), which occurs if time required by signal to completely charge is longer than bit 

interval. To ensure high signal integrity, jitter is ought to be minimized. Differential receiver stage 

is an analog comparator circuit which compares the true and complement legs of the differential 

signal and output a “0” or “1” logic signal based on the relative signal voltages. [2] [5] 

2.3.5	Phase‐locked	loop	(PLL)	

A Phase-locked loop (PLL) is a feedback system that generates an output signal whose 

phase is related to the phase of an input reference signal. It is designed in such a way that the phase 

error signal is reduced to zero. The phase-locked loop is basically a closed loop frequency 
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controlled system, which functioning is based on the phase sensitive detection of phase difference 

between the input and output signals of the controlled oscillator. Figure 2.5 shows a classic 

configuration of a PLL. The phase detector is a device that compares two input frequencies, 

generating an output that is a measure of their phase difference. The phase detector produces an 

output voltage that is proportional to the phase error, and the filtered output of the phase detector 

is a dc signal, ant the control input to the voltage controlled oscillator (VCO) is a measure of the 

input frequency. In some common designs of PLLs, a modulo-n counter is hooked between the 

VCO output and phase detector, thus generating a multiple of the input reference frequency. [6]  

 

Figure 2.5 A classic configuration of a Phase-locked loop (PLL) 

 PLL is a core component in a SerDes because it is an essential building block of Clock and 

Data Recovery (CDR) circuits, and it reduces clock skew and jitter in high speed serial interfaces.  
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CHAPTER	3.	HIGH	SPEED	SERDES	ARCHITECTURE	
AND	DESIGN	

3.1	Overview	

Several of the core components, major blocks and circuit basics of high speed SerDes 

were introduced in the previous chapter. Here in Figure 3.1 [2], one of the classic high speed 

SerDes core overview is shown. 

 

Figure 3.1 Overview of the SerDes core 

Here the Phase-locked loop (PLL) slice ensures that the clock signals for the transmitter 

and receiver slice have low jitter. The transmitter (TX) slice performs parallel-to-serial conversion 

through a Serializer circuit. The serialized data is then fed to a feed forward equalizer (FFE) to 

ensure that the receiver input is a clean waveform. The receiver (RX) slice also requires 

equalization after the serialized data being transmitted through the channel. A decision feedback 
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equalizer (DFE) is needed to improve the bit error rate (BER).  After the signal is equalized, the 

serial stream is driven through the Deseriazlier to perform the serial-to-parallel conversion.  The 

remainder of this chapter describes the design of Serializer in more detail.  

3.2	Serializer		

Serializer operation performs the parallel-to-serial conversion as shown in Figure 3.1. A 

simplified schematic of a 2:1 Serializer is presented here as an example. [Figure 3.2] 

 

Figure 3.2 A 2:1 Serializer Circuit  

 Assuming the two bits of parallel data, Deven and Dood, are time-aligned into the Seralizer 

and are synchronized to the half-rate C2 clock signal. The Parallel Deven and Dodd signals are 

captured by the first two D-latches, which create the De and Do outputs on the rising edge of the 

C2 clock signal. The Do’s signal is generated by resampling the Do signal on the falling edge of 

the C2 clock signal. The select input of the 2:1 MUX is controlled by the C2 clock signal, so that 

when the clock is low De input signal is selected, and when clock is high Do’s is selected.  

D          Q

D          Q D          Q

0                        
      2:1 MUX                    

1
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C2clk
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3.2.1	D‐latch	design	

A latch is an important component in the construction of several major blocks in high speed 

SerDes, including the Serializer block, Differential Driver block, Phase Detector block,  

Deserializer block, etc… A positive latch is a level sensitive circuit that passes the D input to the 

Q output when the clock signal is high and it is said to be in the transparent mode. When the clock 

is low, the input data sampled on the falling edge of the clock is held stable at the output for the 

entire phase, and the latch is said to be in the hold mode. Similarly, a negative latch passes the D 

input to the Q output when the clock signal is low. A register, however, is an edge-trigged 

component contrary to the level-sensitive latches. A latch is an essential component in the 

construction of an edge-triggered register. A flip-flop generally refers to any bistable component, 

formed by the cross coupling of gates. Often in some textbooks, an edge-triggered register is 

referred to as a flip-flop as well. [7] 

Shown in Figure 3.1 is the transistor-level implementation of a positive MUX-based D-

latch built by using transmission gates.  

 

Figure 3.2 A positive MUX-based D-latch using transmission gates 
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 When the CLK signal is high, the bottom transmission gate is on, and the latch is 

transparent – input signal D is copied to Q. During this time, the top transmission gate is off. When 

the CLK signal is low, the bottom transmission gate is off while the top is on. The feedback ensures 

the output is held as long as the CLK signal is low.   

 The problem of such MUX-based D-latch design using transmission gate is that it requires 

both CLK and CLK_bar signal, which could lead to clock overlap and eventually cause race 

condition to happen. A True Single Phase Clocked (TSPC) Latch [8] can overcome the problem 

caused by clock overlap. Figure 3.2 shows the transistor implementation of a TSPC latch.  

 

Figure 3.2 A True Single Phase Clocked Latch 

 For the positive TSPC latch shown above, when the CLK is high, the latch is in the 

transparent mode, and corresponds to two cascaded inverters. When the CLK is low on the other 

hand, both inverters are off and the latch is in hold mode.  
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 A slightly different configuration of a TSPC with split out latch is used in the final design 

of the Serializer as is shown in Figure 3.3. The advantage is that fewer transistors are needed in 

this design, and thus lower power consumption of the overall system. Also smaller propagation 

delay results in faster speed of the entire circuit. Again, no inverted clock signal is needed in this 

design, so the circuit is free of clock skew issue. 

 

Figure 3.3 A True Single Phase Clocked Latch with split output 

3.2.2	Multiplexer	design	

The transistor-level schematic of a transmission-gate multiplexer is shown in Figure 3.4. 

The idea behind this circuit is to use two transmission-gates as simple switches to propagate either 

input A or input B directly to the output. An extra inverter is needed to generate the inverted select 

signal S_bar. While the upper transmission-gate is activated by S, the lower transmission-gate is 

activated by S_bar, due to the wiring of their control inputs. When S is low, only the lower 

transmission-gate is conducting (because S_bar is connected to its n-channel and S to its p-channel 

transistor gate inputs), while the upper transmission-gate is non-conducting. As a result the value 

of B is passed through to the output of the multiplexer. When S is high, the upper transmission-
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gate is activated, while the lower transmission-gate is non-conducting. Therefore the value of A is 

passed through to the multiplexer output. 

 

Figure 3.4 Transmission-gate multiplexer 

However, traditional transistor sizing method and logical effort cannot be applied to this 

transmission-gate multiplexer deisgn, and thus it is hard to find out the optimal transistor size for 

maximum speed theoretically. Also, in order to lower the equivalent resistance Req, the 

transmission gate must be made wide. The capacitance of the gates, however, will also be 

increased, resulting in no reduction in the time constant of the transmission-gate multiplexer.  As 

a result, another design called Current Mode Logic (CML) Multiplexer is adopted and is shown in 

Figure 3.5. The CML circuits are widely used in GHz range high speed bipolor driver or 

multiplexer implementations.   

The differential select signals, S and S_bar, select which of the two data-input A and B to 

be connected to the output. When the select signal S is high (and S_bar is low), A directly affect 

the output while B is disconnected. When the select signal S goes low (and S_bar high) B will be 
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connected to the output. Thus both levels of the clock will be used to multiplex the data. The 

advantage of this CML circuit is that it has higher operating speed with constant power 

consumption independent of operation frequency.  

 

Figure 3.5 Current mode logic multiplexer 

 

 

 



17 
 

CHAPTER	4.	SERDES	CIRCUIT	DESIGN	TUTORIAL	

4.1	Overview	

In this chapter a 2:1 Serializer topology in a schematic is created step by step using Cadence 

Virtuoso IC 6.1.5. This 2:1 Serializer circuit serves as an example which helps one to understand 

the serialization operation. The step by step tutorial is meant to be written in a way such that any 

circuit designer with no EDA tools experience can easily follow.  

4.2	Schematic	Editor		

4.2.1Creating	library	

1. Create a new library. This is done by clicking File  New  Library, as is shown in Figure 

4.1. There will be a new window where one may create a “library” by filling in a name. In 

Cadence, a library is essentially a directory in the user’s home account containing all the 

project files.  

 

Figure 4.1: New library 



18 
 

2. Specify a library name. In this case, for example, the library is named as “D-latch_Demo”. 

  

Figure 4.2: Name the library and choose technology file 

3. Once the name of the new library is filled in, choose “Attach Library to an existing 

technology” in the Technology File section as is in Figure 4.2. From the technology library 

list, select “NCSU_TechLib_FreePDK45”, which corresponds to a NCSU 45 nanometer 

technology, then click “OK”. [Figure 4.3] 

 

Figure 4.3: Attach library to technology file 

4. A new library called “D-latch_Demo” is now created and can be found in the Library 

Manager [Figure 4.4]. If the Library Manager is not shown, one can click Tools and select 

Library Manager. [Figure 4.5] 
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Figure 4.4: Library Manager 

 

Figure 4.5: Open Library Manager 

 

4.2.2	Creating	schematic	cell	view	

1. Go to the library manager and highlight the library called “D-latch_Demo”.  

2. Select File  New  Cell View in the Library Manager. This will bring up a new window 

called “New File” 

3. Specify a cell name by filling in the blank space to the right of “Cell". In this case, the cell 

is named as “TSPC_Demo”. The view will read “schematic”, and the type is set as 
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“schematic”. Note that the “Application” is automatically set to “Schematics L” as is in 

Figure 4.6. Then press “OK”, which brings a new window, “Virtuoso Schematic Editor L”. 

A blank schematic editing window should be shown as in Figure 4.7.   

 

Figure 4.6: Create new cell view 

 

Figure 4.7: Virtuoso Schematic Editor 
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4.2.3	Instantiating	symbols		

1. To add new components, select Create  Instance in the Virtuoso Schematic Editor. 

Alternatively, this can be done by clicking the button Instance on the tool bar, as is 

shown in Figure 4.8. 

 

Figure 4.8: Create Instance 

 

2. In the Add Instance window, click “Browse”, which will bring up a new window called 

“Library Browser – Add Instance”. Choose “NCSU_Devices_FreePDK45” on the library 

list, and select the part needed. Make sure to select the “View”, “Symbol” as is shown in 

Figure 4.9. If needed, fill in the proper values for the specific design.  
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Figure 4.9: Add Instance 

 

In this design, a TSPC D-latch with split output will be implemented. 

 

3. Once the component has been selected, place it in the Virtuoso Schematic Editor window. 

This can be done by selecting the part (in this case, “PMOS_VTG”), and then a PMOS 

symbol will be attached to the cursor. Left click to place that symbol on the Virtuoso 

Schematic Editor window. See Figure 4.10.  

After a particular component has been properly placed, strike the “Esc” key to finish.    
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Figure 4.10: Placing components 

 

4. To size the transistor, right click the instance (PMOS_VTG or NMOS_VTG), and choose 

“Properties”, or alternatively, click the instance and click Edit  Properties  Objects. In 

the pop up window called “Edit Object Properties” as shown in Figure 4.11, change the 

value of the transistor size. 
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Figure 4.11: Transistor sizing 

5. To connect components with wires, select Create  Wire (narrow), or alternatively click 

the button “Create Narrow Wire”  on the tool bar. Left click the mouse to attach on end 

of the wire to a node of one component, and then the wire can be routed to the other 

component and attached in, as is shown in Figure 4.12. Strike the “Esc” key to terminate 

this operation.  

 

Figure 4.12 Connecting Components 
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6. To move objects, select Edit  Move, then center the cursor over the object until a 

rectangle with sides appears. Left click to get a copy of the object, then move the object to 

any point in the schematic. Once the object is located to the proper place, strike the “Esc” 

key and the object will be deposited at that location.  

7. Repeat step 1 to add another NMOS and PMOS components, or alternatively, copy from 

the previously instantiated components. To copy, select Edit  Copy in the top menu, left 

click the component and move the yellow copy to another point. 

8. To add pins, select Create  Pin, or alternatively click the button Pin . [Figure 4.13]  

 

Figure 4.13 Create Pins 

In the pop up window called “Add Pin”, specify Pin Names and Direction (input, output, 

etc…) from the dropdown list, as shown in Figure 4.14. 
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Figure 4.14 Pin names and direction 

9. To place power supply and ground symbols, go to Add Instance and choose the library 

“NCSU_Analog_Parts”. In this case, use “vdd” for power supply symbols and use “gnd” 

for ground symbols. [Figure 4.15]   

 

Figure 4.14 Power supply and ground  
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10. When schematic editing is finished, click File  Check and save, or alternatively click the 

button Check and save . If any error or warning message appears, refer to the log 

window as is shown in Figure 4.15.  

 

Figure 4.15 Log window 

To zoom the schematic that fits the full window, click the button Zoom to fit . The 

complete TSPC D-latch is shown in Figure 4.16. 

Figure 4.16 Schematic of the TSPC D-latch 
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11. To create a symbol from the schematic, choose Create  Cellview  From Cellview, and 

a pop up window called “Cellview From Cellview” will appear as is shown in Figure 4.17. 

Within the symbol, it contains the whole schematic of the TSPC D-latch.  

 

Figure 4.17 Create a symbol from schematic 

 

12. After clicking “OK”, a new window that shows the symbol of the D-latch will pop up, as 

is shown in Figure 4.18. 

 

Figure 4.18 Symbol of the TSPC D-latch 
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One can also change the name of the symbol by left click the name [@partName], then 

click the button Edit Properties , and change the name on the Edit properties window. 

To change the shape of the symbol, use the tools shown in Figure 4.19 

 

Figure 4.19 Tools to edit symbol  

13.   Check and save . Now the symbol of the TSPC D-latch has successfully been created, 

and it should be shown under the view list of the TSPC D-latch along with the schematic, 

in the Library Manager.  

 

Figure 4.20 Symbol and schematic  

 

4.2.4	Creating	test	bench	

Once all the symbols have created, a test bench is needed to place all the symbols together in 

one single schematic, connect them together using wires, and run simulations.  

1. To create a test bench, choose File  New  Cell View. In the pop up window, specify 

the cell name. In this case, this cell is named as “Demo”. Note that this cell is created in a 

separate library called “2-1Serializer_Demo” as is shown in Figure 4.21. 
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Figure 4.21 New schematic for test bench 

 

2.  Select Create  Instance to call the instances that have been created previously. Browse 

in the library browser and select the symbols of the TSPC D-latch and other components 

from the other libraries.     

 

Figure 4.22 Place the previously-made symbols  



31 
 

 

3. Connect all the symbols using wires, and create pins to the circuit as is shown in Figure 

4.23.  

 

Figure 4.23 2:1 Serializer circuit 

 

4. To further simply the test bench, combine everything into one single symbol by choosing 

Create  Cellview  From cellview, and a single symbol containing the whole 2:1 

Serializer circuit has been created as shown in Figure 4.24.  

 

Figure 4.24 Symbol of the entire 2:1 Serializer circuit  
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5. Create a new schematic as the test bench for the 2:1 Serializer circuit. 

6. Create  Instance, choose “NCSU_Analog_Parts”, select “cap” for capacitor, and place 

it on the test bench. Connect one end of the capacitor to the “Serial” output of the 2:1 

serializer. 

7. For signal sources, go to Create  Instance, select “vpulse” from “NCSU_Analog_Parts” 

and place it on the test bench. Edit object properties, as is shown in Figure 4.25. Click 

“OK” after changing the values in the pop up window. Connect the signal sources to the 

inputs of the 2:1 Serializer circuit. 

 

Figure 4.25 Edit properties of signal sources  
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8. Place the power supply by selecting Create  Instance, browse library and choose “vdc” 

from the “NCSU_Analog_Parts”. Change the DC voltage to 1.2V before placing it to the 

test bench. Connect wires to the positive and negative nodes and leave them floating. Click 

the button Create Wire Name , type in “vdd!” for the name in the pop up window, and 

then move the cursor to the floating wire connecting to the positive node of “vdc” and left 

click to place the name to the wire. Now the wire connecting to the positive node of “vdc” 

is connecting to all “vdd” nodes in all the symbols contained inside the 2:1 serializer circuit. 

Add wire name “gnd!” to the wire connecting to the negative node of “vdc” so that all the 

nodes named as “gnd” are now connected to the negative node of “vdc”.  [Figure 4.28] 

 

Figure 4.28 Place the power supply and add wire names  

 

9. The complete test bench for the 2:1 Serializer circuit is shown in Figure 4.29. 
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Figure 4.29 Test bench for the 2:1 Serializer circuit 

 

4.2.5	Extracting	HSPICE	Netlist		

1. To extract the netlist of the schematic for HSPICE simulation, select Launch  ADE L to 

open Virtuoso Analog Design Environment L. [Figure 4.30]    

 

Figure 4.30 Launch Virtuoso Analog Design Environment 



35 
 

2. A pop up window called Virtuoso Analog Design Environment should appear. Choose 

Setup  Simulatior/Directory/Host… as is shown in Figure 4.31 

 

Figure 4.31 Setup simulator in the ADE L 

 

3. In the pop up window called “Choosing Simulator/Directory/Host”, selector “hspiceD” 

from the dropdown list. [Figure 4.32] 

 

Figure 4.32 Choosing simulator 
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4. To include model libraries to the HSPICE netlist, select Setup  Model Libraries. In the 

pop up window called “hspiceD4: Model Library Setup”, click the browse button to choose 

the model files for the HSPICE netlist. [Figure 33]  

 

Figure 4.33 Model library setup 

In this case, the model files are located in: 

FreePDK45/ncsu_basekit/models/hspice/tran_models/models_ss/. Choose both 

NMOS_VTG.inc and PMOS_VTG.inc, then click “OK”. 

 

5. Last but not the least, go to Simulation  Netlist  Create, and the complete HSPICE 

netlist should show up in a pop up window as is shown in Figure 4.34. 
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Figure 4.34 Create HSPICE netlist 
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CHAPTER	5.	HSPICE	MEASUREMENTS	AND	ANALYSIS		

5.1	Overview	
In this chapter, the 2:1 Serializer circuit designed in Chapter 4 is simulated HSPICE. 

Several measurements and analysis are performed after the simulation process and the results are 

shown in cscope. 

5.2	HSPICE	Simulation	
Once the HSPICE netlist has been successfully extracted, simulation process could be 

performed by the following steps: 

1. Open up a text editor (such as genit or xemacs) and enter the netlist extracted from the 

schematic. Save it to the work directory with a file name extension of .cir. In this case, it 

is named as 2-1Serializer_HSPICE.cir 

2. In the Linux terminal, change to the directory where the HSPICE netlist is located. 

3. To run HSPICE simulation, use the following command in the Linux terminal: hspice 2-

1Serializer_HSPICE.cir 

After the HSPICE simulation run, four result files are created. The “2-

1Serializer_HSPICE.ic0” file is the text file which contains the circuit initial conditions. The “2-

1Serializer_HSPICE.st0” file is the text file which contains a summary of the simulation. The “2-

1Serializer_HSPICE.sw0” file is the binary file which contains the cd sweep waveforms for the 

voltage transfer characteristic plot. The “2-1Serializer_HSPICE.tr0” is the binary file which 

contains the transient analysis waveforms.  

5.3	Measurement	and	analysis	
To perform further measurement and analysis of the results of the simulation, the tool 

CosmosScope is used in this section. Use the command in the Linux terminal: Cscope. Go to File 

 Open  Plotfiles to view and analyze the results.  

The timing diagram of the 2:1 Serializer is shown in Figure 5.1. The behavior of the 2:1 

Serializer matches the expectation. When C2clk signal (the first waveform from top) is low, output 
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of the multiplexer (the fifth waveform from top) takes the De signal (the second waveform from 

top). When C2clk signal is high, output of the multiplexer takes the Do’ signal (the forth waveform 

from top), where the Do’ signal takes the previous Do signal (the third waveform from top) at 

rising-edge of the C2clk. 

 

Figure 5.1 Timing diagram of the 2:1 Serializer 
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CHAPTER	6.	CONCLUTION	AND	FUTURE	WORK	

 In summary, the work presented in this thesis laid down a path necessary to gain knowledge 

of designing and building analog and digital circuits. A simple Serializer circuit is designed, 

created and simulated using Cadence Virtuoso and HSPICE. The step-by-step “cookbook style” 

tutorial of mixed-signal circuit design and simulation was shown, and could be applied to other 

transistor level circuit design projects as well. The Serializer circuit presented in this thesis is not 

only a key component in a SerDes system, but also serves as an example for one to understand the 

serialization process. Other core components of a SerDes, including Deserializer block, Equalizers, 

Clock and Data Recovery (CDR), Differential driver and receiver, and Phase-locked loop (PLL) 

were also discussed.  

 The next step for this project is to finish all the other core components of the SerDes as 

discussed earlier. The interconnection between each component would be the following step, and 

eventually all major blocks would be integrated as one entire SerDes system, which functions 

properly at the desired frequency. Meanwhile, alternative designs or topologies for any sub-circuits 

such as D-latches, multiplexers, voltage controlled oscillator (VCO) is being explored and could 

be replaced to our existing designs if the overall system speed is found to be increased.  

Furthermore, transistor sizing and optimization are needed so as to increase the operating 

frequency of the entire SerDes and minimize the propagation delay and power consumption. 

Finally, signal and power integrity analysis would be done on the entire SerDes in order to find 

out means to reduce the unwanted effects such as cross-talk and jitter/phase noise. 
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