

	

	 	

HIGH SPEED CMOS SERDES DESIGN AND SIMULATION USING
CADENCE VIRTUOSO AND HSPICE

BY

JERRY YANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Science in Electrical and Computer Engineering

in the College of Engineering of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

 Professor José E. Schutt-Ainé

ii

ABSTRACT	

 Input/output (I/O) has always played an important part in modern high speed applications.

As integrated circuits (IC) become smaller size and faster speed, traditional parallel

communication is not suitable due to cross-talk, data-skew, and other problems related to

electronic packaging and signal integrity. Serial I/O has the advantage of faster speed, less

interference between adjacent links, fewer pin counts and thus lower packaging costs. A

Serializer/Deserializer (SerDes) is such a device that takes the parallel data link input and

condenses it into fewer lines of serial stream which would then deserialized and output as the

original recovered parallel data. SerDes is very beneficial because it solves the problems of many

traditional parallel data links and reduces the number of I/O pins and cost for connectors and

cables. Designing a robust, lower power SerDes that functions properly at high speed is very

challenging and requires knowledge from several different areas. As a result, this thesis serves as

an introduction to SerDes for beginners as well as a tutorial of mixed-signal integrated circuit

design, using an example of a Serializer circuit. Fundamental concepts and major components of

SerDes are covered, as well as the design flow of a Serializer from unit block design in Cadence

Virtuoso to simulation in HSPICE, using a 45nm CMOS process.

iii

	

To	my	family,	for	their	love	and	support.	

To	my	adviser,	for	his	attention,	encouragement,	guidance	and	support.	

To	my	coworkers,	for	their	advice	and	assistance.	

	

	

	

	

	

	

iv

ACKNOWLEDGMENTS	

 First and foremost, I would like to express my sincere gratitude to my adviser, Professor

José E. Schutt-Ainé, for providing me with the opportunity to work in this interesting topic and

research in the field of high speed circuit modeling and design. I thank him for all his attention,

encouragement, guidance and support during every stage of my research project. Working under

his supervision has been one of the most enriching experiences of my life.

 I would like to give special thanks to Rishi Ratan, Da Wei and Jin Lei, for their immense

help and support on this project. Many thanks to my research group colleagues and friends,

Thomas Comberiate, Xu chen, Drew Newell, Si Win and Karan Bhagat, for their swift assistance

and many valuable discussions during the course of the research.

v

TABLE	OF	CONTENTS	

CHAPTER	1.	INTRODUCTION	..	1	

1.1	Background	...	1	

1.2	Purpose	...	2	

1.3	Outline	...	2	

CHAPTER	2.FUNDAMENTALS	OF	HIGH	SPEED	SERDES	..	3	

2.1	Overview	..	3	

2.2	Data	transmission	..	3	

2.2.1	Parallel	data	transfer	..	3	

2.2.2	Serial	data	transfer	..	4	

2.3	High‐speed	SerDes	...	5	

2.3.1	Serializer/	Deserializer	blocks	...	6	

2.3.2	Equalizer	..	7	

2.3.3	Clock	and	data	recovery	(CDR)	..	7	

2.3.4	Differential	driver	and	receiver	...	8	

2.3.5	Phase‐locked	loop	(PLL)	...	8	

CHAPTER	3.	HIGH	SPEED	SERDES	ARCHITECTURE	AND	DESIGN	...	10	

3.1	Overview	...	10	

3.2	Serializer	...	11	

3.2.1	D‐latch	design	...	12	

3.2.2	Multiplexer	design	..	14	

CHAPTER	4.	SERDES	CIRCUIT	DESIGN	TUTORIAL	..	17	

4.1	Overview	...	17	

4.2	Schematic	Editor	..	17	

4.2.1Creating	library	...	17	

4.2.2	Creating	schematic	cell	view	..	19	

4.2.3	Instantiating	symbols	..	21	

4.2.4	Creating	test	bench	...	29	

4.2.5	Extracting	HSPICE	Netlist	..	34	

vi

CHAPTER	5.	HSPICE	MEASUREMENTS	AND	ANALYSIS	..	38	

5.1	Overview	...	38	

5.2	HSPICE	Simulation	..	38	

5.3	Measurement	and	analysis	..	38	

CHAPTER	6.	CONCLUTION	AND	FUTURE	WORK	..	40	

References	..	41	

1

CHAPTER	1.	INTRODUCTION	

1.1	Background	

Nowadays, data rates on serial interfaces are increasing rapidly as the technology continuing

to advance. The input/output (I/O) performance has become the bottleneck of the overall system

performance. Traditional parallel communication such as PCI and PCI-X, however, cannot meet

the standard for high-speed links for inter-Integrated Circuits (IC) data transmission. In parallel

communication, the difference in arrival time of simultaneously transmitted data is commonly

referred as skew. The tolerance of data skew between parallel signals is approaching the practical

limit, because of the increasing operating frequency of the high-speed data links, and data skew

can cause critical problems such as phase difference. In addition, the cross-talk, which refers to

the interference between adjacent parallel data links, is causing more problems as data rates going

higher and higher. What is more, the number of circuits that can be manufactured on a chip is

increasing year by year, as is predicted by Moore’s Law, and therefore extra pins associated with

parallel links would lead to higher packaging costs.

To circumvent the performance limitation of the traditional parallel communication, point-

to-point serial data communication is one of the possible solutions. Serial data transfer requires

fewer lines, which reduces board area. The cross-talk and data skew problems are much easier to

be solved in a serial link comparing to a parallel link. A device called SerDes

(Serializer/Deserializer) provides a mean to convert an n-bit parallel data bus to a single serial

stream with equivalent bandwidth. [1]

2

1.2	Purpose	

The purpose of this project is to understand the concepts and theories behind SerDes as a

system as well as the components inside, in order to design and implement a SerDes within our

research group for further signal integrity analysis. This thesis details the fundamentals and basic

concepts of SerDes, as wells as design and analysis of a serializer circuit as an example. It will

also serve as a tutorial for the electronic design automation (EDA) tools such as Cadence Virtuoso

and HSPICE (SPICE stands for Simulation Program with Integrated Circuit Emphasis). This thesis

documents a step-by-step procedure for designing and simulating a mixed-signal design using both

Cadence Virtuoso and HSPICE through an example.

1.3	Outline	

The thesis is organized as follows: Chapter 2 starts with the most fundamental and basic

concepts that are needed to understand for SerDes. Chapter 3 provides insight into the architecture

and functional blocks within a SerDes system, with focus on the Serializer design. Chapter 4

presents a detailed step-by-step tutorial on designing, implementing and simulating the Serializer

design, using Cadence Virtuoso IC 6.1.5. Chapter 5 shows the results obtained and

steps/procedures when testing the Serializer circuit using Synopsys HSPICE and CosmosScope.

Finally, Chapter 6 concludes this thesis with a summary and an outline of future work.

3

CHAPTER	2.FUNDAMENTALS	OF	HIGH	SPEED	SERDES	

2.1	Overview		

This chapter covers the most basic and fundamental concepts that are needed to understand

the rational of high speed Serializer/Deserializer (SerDes). Section 2.2 describes and compares the

two basic data transmission method – parallel and serial communication. Section 2.3 provides a

brief review of the basic features and functions of the high speed SerDes cores, which is essential

for the circuit design of SerDes covered in later chapters.

2.2	Data	transmission	

The two basic methods of data transmission between two chips on the same circuit board

or inter-circuit board are: parallel data transfer and serial data transfer.

2.2.1	Parallel	data	transfer	

To transfer data from the inputs (or outputs) from one chip to another, the simplest method

is to directly connect the datapath between the two chips. In many cases, the datapath is more than

one-bit wide because the information of the data is beyond one bit.

Figure 2.1 Parallel communication

4

In figure 2.1, a simplified model of parallel data transfer is shown. Assuming there is an n-bit

datapath across the two chips A and B, an n-bit interconnect is needed in a parallel data bus.

 The problems of parallel data transfer, however, includes: 1. Data skew, which could cause

serious problems like phase difference in modern high speed links due to high operating frequency.

2. Cross-talk, which refers to the interference between adjacent parallel data links. As the operating

frequency gets higher, the problem of cross-talk becomes more critical. 3. Multiple data links

consume board space. Extra pins associated with parallel links would lead to higher packaging

costs.

2.2.2	Serial	data	transfer	

The problems that are inherent to parallel data transfer as discussed in section 2.2.1 can be

eliminated with serial data transfer.

Figure 2.2 Serial communication

 Serial data transfer requires much fewer data links, which reduces board space. Number of

I/O pins would significantly decrease and therefore lowers the packing costs. Data skew and cross-

talk problems would be much easier to solve in a serial data link.

5

2.3	High‐speed	SerDes	

A device called Serializer/Deserializer (SerDes) allows data to transfer in a serial manner,

and is now playing a more and more important role in modern high speed applications. Such device

is capable of converting data from parallel to serial and vice versa, as is illustrated in a simplified

model in Figure 2.3.

Figure 2.3 Generic function of a SerDes

 A basic block diagram showing the transmitter slice and receiver slice of a typical high

speed SerDes is presented in Figure 2.4. Firstly the n-bit parallel data is serialized in the transmitter

slice through a Serializer. An equalizer is then used to ensure good signal integrity of the serialized

data, which will then be driven into a differential signaling pair. On the receiver slice, a differential

receiver receives the serial data, which is then fed into a Clock Data Recovery (CDR) circuit. After

the recovery and equalization circuitries, the data is finally restored back to parallel data bus

through a Deserializer circuit on the receiver slice.

6

Figure 2.4 Basic block diagram of the transmitter and receiver slices of typical high speed Serdes

The following subsections provide generic descriptions of several circuits mentioned above

in more detail.

2.3.1	Serializer/	Deserializer	blocks	

The input to the serializer trasnsmit stage is an n-bit datapath, which is then serialized to a

one-bit serial data signal for application to the Feed Forward Equalizer (FFE) and driver stage.

The value of n is generally a multiple of 8 or 10, and may be programmable on some

implementations. Values of n which are multiples of 8 are useful for sending unencoded and/or

scrambled data bytes; values of n which are multiples of 10 are useful for protocols which use

8B/10B coding. The 8B/10B encoder is usually implemented by logic outside the SerDes core. [2]

The actual design of the datapath which is fed into the equalizer may be more than one bit

wide, and that results in more complex circuitries. However in general, the n-bit data input would

Channel

Channel

Serializer Equalizer Driver n

Receiver
Recovery

and

Equalization

Driver n

Transmitter slice

Receiver slice

7

be serialized into an k-bit datapath, where n > k > 0. The k-bit data would be fed into the equalizer,

and further serialized at the driver stage if needed.

The deserializer block at the receiver slice, however, performs the inverse function of the

serializer at the transmitter slice. The serial data, after the Clock Data Recovery and Decision

Feedback Equalization block, is then deseralized back to an n-bit databus.

2.3.2	Equalizer	

A channel refers to the interconnect between the transmitter and receiver slice. It could

distort the serial data signal to varying extents in real world situations. If the signal rate is above

the cut-off frequency, then the high frequency components will get reduced therefore the signal is

distorted. To decode the signal properly, an equalizer is needed to restore the signal. Usually,

equalizers can be added to either the transmitter or the receiver side. In many existing SerDes

designs, a Feed Forward Equalizer (FFE) is adopted in the transmitter side while a Decision

Feedback Equalizer is needed in the receiver side. An FFE is normally implemented as a low-

frequency de-emphasis process to reduce low frequency signal envelope in proportion to the

attenuation experienced by the high-frequency pattern in the channel. A DFE is used in receiver

slice and plays an important role for signal integrity of the entire SerDes.

2.3.3	Clock	and	data	recovery	(CDR)	

 In some modern digital data streams, especially high-speed serial data streams, strong

impairments and sever inter-symbol interference (ISI), which is due to frequency-dependent

channel loss, becomes a critical issue in high-speed interface design. ISI causes degradation of the

eye opening and timing jitter, and subsequent aggravations of bit error rate (BER) and signal

integrity of the entire system. [3] Since there is no exclusively allocated clock signal in high speed

8

SerDes transceivers, and a clock signal whose frequency is the baud rate and whose phase is

aligned to the data centers is indispensable for correct data recovery. Clock and Data Recovery

(CDR) circuitries monitor transitions and select optimal sampling phase for the data at midpoint

between edges. It extracts clock information from incoming data stream and uses this regenerated

clock to resample the data waveform and recover the data. CDR is a non-linear circuit and is an

important component to limit jitter, noise within the SerDes circuit. Practical microelectronic

implementation of CDR is a tradeoff among many design considerations. [4]

2.3.4	Differential	driver	and	receiver	

 The differential driver stage is an analog circuit which drives the true and complement legs

of the differential signal. Output data must be driven such that jitter is minimized. Recall the

definition of jitter, which is the difference in time of when something was ideally to occur and

when it actually did occur. It is a signal timing deviation referenced to a recovered clock from the

recovered bit stream. Jitter is measured in unit intervals and captured visually with eye diagrams.

There are two types of jitter: Deterministic Jitter and Random Jitter. Jitter can cause inter-symbol

interference (ISI), which occurs if time required by signal to completely charge is longer than bit

interval. To ensure high signal integrity, jitter is ought to be minimized. Differential receiver stage

is an analog comparator circuit which compares the true and complement legs of the differential

signal and output a “0” or “1” logic signal based on the relative signal voltages. [2] [5]

2.3.5	Phase‐locked	loop	(PLL)	

A Phase-locked loop (PLL) is a feedback system that generates an output signal whose

phase is related to the phase of an input reference signal. It is designed in such a way that the phase

error signal is reduced to zero. The phase-locked loop is basically a closed loop frequency

9

controlled system, which functioning is based on the phase sensitive detection of phase difference

between the input and output signals of the controlled oscillator. Figure 2.5 shows a classic

configuration of a PLL. The phase detector is a device that compares two input frequencies,

generating an output that is a measure of their phase difference. The phase detector produces an

output voltage that is proportional to the phase error, and the filtered output of the phase detector

is a dc signal, ant the control input to the voltage controlled oscillator (VCO) is a measure of the

input frequency. In some common designs of PLLs, a modulo-n counter is hooked between the

VCO output and phase detector, thus generating a multiple of the input reference frequency. [6]

Figure 2.5 A classic configuration of a Phase-locked loop (PLL)

 PLL is a core component in a SerDes because it is an essential building block of Clock and

Data Recovery (CDR) circuits, and it reduces clock skew and jitter in high speed serial interfaces.

Phase Detector Loop Filter
Voltage

Controlled

Oscillator

Divide by N

counter

Frequency

Reference

Input Frequency

Output

10

CHAPTER	3.	HIGH	SPEED	SERDES	ARCHITECTURE	
AND	DESIGN	

3.1	Overview	

Several of the core components, major blocks and circuit basics of high speed SerDes

were introduced in the previous chapter. Here in Figure 3.1 [2], one of the classic high speed

SerDes core overview is shown.

Figure 3.1 Overview of the SerDes core

Here the Phase-locked loop (PLL) slice ensures that the clock signals for the transmitter

and receiver slice have low jitter. The transmitter (TX) slice performs parallel-to-serial conversion

through a Serializer circuit. The serialized data is then fed to a feed forward equalizer (FFE) to

ensure that the receiver input is a clean waveform. The receiver (RX) slice also requires

equalization after the serialized data being transmitted through the channel. A decision feedback

11

equalizer (DFE) is needed to improve the bit error rate (BER). After the signal is equalized, the

serial stream is driven through the Deseriazlier to perform the serial-to-parallel conversion. The

remainder of this chapter describes the design of Serializer in more detail.

3.2	Serializer		

Serializer operation performs the parallel-to-serial conversion as shown in Figure 3.1. A

simplified schematic of a 2:1 Serializer is presented here as an example. [Figure 3.2]

Figure 3.2 A 2:1 Serializer Circuit

 Assuming the two bits of parallel data, Deven and Dood, are time-aligned into the Seralizer

and are synchronized to the half-rate C2 clock signal. The Parallel Deven and Dodd signals are

captured by the first two D-latches, which create the De and Do outputs on the rising edge of the

C2 clock signal. The Do’s signal is generated by resampling the Do signal on the falling edge of

the C2 clock signal. The select input of the 2:1 MUX is controlled by the C2 clock signal, so that

when the clock is low De input signal is selected, and when clock is high Do’s is selected.

D Q

D Q D Q

0
 2:1 MUX

1

Deven

Dodd

C2clk

De

Do Do’

Serial
Data

2:1 Serializer

12

3.2.1	D‐latch	design	

A latch is an important component in the construction of several major blocks in high speed

SerDes, including the Serializer block, Differential Driver block, Phase Detector block,

Deserializer block, etc… A positive latch is a level sensitive circuit that passes the D input to the

Q output when the clock signal is high and it is said to be in the transparent mode. When the clock

is low, the input data sampled on the falling edge of the clock is held stable at the output for the

entire phase, and the latch is said to be in the hold mode. Similarly, a negative latch passes the D

input to the Q output when the clock signal is low. A register, however, is an edge-trigged

component contrary to the level-sensitive latches. A latch is an essential component in the

construction of an edge-triggered register. A flip-flop generally refers to any bistable component,

formed by the cross coupling of gates. Often in some textbooks, an edge-triggered register is

referred to as a flip-flop as well. [7]

Shown in Figure 3.1 is the transistor-level implementation of a positive MUX-based D-

latch built by using transmission gates.

Figure 3.2 A positive MUX-based D-latch using transmission gates

13

 When the CLK signal is high, the bottom transmission gate is on, and the latch is

transparent – input signal D is copied to Q. During this time, the top transmission gate is off. When

the CLK signal is low, the bottom transmission gate is off while the top is on. The feedback ensures

the output is held as long as the CLK signal is low.

 The problem of such MUX-based D-latch design using transmission gate is that it requires

both CLK and CLK_bar signal, which could lead to clock overlap and eventually cause race

condition to happen. A True Single Phase Clocked (TSPC) Latch [8] can overcome the problem

caused by clock overlap. Figure 3.2 shows the transistor implementation of a TSPC latch.

Figure 3.2 A True Single Phase Clocked Latch

 For the positive TSPC latch shown above, when the CLK is high, the latch is in the

transparent mode, and corresponds to two cascaded inverters. When the CLK is low on the other

hand, both inverters are off and the latch is in hold mode.

14

 A slightly different configuration of a TSPC with split out latch is used in the final design

of the Serializer as is shown in Figure 3.3. The advantage is that fewer transistors are needed in

this design, and thus lower power consumption of the overall system. Also smaller propagation

delay results in faster speed of the entire circuit. Again, no inverted clock signal is needed in this

design, so the circuit is free of clock skew issue.

Figure 3.3 A True Single Phase Clocked Latch with split output

3.2.2	Multiplexer	design	

The transistor-level schematic of a transmission-gate multiplexer is shown in Figure 3.4.

The idea behind this circuit is to use two transmission-gates as simple switches to propagate either

input A or input B directly to the output. An extra inverter is needed to generate the inverted select

signal S_bar. While the upper transmission-gate is activated by S, the lower transmission-gate is

activated by S_bar, due to the wiring of their control inputs. When S is low, only the lower

transmission-gate is conducting (because S_bar is connected to its n-channel and S to its p-channel

transistor gate inputs), while the upper transmission-gate is non-conducting. As a result the value

of B is passed through to the output of the multiplexer. When S is high, the upper transmission-

15

gate is activated, while the lower transmission-gate is non-conducting. Therefore the value of A is

passed through to the multiplexer output.

Figure 3.4 Transmission-gate multiplexer

However, traditional transistor sizing method and logical effort cannot be applied to this

transmission-gate multiplexer deisgn, and thus it is hard to find out the optimal transistor size for

maximum speed theoretically. Also, in order to lower the equivalent resistance Req, the

transmission gate must be made wide. The capacitance of the gates, however, will also be

increased, resulting in no reduction in the time constant of the transmission-gate multiplexer. As

a result, another design called Current Mode Logic (CML) Multiplexer is adopted and is shown in

Figure 3.5. The CML circuits are widely used in GHz range high speed bipolor driver or

multiplexer implementations.

The differential select signals, S and S_bar, select which of the two data-input A and B to

be connected to the output. When the select signal S is high (and S_bar is low), A directly affect

the output while B is disconnected. When the select signal S goes low (and S_bar high) B will be

16

connected to the output. Thus both levels of the clock will be used to multiplex the data. The

advantage of this CML circuit is that it has higher operating speed with constant power

consumption independent of operation frequency.

Figure 3.5 Current mode logic multiplexer

17

CHAPTER	4.	SERDES	CIRCUIT	DESIGN	TUTORIAL	

4.1	Overview	

In this chapter a 2:1 Serializer topology in a schematic is created step by step using Cadence

Virtuoso IC 6.1.5. This 2:1 Serializer circuit serves as an example which helps one to understand

the serialization operation. The step by step tutorial is meant to be written in a way such that any

circuit designer with no EDA tools experience can easily follow.

4.2	Schematic	Editor		

4.2.1Creating	library	

1. Create a new library. This is done by clicking File  New  Library, as is shown in Figure

4.1. There will be a new window where one may create a “library” by filling in a name. In

Cadence, a library is essentially a directory in the user’s home account containing all the

project files.

Figure 4.1: New library

18

2. Specify a library name. In this case, for example, the library is named as “D-latch_Demo”.

Figure 4.2: Name the library and choose technology file

3. Once the name of the new library is filled in, choose “Attach Library to an existing

technology” in the Technology File section as is in Figure 4.2. From the technology library

list, select “NCSU_TechLib_FreePDK45”, which corresponds to a NCSU 45 nanometer

technology, then click “OK”. [Figure 4.3]

Figure 4.3: Attach library to technology file

4. A new library called “D-latch_Demo” is now created and can be found in the Library

Manager [Figure 4.4]. If the Library Manager is not shown, one can click Tools and select

Library Manager. [Figure 4.5]

19

Figure 4.4: Library Manager

Figure 4.5: Open Library Manager

4.2.2	Creating	schematic	cell	view	

1. Go to the library manager and highlight the library called “D-latch_Demo”.

2. Select File  New  Cell View in the Library Manager. This will bring up a new window

called “New File”

3. Specify a cell name by filling in the blank space to the right of “Cell". In this case, the cell

is named as “TSPC_Demo”. The view will read “schematic”, and the type is set as

20

“schematic”. Note that the “Application” is automatically set to “Schematics L” as is in

Figure 4.6. Then press “OK”, which brings a new window, “Virtuoso Schematic Editor L”.

A blank schematic editing window should be shown as in Figure 4.7.

Figure 4.6: Create new cell view

Figure 4.7: Virtuoso Schematic Editor

21

4.2.3	Instantiating	symbols		

1. To add new components, select Create  Instance in the Virtuoso Schematic Editor.

Alternatively, this can be done by clicking the button Instance on the tool bar, as is

shown in Figure 4.8.

Figure 4.8: Create Instance

2. In the Add Instance window, click “Browse”, which will bring up a new window called

“Library Browser – Add Instance”. Choose “NCSU_Devices_FreePDK45” on the library

list, and select the part needed. Make sure to select the “View”, “Symbol” as is shown in

Figure 4.9. If needed, fill in the proper values for the specific design.

22

Figure 4.9: Add Instance

In this design, a TSPC D-latch with split output will be implemented.

3. Once the component has been selected, place it in the Virtuoso Schematic Editor window.

This can be done by selecting the part (in this case, “PMOS_VTG”), and then a PMOS

symbol will be attached to the cursor. Left click to place that symbol on the Virtuoso

Schematic Editor window. See Figure 4.10.

After a particular component has been properly placed, strike the “Esc” key to finish.

23

Figure 4.10: Placing components

4. To size the transistor, right click the instance (PMOS_VTG or NMOS_VTG), and choose

“Properties”, or alternatively, click the instance and click Edit  Properties  Objects. In

the pop up window called “Edit Object Properties” as shown in Figure 4.11, change the

value of the transistor size.

24

Figure 4.11: Transistor sizing

5. To connect components with wires, select Create  Wire (narrow), or alternatively click

the button “Create Narrow Wire” on the tool bar. Left click the mouse to attach on end

of the wire to a node of one component, and then the wire can be routed to the other

component and attached in, as is shown in Figure 4.12. Strike the “Esc” key to terminate

this operation.

Figure 4.12 Connecting Components

25

6. To move objects, select Edit  Move, then center the cursor over the object until a

rectangle with sides appears. Left click to get a copy of the object, then move the object to

any point in the schematic. Once the object is located to the proper place, strike the “Esc”

key and the object will be deposited at that location.

7. Repeat step 1 to add another NMOS and PMOS components, or alternatively, copy from

the previously instantiated components. To copy, select Edit  Copy in the top menu, left

click the component and move the yellow copy to another point.

8. To add pins, select Create  Pin, or alternatively click the button Pin . [Figure 4.13]

Figure 4.13 Create Pins

In the pop up window called “Add Pin”, specify Pin Names and Direction (input, output,

etc…) from the dropdown list, as shown in Figure 4.14.

26

Figure 4.14 Pin names and direction

9. To place power supply and ground symbols, go to Add Instance and choose the library

“NCSU_Analog_Parts”. In this case, use “vdd” for power supply symbols and use “gnd”

for ground symbols. [Figure 4.15]

Figure 4.14 Power supply and ground

27

10. When schematic editing is finished, click File  Check and save, or alternatively click the

button Check and save . If any error or warning message appears, refer to the log

window as is shown in Figure 4.15.

Figure 4.15 Log window

To zoom the schematic that fits the full window, click the button Zoom to fit . The

complete TSPC D-latch is shown in Figure 4.16.

Figure 4.16 Schematic of the TSPC D-latch

28

11. To create a symbol from the schematic, choose Create  Cellview  From Cellview, and

a pop up window called “Cellview From Cellview” will appear as is shown in Figure 4.17.

Within the symbol, it contains the whole schematic of the TSPC D-latch.

Figure 4.17 Create a symbol from schematic

12. After clicking “OK”, a new window that shows the symbol of the D-latch will pop up, as

is shown in Figure 4.18.

Figure 4.18 Symbol of the TSPC D-latch

29

One can also change the name of the symbol by left click the name [@partName], then

click the button Edit Properties , and change the name on the Edit properties window.

To change the shape of the symbol, use the tools shown in Figure 4.19

Figure 4.19 Tools to edit symbol

13. Check and save . Now the symbol of the TSPC D-latch has successfully been created,

and it should be shown under the view list of the TSPC D-latch along with the schematic,

in the Library Manager.

Figure 4.20 Symbol and schematic

4.2.4	Creating	test	bench	

Once all the symbols have created, a test bench is needed to place all the symbols together in

one single schematic, connect them together using wires, and run simulations.

1. To create a test bench, choose File  New  Cell View. In the pop up window, specify

the cell name. In this case, this cell is named as “Demo”. Note that this cell is created in a

separate library called “2-1Serializer_Demo” as is shown in Figure 4.21.

30

Figure 4.21 New schematic for test bench

2. Select Create  Instance to call the instances that have been created previously. Browse

in the library browser and select the symbols of the TSPC D-latch and other components

from the other libraries.

Figure 4.22 Place the previously-made symbols

31

3. Connect all the symbols using wires, and create pins to the circuit as is shown in Figure

4.23.

Figure 4.23 2:1 Serializer circuit

4. To further simply the test bench, combine everything into one single symbol by choosing

Create  Cellview  From cellview, and a single symbol containing the whole 2:1

Serializer circuit has been created as shown in Figure 4.24.

Figure 4.24 Symbol of the entire 2:1 Serializer circuit

32

5. Create a new schematic as the test bench for the 2:1 Serializer circuit.

6. Create  Instance, choose “NCSU_Analog_Parts”, select “cap” for capacitor, and place

it on the test bench. Connect one end of the capacitor to the “Serial” output of the 2:1

serializer.

7. For signal sources, go to Create  Instance, select “vpulse” from “NCSU_Analog_Parts”

and place it on the test bench. Edit object properties, as is shown in Figure 4.25. Click

“OK” after changing the values in the pop up window. Connect the signal sources to the

inputs of the 2:1 Serializer circuit.

Figure 4.25 Edit properties of signal sources

33

8. Place the power supply by selecting Create  Instance, browse library and choose “vdc”

from the “NCSU_Analog_Parts”. Change the DC voltage to 1.2V before placing it to the

test bench. Connect wires to the positive and negative nodes and leave them floating. Click

the button Create Wire Name , type in “vdd!” for the name in the pop up window, and

then move the cursor to the floating wire connecting to the positive node of “vdc” and left

click to place the name to the wire. Now the wire connecting to the positive node of “vdc”

is connecting to all “vdd” nodes in all the symbols contained inside the 2:1 serializer circuit.

Add wire name “gnd!” to the wire connecting to the negative node of “vdc” so that all the

nodes named as “gnd” are now connected to the negative node of “vdc”. [Figure 4.28]

Figure 4.28 Place the power supply and add wire names

9. The complete test bench for the 2:1 Serializer circuit is shown in Figure 4.29.

34

Figure 4.29 Test bench for the 2:1 Serializer circuit

4.2.5	Extracting	HSPICE	Netlist		

1. To extract the netlist of the schematic for HSPICE simulation, select Launch  ADE L to

open Virtuoso Analog Design Environment L. [Figure 4.30]

Figure 4.30 Launch Virtuoso Analog Design Environment

35

2. A pop up window called Virtuoso Analog Design Environment should appear. Choose

Setup  Simulatior/Directory/Host… as is shown in Figure 4.31

Figure 4.31 Setup simulator in the ADE L

3. In the pop up window called “Choosing Simulator/Directory/Host”, selector “hspiceD”

from the dropdown list. [Figure 4.32]

Figure 4.32 Choosing simulator

36

4. To include model libraries to the HSPICE netlist, select Setup  Model Libraries. In the

pop up window called “hspiceD4: Model Library Setup”, click the browse button to choose

the model files for the HSPICE netlist. [Figure 33]

Figure 4.33 Model library setup

In this case, the model files are located in:

FreePDK45/ncsu_basekit/models/hspice/tran_models/models_ss/. Choose both

NMOS_VTG.inc and PMOS_VTG.inc, then click “OK”.

5. Last but not the least, go to Simulation  Netlist  Create, and the complete HSPICE

netlist should show up in a pop up window as is shown in Figure 4.34.

37

Figure 4.34 Create HSPICE netlist

38

CHAPTER	5.	HSPICE	MEASUREMENTS	AND	ANALYSIS		

5.1	Overview	
In this chapter, the 2:1 Serializer circuit designed in Chapter 4 is simulated HSPICE.

Several measurements and analysis are performed after the simulation process and the results are

shown in cscope.

5.2	HSPICE	Simulation	
Once the HSPICE netlist has been successfully extracted, simulation process could be

performed by the following steps:

1. Open up a text editor (such as genit or xemacs) and enter the netlist extracted from the

schematic. Save it to the work directory with a file name extension of .cir. In this case, it

is named as 2-1Serializer_HSPICE.cir

2. In the Linux terminal, change to the directory where the HSPICE netlist is located.

3. To run HSPICE simulation, use the following command in the Linux terminal: hspice 2-

1Serializer_HSPICE.cir

After the HSPICE simulation run, four result files are created. The “2-

1Serializer_HSPICE.ic0” file is the text file which contains the circuit initial conditions. The “2-

1Serializer_HSPICE.st0” file is the text file which contains a summary of the simulation. The “2-

1Serializer_HSPICE.sw0” file is the binary file which contains the cd sweep waveforms for the

voltage transfer characteristic plot. The “2-1Serializer_HSPICE.tr0” is the binary file which

contains the transient analysis waveforms.

5.3	Measurement	and	analysis	
To perform further measurement and analysis of the results of the simulation, the tool

CosmosScope is used in this section. Use the command in the Linux terminal: Cscope. Go to File

 Open  Plotfiles to view and analyze the results.

The timing diagram of the 2:1 Serializer is shown in Figure 5.1. The behavior of the 2:1

Serializer matches the expectation. When C2clk signal (the first waveform from top) is low, output

39

of the multiplexer (the fifth waveform from top) takes the De signal (the second waveform from

top). When C2clk signal is high, output of the multiplexer takes the Do’ signal (the forth waveform

from top), where the Do’ signal takes the previous Do signal (the third waveform from top) at

rising-edge of the C2clk.

Figure 5.1 Timing diagram of the 2:1 Serializer

40

CHAPTER	6.	CONCLUTION	AND	FUTURE	WORK	

 In summary, the work presented in this thesis laid down a path necessary to gain knowledge

of designing and building analog and digital circuits. A simple Serializer circuit is designed,

created and simulated using Cadence Virtuoso and HSPICE. The step-by-step “cookbook style”

tutorial of mixed-signal circuit design and simulation was shown, and could be applied to other

transistor level circuit design projects as well. The Serializer circuit presented in this thesis is not

only a key component in a SerDes system, but also serves as an example for one to understand the

serialization process. Other core components of a SerDes, including Deserializer block, Equalizers,

Clock and Data Recovery (CDR), Differential driver and receiver, and Phase-locked loop (PLL)

were also discussed.

 The next step for this project is to finish all the other core components of the SerDes as

discussed earlier. The interconnection between each component would be the following step, and

eventually all major blocks would be integrated as one entire SerDes system, which functions

properly at the desired frequency. Meanwhile, alternative designs or topologies for any sub-circuits

such as D-latches, multiplexers, voltage controlled oscillator (VCO) is being explored and could

be replaced to our existing designs if the overall system speed is found to be increased.

Furthermore, transistor sizing and optimization are needed so as to increase the operating

frequency of the entire SerDes and minimize the propagation delay and power consumption.

Finally, signal and power integrity analysis would be done on the entire SerDes in order to find

out means to reduce the unwanted effects such as cross-talk and jitter/phase noise.

41

References	

[1]	Lattice	Semiconductor	Corporation,	"Serdes	Introduction,"	China	Distributor	FAE	
Training,	January	2003.	

[2]	D.	Stauffer,	J.	Mechler,	K.	Dramstad,	C.	Ogilvie,	A.	Mohammad,	J.	Rockrohr	and	M.	Sorna,	
High	Speed	Serdes	Devices	and	Applications,	New	York:	Springer,	2008.		

[3]	Y.	Shim,	W.	Lee,	E.	Song,	J.	Cho	and	J.	Kim,	"A	Compact	and	Wide‐Band	Passive	
Equalizer	Design,"	IEEE	MICROWAVE	AND	WIRELESS	COMPONENTS	LETTERS,	vol.	20,	
no.	5,	pp.	256‐258,	May	2010.		

[4]	D.	Chen,	"SerDes	Transceivers	for	High‐speed	Serial	Communications,"	Carleton	
University,	Ottawa,	Jan	2008.	

[5]	J.	Schutt‐Ainé,	"Signal	Integrity,"	Class	notes	for	ECE451,	Department	of	Electrical	and	
Computer	Engineering,	University	of	Illinois	at	Urbana‐Champaign,	2009.	

[6]	T.	Van	Roon,	"PLL	Tutorial,"	19	October	2010.	[Online].	Available:	
http://www.sentex.ca/~mec1995/gadgets/pll/pll.html.	[Accessed	30	June	2013].	

[7]	J.	Rabaey,	A.	Chandrakasan	and	B.	Nikolic,	Digital	Integrated	Circuits:	A	Design	
Perspective,	Prentice	Hall,	2003.		

[8]	J.	Yuan	and	C.	Svensson,	"High‐Speed	CMOS	Circuit	Technique,"	IEEE	Journal	of	Solid‐
State	Circuits,	vol.	24,	no.	1,	pp.	62‐70,	1989.		

