
© 2024 Bobi Shi



EYE DIAGRAM MODELING AND STATISTICAL SIMULATION IN
NONLINEAR HIGH-SPEED LINK SYSTEMS

BY

BOBI SHI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2024

Urbana, Illinois

Doctoral Committee:

Professor José E. Schutt-Ainé, Chair
Professor Jennifer Bernhard
Associate Professor Peter D Dragic
Professor Pavan Kumar Hanumolu



ABSTRACT

The exponential growth in data rates of high-speed link channels, coupled
with the emergence of severe nonlinear phenomena, highlights the urgent
requirement for efficient and accurate simulation of high-speed link systems.
A commonly utilized method for assessing signal integrity in these channels
is through eye diagram analysis, facilitating the identification of jitter and
noise by engineers. However, conventional approaches to conducting such
analysis often prove resource-intensive regarding both time and memory or
are limited to linear time-invariant systems.

This thesis introduces two innovative methodologies designed to accurately
and efficiently derive the eye diagram within nonlinear systems. The first ap-
proach uses a high-speed link surrogate model based on the polynomial chaos
expansion method. This model enables rapid prediction of both the eye dia-
gram and the full waveform, outperforming traditional transient simulations
in terms of speed. The second approach uses an enhanced statistical analysis
tailored for nonlinear systems, utilizing the Wiener model and random vari-
able transformation. This methodology yields a three-dimensional statistical
eye diagram, offering deeper insights into system behavior.

Numerical examples presented in this study demonstrate the efficacy and
accuracy of the proposed methodologies. By overcoming the limitations of
traditional approaches, these methods pave the way for more effective analy-
sis and design of high-speed link systems in the face of nonlinear phenomena.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement
Six decades ago, Gordon E. Moore, the co-founder of Intel, made a seminal
observation in the semiconductor industry, noting that the number of tran-
sistors on a microchip roughly doubles every two years. This observation,
famously known as Moore’s Law, has since become a guiding principle for
research and development teams in the industry. The world has reaped the
benefits of this trend, witnessing the integration of smaller transistors into
integrated circuits and the consequent increase in data transfer speeds. To-
day, microchips featuring a 4 nm process boast billions of transistors, with
the industry setting its sights on even smaller nodes like 3 nm, 2 nm, or even
1 nm in the near future. Similarly, high-speed interconnect technologies such
as Peripheral Component Interconnect Express (PCIe), Universal Serial Bus
(USB), and High-Definition Multimedia Interface (HDMI) have seen signif-
icant advancements, with speeds now ten times faster than a decade ago.
However, while shrinking transistor sizes and boosting data rates enhance
performance, they also present considerable challenges in signal integrity
and power integrity during the design process. Issues such as skin effect,
crosstalk, dielectric loss, and intersymbol interference can lead to signal er-
rors. Aside from the high-frequency effects, the nonlinearity-related issue
becomes increasingly severe in the high-speed link [1–3]. To address these
complexities and ensure successful designs before mass fabrication, reliable
modeling techniques and simulation tools are essential. To fully capture the
nonlinear aspects of the system, one attempt is to utilize a conventional
Simulation Program with Integrated Circuit Emphasis (SPICE)-based simu-
lation tool [4]. This simulator accurately models the physical properties and
electrical characteristics of circuit elements, computing voltage and current
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values at each time point precisely. However, the simulation runtime esca-
lates in proportion to the transition period, leading to convergence challenges
when nonlinearity is present. Consequently, this simulation method is not
suitable for high-speed link systems with weakly nonlinear transmitters (TX)
or receivers (RX) operating over long sequences of bits.

To overcome the runtime challenge, a surrogate model is introduced to
help reduce simulation runtime by providing a faster alternative for evaluat-
ing the system’s response. Rather than performing detailed simulations for
each time point, which involves solving complex equations or running com-
putationally intensive simulations, the surrogate model can quickly provide
approximate results based on its trained knowledge of the system’s behav-
ior. In [5–9], an Artificial Neural Network (ANN) is applied in high-speed
link systems to estimate the equalized output waveform and the eye dia-
gram opening. The Support Vector Machine (SVM) is used to estimate the
eye height and optimize the channel design in the high-speed link system
in [8, 10, 11]. Gaussian Process (GP) regression [12] and Polynomial Chaos
(PC) [13,14] expansion are also widely developed as surrogate models in de-
signing filters in microwave systems and estimating jitters in high-speed link
systems. In this dissertation, the stability and scalability of single dimension
to multiple dimensions of the PC surrogate model provide the most advan-
tage for approximating the output waveform in the time domain given the bit
sequence. The eye diagram is then recreated from the waveform to evaluate
the signal integrity of the system.

In order to address the nonlinearity issue while maintaining efficiency,
the statistical analysis developed for nonlinear systems is introduced. The
current methods assuming linearity and using the superposition concept in
high-speed signaling systems underestimate the impact of nonlinear effects
in circuits. Therefore, the current conventional fast simulation method is no
longer valid for analyzing high-speed signaling systems with nonlinear com-
ponents. To properly predict eye diagrams with nonlinear components in a
fast and efficient path, there are several approaches. One approach uses the
Volterra series to decompose a nonlinear network into multiple linear systems
and then applies the peak distortion analysis to estimate the worst-case eye
margin [15]. Next, the nonlinear network is represented by the Hammerstein
or Wiener models and then the eye diagram is analyzed through the bit se-
quence transient simulation and the voltage distribution function within the
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nonlinear system can be approximated [16]. In [17], a matrix is created from
all combinations of nonlinear responses and a low-rank matrix representation
is found to reduce the number of nonlinear responses needed to complete the
eye diagram. The study [18] proposes multiple edge responses beyond the
single bit response, following the same methodology in [19] to linearize the
nonlinear system and perform the superposition to calculate the statistical
eye diagram.

In a brief overview of current methods, either the lengthy bit sequence
transient simulation is time-demanding or the majority of fast and efficient
methods for analyzing eye diagrams are designed for LTI systems with non-
linearity trade-off. To tackle these limitations, the surrogate model of the
high-speed link through the Polynomial Chaos Expansion method is intro-
duced to accelerate the simulation and the statistical analysis method in the
eye diagram to properly capture nonlinear features.

The dissertation is organized as follows: Chapter 1 describes the motiva-
tion and provides an overview of the circuit modeling and simulation and
the fundamental characteristics of eye diagrams. In Chapter 2, the surro-
gate model is first introduced. The PC expansion and its training process
are reviewed with the example of eye diagram estimation through PC. Other
applications with the PC surrogate model are also presented. In Chapter
3, the peak distortion analysis, edge-based bit-by-bit analysis, and statisti-
cal analysis of eye diagram estimation for the linear systems are discussed.
Chapter 4 investigates the statistical analysis of nonlinear systems in three
examples. The Volterra-Wiener system identification technique is reviewed
and the random variable transformation is applied to the transfer of the PDF
between nonlinear input and output. The nonlinear statistical eye diagram is
obtained. At the end of Chapter 5, the conclusion and future work is given.

1.2 Review of Circuit Modeling and Simulation
A brief review of the circuit modeling methods and simulation methods is
introduced in this section to readers as fundamental knowledge. Circuit sim-
ulation involves the creation and analysis of an electronic circuit model using
sophisticated software algorithms. These algorithms are used to predict and
validate the behavior and performance of the circuit. Given the considerable
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expense and time associated with fabricating electronic circuits, particularly
integrated circuits (ICs), it proves both faster and more cost-effective to
verify circuit behavior and performance using a circuit simulator prior to
fabrication.

1.2.1 Circuit Modeling

The initial process begins with circuit modeling, a fundamental aspect of
the simulation process, which plays a crucial role in accurately representing
the behavior of real-world circuits. It is categorized into two types: one
is an exact voltage-current modeling of the components by their physical
performance; another one is called behavioral modeling which accurately
approximates the voltage-current relation in the time or frequency domain.

In exact modeling, modeling means the accurate representation of every
essential component such as resistors, capacitors, inductors, and transistors
in circuits, taking into account their electrical characteristics and physical
properties. The most famous Metal–Oxide–Semiconductor Field-Effect Tran-
sistor (MOSFET) transistor model for integrated circuit design is the BSIM
(Berkeley Short-channel IGFET Model) Group, located in the Department
of Electrical Engineering and Computer Sciences (EECS) at the University
of California, Berkeley, develops physics-based, accurate, scalable, robust,
and predictive MOSFET SPICE models for circuit simulation and Comple-
mentary Metal-Oxide-Semiconductor (CMOS) technology development [20].
The circuit’s nonlinear behavior is depicted within the model. With the
continuous shrinking of device sizes in each process generation, as stated in
Moore’s law, novel models are required to precisely capture the behavior of
transistors and the difficulty arises.

Behavioral modeling refers to the process of creating mathematical repre-
sentations that accurately depict the electrical characteristics and responses
of electronic circuits under various conditions. For an LTI system, the scatter-
ing parameters (S-parameters) [21] are commonly used to present how electri-
cal signals propagate, reflect, or are absorbed by each component within the
high-frequency microwave network. When nonlinearity exists in the system,
X-parameters [22] characterize the nonlinear behavior of active components
such as amplifiers and mixers and represent the relationship between the
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input and output signals of a nonlinear device in terms of power, rather
than voltage or current as in S-parameters. The more general standard one
is the Input/Output Buffer Information Specification (IBIS) model, which
is a standard file format that stores the I/O voltage and current relation-
ship in different conditions [23]. These models may include parameters such
as component values, voltage-current relationships, frequency response, and
nonlinear effects. The advantage of behavioral modeling is its black-box in-
tellectual property (IP) protection nature; however, the vendor’s effect of
approximating the circuit behavior dramatically increases as the device size
and transmission speed push to the limit.

1.2.2 Circuit Simulation

Once the circuit model is constructed, it undergoes thorough analysis using
simulation software. This software uses mathematical techniques to solve
the intricate equations that dictate how the circuit behaves. It calculates
important aspects like voltage levels, current flows, and signal propagation.
By adjusting input conditions and component values systematically, the sim-
ulator can evaluate how the circuit reacts in various situations. There are
various types of circuit simulators available to meet a range of needs, balanc-
ing accuracy, performance, and capacity. Analog simulators provide high ac-
curacy and are suitable for small circuits, while digital simulators, described
using hardware description languages (HDL), offer greater performance and
capacity for a large-scale circuit but with lower accuracy.

For analog simulation, SPICE is the original simulator that analyzes the
behavior of the circuit accurately with linear and nonlinear device models.
It uses various integration methods like Forward Euler, Backward Euler, and
Newton-Raphson, along with matrix decomposition techniques, to calculate
the voltage and current at every time point throughout the simulation period.
However, multiple iterations of Newton-Raphson are required to achieve con-
vergence at every time point for a nonlinear system in a transient simulation,
as shown in Figure 1.1. The computational-expensive feature comes with this
type of simulation.

Unlike analog simulation, which deals with continuous signals, digital sim-
ulation works with discrete voltage levels, mainly logic 0 and logic 1. Digital
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Figure 1.1: Flowchart of a transient SPICE simulation [24].

circuit simulation uses simpler models of the electronic circuit, often built
in HDL such as Verilog, SystemVerilog, and SystemC. The accuracy of how
these signals propagate through the circuit varies, especially in terms of the
delay. This approach enables larger circuits to be simulated more quickly
and with fewer computing resources compared to analog simulation but with
lower accuracy.

1.2.3 Advanced Techniques on Modeling and Simulation

In recent decades, machine learning techniques have become pervasive across
various fields of study, including circuit modeling and simulation. In or-
der to alleviate the complexity of modeling and simulation, numerous ma-
chine learning and surrogate modeling approaches have emerged to capture
the input-output relationships, particularly the nonlinear relationship. Re-
searchers have actively pursued studies aimed at replacing traditional SPICE
simulation tools with faster machine learning models in high-speed link sys-
tems [5–12]. Through training and testing datasets, machine learning-based
behavioral models, such as Neural Networks (NN), can be developed, signif-
icantly accelerating the simulation process compared to conventional SPICE
simulation methods. However, a notable drawback of machine learning is
the requirement for substantial training data to ensure comprehensive model
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definition without overlooking crucial details. Another more trivial method
is surrogate modeling of the system, which will be discussed in Chapter 2
in detail. This includes methods such as linear regression, polynomial re-
gression, PC expansion, and Gaussian Process regression, which have been
applied in the modeling and simulation of high-speed systems [25, 26].

1.3 Overview of Eye Diagram
With the accurate representation of signal behavior from a robust circuit
simulation tool, the eye pattern or the eye diagram is the fundamental visu-
alization methodology to represent the quality of signaling in a system. As
the name suggests, the eye diagram constructs the “eye” from the high-speed
signal waveform by creating a 2-bit width window and overlapping each win-
dow on top of each other with 1-bit shifting. Another way of speaking is
the eye diagram is the superimpose of all 0’s, 1’s, and transitions of a long
pattern waveform into a signal graph representation. The resultant graph
representation will resemble an eye and display the average statistics of the
signal. An ideal eye diagram is constructed and shown below in Figure 1.2,
where the ideal digital level 0 and level 1 signals are generated with fast ris-
ing and falling time. Since the eye diagram usually displays a 2-bit window,
the horizontal axis represents the time in 2 unit-interval (UI). One UI is 1-
bit width. The vertical axis represents the signal amplitude in voltage. The
real-world eye diagram experiences signal impairments such as skin effect and
amplitude and time distortion such as jitter, noise, crosstalk, etc. Figure 1.3
shows the eye diagram from a 1 GHz signal transmitting in a high-speed link
channel. Visually comparing Figure 1.2 and Figure 1.3, the eye in Figure
1.3 is smaller than the eye in Figure 1.2, therefore the more likelihood the
sampler in the high-speed link receiver will incorrectly sample a logical 1 bit
for a logical 0 bit or vice versa. Such incorrect bit identifications lead to bit
errors. The ratio of bit errors to overall sent bits is Bit Error Rate (BER).
High-speed link designers aim to achieve the smallest BER possible when
designing a transmission system. In the current design standards, a BER of
less than 10−12 is considered the minimum target.
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Figure 1.2: Ideal eye diagram in high-speed link signaling.
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Figure 1.3: Typical eye diagram in high-speed link signaling.
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1.3.1 Eye Diagram Fundamentals

In addition to providing direct insights into signal integrity, the eye dia-
gram offers valuable quantitative information from a statistical perspective.
As previously explained, the eye diagram combines multiple 1-bit shifting
2-bit windows. However, statistically, it also serves as a visualization of the
Probability Density Function (PDF) of the signal’s voltage across the 2-UI
duration. Put simply, the eye diagram can be conceptualized as a 3D repre-
sentation: the x-axis represents time, the y-axis represents voltage, and the
z-axis represents the PDF. This concept is illustrated in Figure 1.4. When
plotting the eye diagram in 2D with color mapping, variations in color or den-
sity signify the diverse possibilities of voltage values at specific times. Each
point on the diagram represents a combination of voltage and time, with
color indicating the PDF of voltage at that particular time. Essentially,
within every eye diagram, there exist PDFs for both voltage and time, pro-
viding comprehensive insights into signal behavior. As illustrated in Figure
1.5, the voltage PDF is derived by slicing the vertical time frame (indicated
by the vertical red line). At each time point, after aggregating all voltage
densities vertically, a single voltage PDF is obtained. In this PDF, the x-axis
represents voltage, while the y-axis represents density. Similarly, the time
PDF is obtained by horizontally slicing the eye diagram as indicated by the
horizontal red line in Figure 1.5. Each voltage level yields a distinct time
PDF, where the x-axis represents time and the y-axis represents density.
Understanding this statistical concept of the eye diagram is crucial before
delving into the analysis of its time and amplitude information.

The most common PDF in nature is Gaussian or Normal distribution,
which generally has a bell-shaped curve as shown in Figure 1.6 and has a
general form as

f(x) =
1

σ
√
2π

e−
1
2
(x−µ

σ
)2 , (1.1)

where µ is the mean or average of the data set and σ is the standard deviation
that approximately 68 percent of the data is located within ±1σ of the mean.
The µ and 3σ of Gaussian distribution are key parameters used to analyze the
eye information statistically. Indeed, several terms are used to describe the
characteristics of the eye diagram from both voltage and time perspectives.
These terms are defined and calculated based on the distribution of the eye
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Figure 1.4: A 3D eye diagram visualization.

Figure 1.5: Voltage and time PDF from eye diagram.
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Figure 1.6: Gaussian distribution.

diagram.

1.3.2 One Level

The one level in an eye diagram is the mean value of the top eye diagram
distribution in the middle 20 percent of the eye. In Figure 1.7, the highlight
region is the middle 20 percent after centralizing the eye-opening, which also
refers to the 40 percent to 60 percent region between the one-bit period.

1.3.3 Zero level

The zero level in an eye diagram is the mean value of the bottom eye diagram
from the same 20 percent region in one level calculation.

1.3.4 Eye Amplitude

Eye amplitude is the difference between the one level and zero level, which
is calculated from the mean values of the two PDF shown in Figure 1.7. The
high-speed link receiver determines whether the transmitted bit is a ”0” or
”1” based on eye amplitude.
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1.3.5 Eye Height

The definition of eye height describes the vertical eye-opening of the eye dia-
gram and is derived from the difference between the inner 3σ points between
two amplitude PDF in Figure 1.7. An ideal eye height is equal to the eye
amplitude. However, due to noise and amplitude attenuation, the eye height
is diminished and tends to close.

Figure 1.7: Amplitude definitions of eye diagram.

1.3.6 Eye Crossing Percentage

The eye-crossing percentage is the ratio measurement of how the crossing
points relative to the one and zero levels. The crossing level is computed by
the mean value of a PDF from a thin vertical window centered on the crossing
point. The eye-crossing percentage is then calculated using the equation:

crossing level - zero level
one level - zero level · 100% (1.2)
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1.3.7 Signal-to-Noise Ratio (SNR)

The SNR is a ratio of the desired signal level to the level of background noise.
Higher SNR values are more desirable as more signals are transmitted. The
definition is as follows:

one level - zero level
1σ · one level + 1σ · zero level (1.3)

1.3.8 Bit Period

The bit period is called the unit interval (UI) when describing an eye width
in a normalized form. The bit period is the inverse of the data rate (i.e., 100
ps bit period is used for a 10 Gbps signal).

1.3.9 Rise Time

In an eye diagram, the rise time refers to the mean transition time it takes
for a signal from a low voltage level to a high voltage level. It is typically
measured as the time it takes for the signal to rise from 20% to 80% of its
maximum amplitude or 10% to 90%. A slow rise time can lead to distortion
and signal loss, which can degrade the eye-opening.

Rise Time = mean(80% time level)−mean(20% time level) (1.4)

1.3.10 Fall Time

The fall time has a similar definition of rise time but on the downward tran-
sition time from a high voltage level to a low voltage level. The measurement
is typically between 20% to 80% or 10% to 90% amplitude level.

Fall Time = mean(20% time level)−mean(80% time level) (1.5)

1.3.11 Eye Width

Eye width is the horizontal eye-opening of the eye diagram and is calculated
from the difference between the inner two 3σ points on the time PDF at the
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two crossing points.

1.3.12 Jitter

The jitter refers to the time variation from the ideal timing position. The
jitter histogram can be derived from the time PDF at the crossing point of
rising and falling edges. The peak-to-peak jitter is defined as the full width
of the jitter histogram as all points are present. The RMS jitter is defined
as the standard deviation of the jitter histogram.

Figure 1.8: Time definitions of eye diagram.
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CHAPTER 2

HIGH-SPEED LINK MODELING WITH
POLYNOMIAL CHAOS METHOD

2.1 Introduction
The high-speed link system design heavily relies on a thorough performance
analysis from various design parameters. Numerous time-consuming com-
puter simulations are required to validate the design’s performance and cor-
rectness. In the example of transient analysis of the high-speed link eye dia-
gram simulation, the targeted BER of 10−13 and complete eye diagram would
require days to accomplish. The sooner the designers collect the simulation
results, the faster they can receive feedback and improve the design. There-
fore, the timing of simulation analysis results becomes prominent. Toward
the end, this evolved to a data-driven approach called statistical modeling or
surrogate modeling that approximates the simulation output with cheaper
simulation time.

The idea of the surrogate model is a black-box mapping problem that
describes a relation between X and Y , as shown in Figure 2.1. Given a set of
input parameters, {x}, the black-box starts the learning process and produces
the best regression function f(x) which returns the estimated results ŷ, being
close to simulation results y. The Polynomial Chaos Expansion (PCE) is one
type of surrogate model.

Figure 2.1: The surrogate model black-box.

16



2.2 Polynomial Chaos Theory
The PCE theory introduces a way to estimate an arbitrary random variable
of interest as a function of another random variable with a given distribution
and as a model of an orthonormal polynomial expansion. This method is
known for its faster convergence and lower computation cost than Monte
Carlo (MC) analysis [27]. The statistical information such as the mean and
variance of the output is given at no cost with the process of solving the PCE
model. Based on [28], the general form of 1-D polynomials is estimated as:

y = f(x) =
m∑
i=0

ciϕi(x), (2.1)

where x is the one-dimensional random variable, y is the predicted output
and ci denotes the unknown polynomial coefficients to be determined. ϕi(x)

represents orthogonal bases with respect to the probability distribution func-
tion of x. m represents the order of polynomial expansions and there are m+1

terms.
The polynomial function ϕ(x) is chosen so they are orthogonal with respect

to the probability density function of input parameter x to ensure useful sta-
tistical properties. When the input randomness x has Gaussian distribution,
the polynomial basis function ϕ(x) orthogonal w.r.t. the Gaussian distri-
bution is the set of i−th degree Hermite polynomials Hi(x), given by the
function:

Hi(x) = (−1)iex2 di

dxi
e−x2

. (2.2)

Figure 2.2: The orthonormal Hermite polynomials.

Other polynomial basis functions are selected if the input random vector x
has a different distribution. For example, the ϕ(x) is chosen to be Legendre
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polynomials if the distribution of x is uniform.
However, multidimensional polynomials are more frequent in practical

modeling examples with multiple random variables involved. Instead of a
single input, x becomes a multidimensional vector x = [x1, x2, .., xn]

T in the
polynomial chaos expansion equation:

y = f(x) =
P∑
i=0

ciΦi(x), (2.3)

where f(x) is the estimated output, x = [x1, x2, .., xn]
T shows the dimension

of input variables, and ci denotes the unknown polynomial coefficients to be
determined. Φi(x) represents multidimensional orthonormal polynomials,
constructed using the product of the 1-D orthonormal polynomials, via

Φi =
∏
k∈Ki

ϕk, (2.4)

where Ki is the multi-index set for 1-D orthonormal polynomials

Ki = {ki1, · · · , kin} ,
∑

kij ≤ m. (2.5)

The number of polynomial terms P has the equation below,

P + 1 =

(
m+ n

m

)
=

(m+ n)!

m!n!
, (2.6)

where m is the polynomial order and n is the dimension of the input. When
there is the 1-D polynomial case, n = 1 and thus p = m.

Once the polynomial function Φi(x) has been determined, the next step
is to estimate the unknown polynomial expansion coefficients ci. There are
two ways of solving this unknown: intrusive and non-intrusive methods. The
non-intrusive method is applied here and the other method can be found
in [28]. First of all, Equation (2.3) can be rewritten into a matrix form. Let
Φ̄ represent Φi(x):
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Φ̄ =


Φ0(x

1) Φ1(x
1) . . . ΦP (x

1)

Φ0(x
2) Φ1(x

2) . . . ΦP (x
2)

... ... . . . ...
Φ0(x

N ) Φ1(x
N ) . . . ΦP (x

N )

 ∈ RN×(P+1) (2.7)

Similarly,

c =


c0

c1
...
cP

 ∈ R(P+1)×1 (2.8)

as a long column matrix. Then, combining and rewriting in matrix form
yields

Y = Φ̄ · c (2.9)
Y 1

Y 2

...
Y N

 =


Φ0(x

1) Φ1(x
1) . . . ΦP (x

1)

Φ0(x
2) Φ1(x

2) . . . ΦP (x
2)

... ... . . . ...
Φ0(x

N ) Φ1(x
N ) . . . ΦP (x

N )

 ·

c0

c1
...
cP

 (2.10)

Y is a size of N column vector representing the N amount of output, given
from N sets of x random vectors in input. It should be noted that the
lowercase n in x = [x1, x2, .., xn]

T means the dimension of input and it is
unrelated to the number of input vector N . The input dimension n can be 5
but there could be N = 1000 data sets. And N determines how many rows
in Φ̄ matrix; however n decides the column size in Φ̄.

The coefficients c’s are linear with respect to Y . Therefore, given N sets
of training samples, and assuming N is large enough at least 1.5 times the
number of polynomials basis P [14], c can easily be solved by linear regression
method, given by

c = (Φ̄T · Φ̄)−1 · Φ̄T · Y (2.11)

Once the coefficients c are obtained, whenever new and unseen multidi-
mensional inputs are fed into the Φ̄ matrix the new estimated results Y can
be calculated by the direct matrix multiplication.
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2.3 Eye diagram Estimation via Polynomial Chaos
Model

2.3.1 Introduction

As the introduction in the previous chapter, the eye diagram is constructed
from the output signal waveform by a 2-bit window overlapping. In the tran-
sient simulation approach, a lengthy bit pattern is generated from the signal
transmitter. After transmitting through the high-speed link system, at the
receiver, the corresponding output waveform is detected. Depending on the
complexity of the high-speed link system, the requirement of bit numbers to
create an eye diagram that well describes the system varies. Generally, the
longer the bit pattern, the more comprehensive the eye diagram is. Com-
pared to the transient eye simulation approach, the PC method builds up
a surrogate model with a small number of bit sequences. In the estimation
procedure, the surrogate model evaluation is much faster than the transient
simulation. Therefore, the computational cost and simulation time are af-
fordable with the surrogate model in eye diagram estimation.

2.3.2 Channel Modeling Decomposition

Following the PCE theory, the input of Equation (2.3) is a multidimensional
vector x = [x1, x2, .., xn]

T where n is the number of bits or the length of
bit sequence. The output y is the transient output waveform after the high-
speed link channel. For instance, when n has 2000 bits and the polynomial
order m has the order of 3. The number of polynomial terms P is calculated
as
(
m+n
m

)
=
(
2000+3

3

)
that is around 1.4 billion, corresponding to the column

size of Φ̄ matrix. In the sense of transient simulation, a 2000-bit sequence
is a small amount but turns out to create such a huge matrix size due to
polynomial order expansion. This matrix requires heavy computation to
solve in the linear regression method. Therefore, directly applying the bit
sequence and creating a PCE model is problematic and time-wasting. To
overcome this issue, the input needs to be truncated and decomposed into
sub-models.

The original thought was feeding the whole bit sequence into the surrogate
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model as input and then getting the complete waveform. Instead of using
one one-bit pattern as input, the long-bit sequence decomposes into four k-
length sub-models based on the last 2-bit transitions. The transitions are
zero-to-zero, zero-to-one, one-to-zero, and one-to-one. The input dimension
n of the original model now reduces to the dimension k where k can be
5-bit length. As illustrated in Figure 2.3, the input bit sequence and the
output signal of the channel are shown. The PCE will be used to model
the channel. A single-bit pattern separates into 4 groups 5-bit length short
sequence according to the last 2-bit transition, as surrogate model input.
The corresponding waveform is also grouped into 4 categories as surrogate
model output. Now, rather than modeling by 1 polynomial chaos function,
4 polynomial chaos surrogate models are implemented for 4 transitions to
construct the full waveform, which is shown in Figure 2.4.

The 4 sub-model PCE functions can be written as

yjk(t) =
P∑
i=0

cjk_i(t)Φi(xjk), (2.12)

where 0 ≤ t ≤ 2 UI and j, k ∈ {0, 1}. The major difference between Equation
(2.3) and Equation (2.12) is that the unknown coefficient cjk_i(t) is no longer
a single column matrix but with the width of 2 UI. This is due to the digital-
to-analog signal conversion that 1 logical bit translates into an analog signal
with certain amounts of time points. For example, in general, 1 logical bit
requires 16 or 32 sampling points in time with high voltage to represent.
Therefore, each UI here has a length of 16 or 32.

The first step of eye diagram estimation using PCE method is to create 4
groups of bit sequences and then calculate c00_i, c01_i, c10_i, c11_i 4 unknown
coefficients for steady zero, rising, falling and steady one sub-models, giving
a learning bit sequence. Once the polynomial unknowns are calculated, new
testing bit sequence and thus its decomposition sequences are applied to
function in Equation (2.12). Then, 4 groups of 2UI-length waveforms are
estimated. The superposition of results y00, y01, y10 and y11 is the eye diagram
in Figure 2.5. This eye diagram can also be reconstructed and mapped back
to a full waveform.
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Figure 2.3: Decomposition of single bit sequence.
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Figure 2.4: Four surrogate models.

Figure 2.5: Superposition to eye diagram.
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2.3.3 Validation

In order to validate the performance of PCE model, a 20000 random-bit
sequence is used as a test case for eye diagram estimation. The red eye
diagram in Figure 2.6 is from PCE estimation and the blue eye diagram in
Figure 2.7 is the reference result from transient simulation. The waveform can
also be recovered by reorganizing the eye diagram pattern. This comparison
plot in Figure 2.8 shows a good agreement between the two. The Table 2.1
here summarizes the eye information with relatively acceptable differences.
For this same amount of bits in simulation, the PCE surrogate model only
requires 52 seconds but it takes about 89 seconds in a transient simulation.
The surrogate model speeds up by 1.7 times faster.

Table 2.1: Eye diagram comparison

Type EH (mV) EW (ns) One Level (mV) Zero Level (mV)
PCE 295 755 623 17
REF 281 740 622 18
ERROR 4.98% 2.02% 0.16% 5.56%

Figure 2.6: Eye diagram from PCE.
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Figure 2.7: Eye diagram from transient simulation.

Figure 2.8: Waveform comparison between ADS simulation and PC.
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2.4 Decision-Feedback Equalizer (DFE) Taps
Estimation with Surrogate Modeling Methods [25]

2.4.1 Introduction

Despite the rapid growth of the electronic circuit industry in recent decades,
the demand for high-speed transmission rates remains unabated. Currently,
the industry has achieved data rates of up to 32 Gbps and aims to surpass
56 Gbps with the next generation of technologies. When the world enjoys
the benefits of fast data rates, electrical engineers have to interact with im-
portant signal integrity problems due to the increasing signal transmission
speed in electronic devices. The electronic devices are composed of connec-
tors, IC packages, chips, and printed circuit boards. Each component under
high-speed circumstances can directly induce unwanted distortions, such as
channel loss, crosstalk, intersymbol interference, jitter, and noise, to signal
propagating from transmitter to receiver shown in Figure 3.3. To mitigate
these distortions, the ability to restore the original signal becomes crucial in
addressing signal integrity issues. Equalization emerges as one of the most
effective solutions in this regard.

Figure 2.9: Intersymbol interference effect.

Machine learning models based on Decision-Feedback Equalizer (DFE) can
be found in [5]. And there are feasible machine learning models predicting eye
information from high-speed link physical design specifications [6–8]. How-
ever, for system-level device design engineers, understanding the equalization
requirements to reduce intersymbol interference and maximize the eye is of
greater importance, especially when armed with knowledge of their channel
information during the preliminary design phase. For the example of DFE,
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it would be advantageous to know the range of tap weights needed for their
channel due to variations in channel geometry parameters. Generally, both
electromagnetic solver and channel simulation are used to perform equal-
ization analysis with substantial amounts of simulation data and time. A
machine learning model can be introduced here to estimate DFE taps re-
quirement from channel geometry. Engineers could foresee how the DFE
should behave to restore the compromised signal based on their channel in-
formation in a short amount of time. In this study, four different machine
learning techniques—polynomial regression (PR), support vector regression
(SVR), feed-forward neural network (FNN), and polynomial chaos (PC)—
will be explored and compared for DFE tap prediction. PR and SVR can
manage various levels of nonlinearity by adjusting the polynomial order and
kernel mappings. FNN excels in the regression problem due to its learning
capability. However, PC outperforms others with the lowest prediction error
rate in this case study.

2.4.2 Regression Methods

2.4.2.1 Polynomial Regression

In the PR, the relationship between the output Y and the input variable X
is modelled as the nth order polynomial equation. The form is defined as:

y = β0 +
m∑
i=1

βi

d∏
j=1

x
kj
j (2.13)

where β0 is a constant, βi is polynomial effect parameters, and m is given
by (n + d)! /(n! d! ). n is the polynomial order, d is the dimension of input
variables, and the power kj > 0 must satisfy the condition

∑d
j=1 kj < n.

Linear Regression (LR) is a special case of PR when the order number
n = 1, so the relation between Y and X is linear. The least-square will help
to derive the β coefficients and find an equation of line or curve which is a
close approximation of the actual data points.
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2.4.2.2 Feed-forward Neural Network

In this work, the FNN defines a mapping y = f(x; θ), where x and y represent
the system input and output, respectively. The values of the weight param-
eter θ are learned during the training process to achieve the best function
approximation. The FNN architecture used in this study comprises one in-
put layer, three hidden layers, and one output layer. Sigmoid functions serve
as activation functions, introducing nonlinearity into the network, while the
mean square error (MSE) is minimized through the adoption of stochastic
gradient descent (SGD). This approach enables the FNN to effectively cap-
ture complex relationships between input and output variables, facilitating
accurate predictions and efficient learning from the training data.

2.4.2.3 Support Vector Regression

SVR [29], an important branch of support vector machine (SVM) [30], aims to
solve the regression prediction problem by finding a regression plane h (x) =

wTφ (x) + b, to which all the prediction results of the data set are as close
as possible to the corresponding y.

The SVR problem can be regarded as

min
w,b,ξ,ξ

′

1

2
∥w∥+ C ∑

1≤i≤N

(
ξi + ξ

′

i

)
, (2.14)

s.t. h
(
x(i)
)
− y(i) ≤ ε+ ξi,

y(i) − h
(
x(i)
)
≤ ε+ ξ

′

i,

ξi ≥ 0, ξ
′

i ≥ 0, i = 1, 2, . . . , N

where ξi and ξ
′
i are slack variables, w = {w1, ..., wd} is a normal vector of

hyperplane, C is a positive constant and SVR allows a margin of tolerance ε.
Lagrange multiplier method is a common method to solve convex optimiza-
tion problems with constraints. In practice, Kernel method is always added
in SVR for non-linear classification. The final SVR predictive function can
be calculated via a Lagrange multiplier method:

f(X) =
n∑

i=1

(α
′

i − αi)κ(X,X i) + d, (2.15)
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where αi ≥ 0 and α
′
i ≥ 0 are introduced as Lagrange multipliers and we

select the Gaussian kernel in this problem [?, 10]:

κ
(
x,x(i)

)
= exp

(
−
∥∥x− x(i)

∥∥2
2σ2

)
(2.16)

where σ > 0 is the width of the Gaussian kernel.
SVR algorithm is implemented by MATLAB Statistics and Machine Learn-

ing Toolbox, which hyperparameters, e.g. C, σ and ε, are calculated by the
Bayesian optimization method in order to minimize the cross-validation error
and provide accurate prediction results with robustness.

2.4.3 Example and Results

A differential microstrip-via-stripline discontinuity channel is considered in
this paper with 5 design parameters: strip width, channel length, trace space,
substrate thickness, and impedance. Firstly, Ansys HFSS is used to obtain
the S-parameter of the channel by sweeping geometric parameters. Secondly,
transient simulation from Keysight ADS is performed to acquire pulse re-
sponse. The post-signal processing is then required to collect 3 DFE taps
from its post cursors. As shown in Figure 3.4, the post-response distortion
gradually dies out after the third unit interval and hence a 3-tap DFE circuit
is sufficient to significantly reduce the ISI and avoid over-equalization. When
varying the channel geometry parameters, the corresponding pulse response
will be generated with the difference in the magnitude of post cursors in Fig-
ure 3.4. Therefore, the various 3 taps become the output parameters. There
are a total of 13000 sets of geometrical parameters-to-DFE taps samples.
When the training samples N are used to train PR, LR, FNN, SVR, and PC
models, the rest of the 13000−N unseen samples are used for testing.

To assess the performance of these various models, Figures 3.5, 3.6, and 3.7
depict the prediction average relative error rate of 3 taps on a logarithmic
scale to illustrate discrepancies more effectively. The training samples N

range from 10 to 200. The average relative error rate decreases from 10% to
a minimum of 10−6%. As more training samples are utilized, the disparity
between predicted and true taps gradually diminishes, as indicated by the
figures. LR and PR are utilized to characterize the level of nonlinearity of
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Figure 2.10: Post response variation due to various tap combinations.

the model. While LR, assuming the black-box as a linear model, is capable
of predicting results, PR exhibits advancement after 120 samples with an
even lower error rate. FNN demonstrates similar performance to LR within
the range of 200 training samples but continuously reduces the error rate
after 500 samples, unlike LR, which remains constant. In this example, SVR
exhibits a stable error rate within this training range and possesses the lowest
error rate from 10 to 120 training samples. PC performs the best prediction
after 120 samples have been trained.
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Figure 2.11: DFE tap 1.

Figure 2.12: DFE tap 2.
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Figure 2.13: DFE tap 3.

2.4.4 Conclusion and Discussion

As a result, a rapid and accurate machine learning model for DFE 3 taps
estimation given by 5 geometric channel input parameters is developed with
four regression methods, PR, FNN, SVR, and PC, that are presented to
show the low prediction error rate. Among them, SVR is the best option
to perform prediction when there is a limited number of training samples
available. FNN will eventually reach a lower error rate with a slower conver-
gence, but it can be improved for a better nonlinear model prediction with
the optimization of hidden layers and activation functions. In general, PC
is the more optimal regression method to be used in this example, as after
120 samples the predicted results are almost identical to the true simulated
results. Due to its orthonormal polynomial expansion on this problem, PC
demonstrates a strong prediction ability and could be used to perform in
sophisticated high-speed channel problems in the future.
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2.5 Implementation in Microwave Circuit

2.5.1 Introduction

Given today’s short product cycles, there is a growing need for rapid and
precise modeling methods in the development of next-generation electronic
devices. Moreover, the circuitry has become increasingly dense and com-
plex, presenting circuit designers with high-dimensional problems that often
require numerous design iterations involving sensitivity analysis and perfor-
mance optimization. Consequently, the surrogate models are preferred due to
their efficiency in optimization or direct MC analysis. This section introduces
surrogate models in addition to previous methods, constructed using a non-
parametric Gaussian Process Regression (GPR) and Partial Least-Square Re-
gression (PLSR) for comparison. An example involving a millimeter-wave fil-
ter is provided to demonstrate the strengths and weaknesses of each method.

2.5.2 Gaussian Process Regression (GPR)

In exact single-output GP regression, given a set of data D = {(x(i), y(i)), i =

1, 2, ..., N} of N pairs of d−dimensional vector-valued input x(i) ∈ Rd and
function-valued output y(i) ∈ Y ⊂ R such that:

y = f (x) + ϵ (2.17)

where ϵ ∼ N (0, σ2) is the Gaussian observation noise, GP makes prediction,
y∗, on a test point x∗ by sampling from the posterior

p (y∗|x∗,D) =
∫
θ

p (y∗|x∗,θ) p (θ| D) dθ (2.18)

where θ is the hyperparameter vector. The hyperparameter posterior is given
by Bayes’ rule

p (θ| D) = p (D| θ) p (θ)∫
θ

p (D| θ) p (θ)dθ
(2.19)

In implementations, the denominator of Equation (2.19), a.k.a the evi-
dence, is the biggest challenge. It is often a high dimensional integral and
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intractable. For exact GPs, Equation (2.19) was never calculated, because
everything was assumed Gaussian, and the analytical form of p (θ| D) [31,32]
as

p (y∗|x∗,D) = N (µ∗,Σ∗) (2.20)

where
µ∗ = Ktr

(
Krr + σ2I

)−1
y (2.20a)

Σ∗ = Ktt −Ktr

(
Krr + σ2I

)−1
Ktr (2.20b)

Ktt, Ktr and Krr are the kernel matrices whose i, j-th element is calcu-
lated by evaluating a kernel function, k (·, ·) : Rd → R, using 2 data points,
K(ij) = k

(
x(i),x(j)

)
. The subscript t stands for test data while r stands

for training data. The first and second subscript in a kernel matrix indicate
which data set the ith and jth data point come from, respectively. Popular
kernel functions can be found in [32, 33]. The marginal likelihood

p (D| θ) =
N∏
i=1

p
(
y(i)
∣∣x,θ) (2.21)

is maximized to find the hyper-parameters of the GP.

2.5.3 Partial Least-square (PLS) Regression

Partial Least-square (PLS) regression relies on the idea of principle compo-
nent analysis. Principle component regression (PCR) involves the princi-
ple component analysis (PCA) in which the input space is reduced to the
principle component space; then, an interpolation is carried out between a
few significant principle components and the output. Assume a multi-input
multi-output system, i.e. y ∈ Rq. Let

X = V P T (2.22a)
Y = UQT (2.22b)

be the principle decomposition of X ∈ RN×d and Y ∈ RN×q, V ,P ,U and Q

are of appropriate dimensions. PCR perform regression on V and U . We
can see that though V best describes inputs and U best describes outputs
as PCA was applied to both input and output, it was applied separately.

34



PLS fixes this limitation, it iteratively projects input and output onto the
most significant components but the projection happens in a leapfrog scheme
so that there is cross-information exchange between input and output while
doing projections. Formally, starting with jth column of Y , or yj, set uj = yj,
we start a loop to iteratively update the jthcolumn of V ,P ,U and Q until
they converge, i.e. stop changing within a specified threshold

pj =
XTuj∥∥XTuj

∥∥ (2.23a)

vj = Xpj (2.23b)

qj =
Y T vj∥∥Y T vj

∥∥ (2.23c)

uj = Y qj (2.23d)

where ∥·∥ is the 2-norm of a vector, then the jth principle component can be
projected out, what is left of X and Y is used to repeat the same procedure

X ← X − vjp
T
j (2.24a)

Y ← Y − ujq
T
j (2.24b)

It can be seen that the information about input and output is intertwined
thanks to Equation (2.23b) and Equation (2.23d). After L projections, we
obtain an L-component decomposition of X and Y , V ,U ∈ RN×L and
P ∈ Rd×L, Q ∈ Rq×L. Now a regression model can be created using U and
V

U = V θ (2.25)

Predictions can be obtained by

Y = UQT = V θQT = XPθQT (2.26)

2.5.4 Millimeter-Wave Filter

A 12 GHz coupled-line bandpass filter is presented as an example to illustrate
the surrogate modeling performance. There are 12 design variables, such as
lengths, widths, separations of the coupled lines, dielectric permittivity, and
tangent loss. Figure 2.14 shows the insertion loss of the filter as the change
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of design variables.

Figure 2.14: Filter insertion loss variations [12].

To quantify the insertion loss of the filter, the center frequency (y0), band-
width (y1), and shape factor (y2) are computed. Surrogate models were
developed to predict these three figures of merit (FOM). Figures 2.15 to 2.17
illustrate the training process for each FOM. Initially, most models converge
rapidly, with the exception of the PC model, which requires a larger num-
ber of samples to achieve a validation R2 score of 0.99. Secondly, models
focused on single output encounter greater difficulty in learning the shape
factor compared to the center frequency and bandwidth, as shown in Figure
2.17. PLS and SVR models require additional training samples to converge
compared to MOPLS or MOGP. As previously mentioned, MOPLS, MOGP,
and PC are multi-output models, hence a single R2 score determines their
convergence. The quick convergence of LR model suggests that despite the
problem’s high dimensionality, it is relatively simple and straightforward, as
the mapping between the design variables and insertion loss FOMs is pre-
dominantly linear.
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Figure 2.15: Center frequency as output [12].

Figure 2.16: Bandwidth as output [12].

Figure 2.17: Shape factor as output [12].
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CHAPTER 3

HIGH-SPEED LINK METHODS IN LINEAR
TIME-INVARIANT SYSTEM

3.1 Introduction
The eye diagram is a critical figure of merit for engineers that allows to
estimate the performance of high-speed links. Signal integrity (SI) and power
integrity (PI) engineers rely heavily on the eye margins of products in low-bit
error rate (BER) conditions. Conventional eye diagram estimation methods
are based on time-consuming transient simulation methods that use a pseudo-
random bit sequence (PRBS) excitation, which provides an accurate and
complete output waveform in either linear or nonlinear systems. The larger
the bit sequence, the more accurate an eye diagram is obtained at the cost of
a longer running time. To remedy lengthy bit sequence simulations, various
methods of fast and accurate eye diagram estimations have been proposed
[19,34,35], the majority of which are based on superposition and linear time-
invariant (LTI) assumptions.

There are two primary categories for characterizing the system perfor-
mance to high-speed links: the transient simulation and the statistical sim-
ulation. In transient simulation, the outcome is the entire output waveform
over time, from which the eye diagram is derived by truncating the wave-
form. However, in statistical simulation, the waveform is bypassed, and
the focus is directly on generating the eye diagram. Transient simulation
provides precise dynamic voltage and time results over a simulation period,
albeit with a lengthy runtime. Consequently, it is not feasible and time-
demanding to estimate the worst-case eye performance and anticipate the
degree of eye-opening for a low bit error rate (BER) case. For instance, if the
system acceptable BER is 10−12, the input sequence of 1012 bit is transmitted
with the expectation of only 1-bit failure. Simulating millions of bits over
time is unacceptable and a challenge for complex circuits. Therefore, people
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have been developing fast time-domain simulation methods to overcome the
timing issue of the traditional SPICE transient simulation. In [36, 37], the
voltage-in-current latency insertion method (VinC LIM) is a fast transient
circuit simulation algorithm with superior stability to simulate the waveform
in high-speed link systems. Casper et al. [19] introduced the peak distortion
analysis (PDA) method to predict the worst-case eye for a high-speed chan-
nel, utilizing the single-bit response (SBR) to determine the output for all
potential input patterns through superposition. However, the PDA method
only identifies the worst inner contour of the eye diagram. To address cases
with asymmetric rising and falling edges, the double-edge response (DER)
method [34] was proposed. This method decomposes the input data pat-
tern into rising and falling edge transitions, enabling the calculation of the
system response by superimposing shifted versions of the rising and falling
edge responses. Additionally, the concept of multiple-edge response (MER)
was introduced by Oh et al. [38] and Ren et al. [35], wherein multiple rising
and falling edges are constructed based on preceding bit patterns. Sanders
et al. [39, 40] and Casper et al. [19] introduce a novel methodology based
on a statistical method that allows fast and accurate compliance testing of
differential channels, in which the eye diagram is estimated directly from the
SBR. [18] further implements MER to statistical eye diagram directly for a
nonlinear system with advanced speed and accuracy.

This chapter begins by examining the PDA method, which utilizes the
SBR to determine the worst-case eye. Following that, it explores the bit-by-
bit simulation employing the DER to generate the complete waveform and
eye diagram. Lastly, the chapter concludes with an overview of the statistical
simulation approach, which directly generates the eye diagram.

3.2 Peak Distortion Analysis
The peak distortion analysis is introduced to determine the worst case re-
ceived eye-opening from the single-bit response in the LTI system. The
single-bit response labeled as y(t) of a system is given by

y(t) = x(t) ∗ h(t) (3.1)
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where x(t) is the single bit input to the LTI system, h(t) is the impulse re-
sponse of the channel and receiver, and symbol ∗ denotes the convolution
process. A typical single-bit response is viewed in Figure 3.1. The intersym-
bol interference (ISI) due to reflection, channel resonances, and channel loss is
represented as oscillations and extended tails in the single-bit response. This
interference can lead to distortion within the current bit due to neighboring
bits, thus the maximum distortion can be directly assessed by superposing
all ISI at multiples of the bit period. Within the cursor concept, it represents
the magnitude of a combination of pre-cursors and post-cursors, positioned
at integer multiples of the unit interval away from the main cursor. In order
to find the worst case eye-opening, the procedure splits into finding the worst
case 1, or the worst top half of the eye, and the worst case 0, or the worst
bottom half.

Figure 3.1: Single bit response.

The worst case 1 is the superposition of all negative k ̸= 0 ISI (negative
pre-cursors and post-cursors) with the single-bit response. The equation is
shown as

S1(t) = y(t) +
∞∑

k=−∞,k ̸=0

y(t− kT )|y(t−kT )<0 (3.2)

where y(t) is the single bit response, T is the bit period and k is the integer
multiples. The second term describes the total distortions that all negative
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ISI can contribute on the y(t), which has negative value, to reduce or distort
the peak response voltage level. Therefore, S1(t) is the maximum voltage
level response after negatively distorted effects. Similarly, the worst case 0
is the superposition of all positive k ̸= 0 ISI (positive pre-cursors and post-
cursors). The equation is shown as

S0(t) = y0(t) +
∞∑

k=−∞,k ̸=0

y(t− kT )|y(t−kT )>0 (3.3)

where y0(t) is the single 0 bit response, which the input sequence only has
one 0 bit. Ideally, y0(t) is symmetric to y(t) by flipping the amplitude. With
same analogy, the second term in Equation (3.3) is positive and contributes
on positive effects on level 0, thus shifting the eye bottom upwards. Then,
the worst case eye opening e(t) is the difference between the worst case 1 and
worst case 0. As shown in Figure 3.2, the blue curve is the result by applying
Equation (3.2) on the single bit response in Figure 3.1, which shows the top
boundary of the worst eye. The red curve is the result of Equation (3.3) to
show the bottom boundary of the worst eye.

Figure 3.2: The worst eye-opening.

The Equation (3.2) and Equation (3.3) represent the scenario of a jitter-
free and single channel system. If there are multiple sources of co-channel
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interference and transmitter or receiver jitter in system, more terms like
Equation (3.4) can be added into equation, where i is the number of co-
channel interference and ti is the relative sampling point of each co-channel
single bit response.

n∑
i=1

∞∑
k=−∞,k ̸=0

yi(t− kT − ti)|y(t−kT−ti)>0 (3.4)

3.3 Double-Edge-Based Bit-by-Bit Approach

3.3.1 Double Edge Response

If the transmitted signal in an LTI system stabilizes within a significantly
shorter time than a one-bit period, the voltage at the channel output can be
accurately estimated by superimposing the edge responses. To elaborate on
the concept of edge response, let’s consider the example of a rising edge re-
sponse from a zero to one transition input, as shown in Figure 3.3. When the
digital input transitions from zero to one, the output after passing through
the channel naturally rises from Vlow to Vhigh, and this rising edge output
is denoted as Vr(t). Vlow and Vhigh represent the steady-state low and high
values, respectively. Furthermore, the channel delay, denoted as D and illus-
trated in Figure 3.3, refers to the time difference between the initial voltage
point of the input and the output just before the rising edge begins during
the transition.

Similarly, when the input undergoes a transition from one to zero, the
output will eventually decrease from Vhigh to Vlow. Assuming symmetric
rising and falling edges, we define Vf (t) as the falling edge response, which
intentionally mirrors Vr(t) but in the opposite direction, ranging from −Vlow

to −Vhigh. This falling edge response is plotted in the lower part of Figure
3.4.

3.3.2 Simulation Analysis

Figure 3.4 presents the rising edge and falling edge after removing the channel
delay, and these edges will be used to superpose the output waveform based

42



Figure 3.3: Rising edge response with notations.

Figure 3.4: Rising and falling edge responses.
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on two consecutive bits from the input bit sequence. When the kth bit is 0
and the (k + 1)th bit is 1, the rising response must happen on the output
waveform between the corresponding time interval of kth and (k + 1)th bit.
The output waveform is defined when only the rising edge presents as:

y(t) =
N∑
k=1

Vr(t− kT ), (3.5)

where y(t) is the output waveform, the coefficient k represents the kth bit
position, N represents the total number of bits, and T is the time interval
of each bit. The shifted rising edge is added after the kT time position of
the output waveform. Similarly, when the kth bit is 1 and the (k+1)th bit is
0, the falling response must happen starting from the time corresponding to
the kth bit as

y(t) =
N∑
k=1

Vf (t− kT ) (3.6)

Since the Vf (t) is defined in the negative domain, adding this negative edge
will bring the previous Vhigh tail from the rising response to a zero-level tail
in the output waveform. In the cases of continuous 0 bits and 1 bits, the
output waveform will remain in its pattern without adding either a rising
response or a falling response.

3.3.3 Example

An example of edge-by-edge superposition is shown below. The input bit
pattern is “0100” and each bit takes T = 1 ns. k here will be 1 to 5 and
the transient time t is from 0 to 5 ns. The first bit has to be considered
individually first. If the first bit is 1, the initialization needs to be done to
pre-set a constant Vhigh at the first time interval for the output waveform,
which means

y(t) =

Vhigh, 0 < t ≤ T

Vlow, T < t < nT

Similarly, when the first bit is 0,

y(t) = Vlow, 0 < t < nT
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Here, in the example, the first bit is 0 so Vlow is pre-set in the first 1 ns at
output waveform, y(t) = Vlow, 0 < t ≤ 1 ns.

Following the algorithm description above, the first bit (k = 1) is 0, and
the second bit is 1, then y(t) = Vr(t − 1), shown as the blue rising pulse in
Figure 3.5. The rising edge response is filled to the output waveform starting
from 1 ns till 4 ns. The second bit (k = 2) is 1 and the third bit is 0, then
y(t) = Vr(t− 1) + Vf (t− 2), shown as falling pulse in Figure 3.5. The falling
edge response is added in from 2 ns to 4 ns. In the end, the third and fourth
bits are 0, and the output waveform from 3 ns to 4 ns is unaltered being
Vlow. When all 4 bits are considered by adding all rising and falling edges in
Figure 3.5, the final summation plot is shown as Figure 3.6.

Figure 3.5: Rising edge response at 1 ns and falling edge response at 2 ns.

An additional example of a bit sequence “101001” is illustrated in Figure
3.7. When analyzing this sequence, the output waveform includes Vf (t− 1)

upon encountering the first “10” bit sequence, adds Vr(t− 2) upon observing
the first “01” bit sequence, includes Vf (t− 3) upon encountering the second
“10” bit sequence, and adds Vr(t − 4) upon observing the second “01” bit
sequence.
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Figure 3.6: The channel response of bit sequence “0100”.

3.3.4 Eye Diagram

Once the output waveform is established, an eye diagram can be presented.
An eye diagram is a straightforward tool used in the high-speed link to eval-
uate the high-speed system performance. It is constructed by slicing the
transient signal waveform from the receiver into the size of two UIs and then
overlapping every section on top of each other. Consequently, the horizontal
axis spans two symbols in time, while the vertical axis depicts the voltage
magnitude of the receiver signal. Figure 3.8 and Figure 3.9 illustrate an eye
diagram example of a 5 Gbps 200-bit data pattern generated from the tra-
ditional transient simulation and the bit-by-bit method. The eye-opening
in the center part of the eye diagram indicates the clarity of the signal. A
larger eye opening implies more margin for timing and voltage requirements,
making it easier for the receiver to distinguish between the digital 1 and 0.
The eye height from the transient simulation is 0.324 V and the eye height
from the bit-by-bit simulation is 0.312 V. The eye width from the transient
simulation is 0.14 ns and from the bit-by-bit simulation is 0.14 ns. The run-
time for a 200-bit data pattern in edge-based bit-by-bit mode halves from
3.7 seconds to 1.8 seconds.
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Figure 3.7: The channel response of bit sequence “101001”.
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Figure 3.8: Transient eye diagram for 5 Gbps 200-bit data sequence.

Figure 3.9: Bit-by-bit eye diagram for 5 Gbps 200-bit data sequence.
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3.4 Statistical Analysis in the Linear Time-invariant
System

The statistical analysis is an advanced peak distortion analysis by taking
the probability of ISI occurring into account. In peak distortion analysis,
negative ISI values are aggregated to decrease the top of the eye diagram,
while positive ISI values are aggregated to raise the bottom of the eye. The
underlying assumption is that all potential positive or negative ISI scenarios
are accounted for simultaneously, constituting a superposition of all possibil-
ities. The resulting eye diagram, as depicted in Figure 3.2, shows two main
regions: one within the eye where errors are unlikely to occur, and another
outside the eye where errors are expected to occur. However, the statistical
analysis yields a probabilistic representation of the eye diagram, showcasing
the probability as a function of voltage and sampling time.

In calculating statistical eye, the superposition of pre-cursors and post-
cursors to form ISI is statistical. For the SBR with a finite number of cursors,
each cursor has an equal probability of being at level 1 or level 0. The
probability of each possible combination to generate ISI is then recursively
calculated using convolution. This approach accounts for the probabilistic
nature of ISI formation and enables the estimation of the statistical eye
diagram. This is given by

Zk+1(τ, t) =

{
δ(τ)+δ(τ−y(t−kT ))

2
∗ Zk(τ, t), k ̸= 0.

Zk(τ, t), k = 0.
(3.7)

where Z is recursively calculated from k = −Npost to k = Npre while Npost

is the amount of post-cursors duration in SBR and Npre the amount of pre-
cursors duration in SBR. Initial condition is Z−∞(τ, t) = δ(τ). At first glance,
this 2-dimensional probability equation is obscure to understand, but it will
be bright once knowing all the parameters and the convolution process.

First of all, δ(τ) is the delta function which represents the probability of
voltage level τ at every time step. When k is positive, y(t − kT ) is shifted
kth unit interval (UI) rightwards of y(t) and adds up the pre-cursors effects
to the origin. When k is negative, y(t − kT ) takes care of post-cursors ISI
effects into account. The first term of convolution in Equation (3.7) indeed
is two delta functions with equal probability 1/2, as there is equal chance of
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transmitting bit 0 and bit 1. δ(τ) is convolved and no voltage is changed as
transmitting bit 0. δ(τ−y(t−kT )) is convolved and the effect of transmitting
bit 1 is statistically considered. After recursive convolution, all pre-cursors
and post-cursors effects from transmitted bit 0 and bit 1 are represented by
the PDF function.

To be more specific, let us take a simple example in Figure 3.10. The main
sampling point is called t0 and there is one pre-cursor located at t−1 and
two post-cursors at t+1 and t+2. The corresponding δ function for them is
illustrated in Figure 3.11, where the x-axis is the voltage level and the y-axis
is the probability with equal probability 1/2. Explicitly, the δ functions at

Figure 3.10: Single bit response with 1 pre-cursor and 2 post-cursors.

those 4 time points are 1
2
δ(0)+ 1

2
δ(0.1), 1

2
δ(0)+ 1

2
δ(1.2), 1

2
δ(0)+ 1

2
δ(0.18) and

1
2
δ(0)+ 1

2
δ(0.15). Then, the convolution between the first two delta functions

is

(
1

2
δ(0) +

1

2
δ(0.1)) ∗ (1

2
δ(0) +

1

2
δ(1.2))

=
1

4
δ(0) +

1

4
δ(0.1) +

1

4
δ(1.2) +

1

4
δ(1.3) (3.8)

The second convolution is between Equation (3.8) and the third delta func-
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tion:

Equation(3.8) ∗ (1
2
δ(0) +

1

2
δ(0.18))

=
1

8
δ(0) +

1

8
δ(0.1) +

1

8
δ(1.2) +

1

8
δ(1.3)+

1

8
δ(0.18) +

1

8
δ(0.28) +

1

8
δ(1.38) +

1

8
δ(1.48) (3.9)

Lastly, the third convolution is performed between Equation (3.9) and the
fourth delta function that generates 24 = 16 terms.

Equation(3.9)∗(1
2
δ(0)+

1

2
δ(0.15)) =

1

16
δ(0)+

1

16
δ(0.1)+

1

16
δ(1.2)+

1

16
δ(1.3)+

1

16
δ(0.18) +

1

16
δ(0.28) +

1

16
δ(1.38) +

1

16
δ(1.48)+

1

16
δ(0.15) +

1

16
δ(0.25) +

1

16
δ(1.35) +

1

16
δ(1.45)+

1

16
δ(0.33) +

1

16
δ(0.43) +

1

16
δ(1.53) +

1

16
δ(1.63) (3.10)

Figure 3.11: Individual PDF for 4 cursors.

After taking all the convolution, the resulting PDF given the main sam-
pling time t0 is shown in Figure 3.12, described by Equation (3.10). There
are 16 delta functions due to 4 cursors in total and each of them contributes
2 voltage levels. Each probability is 1/16. In the case of N cursors, the total
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Figure 3.12: Convolution resultant PDF.

delta functions will be 2N and each δ has a magnitude of 1/N . The Equation
(3.10) shown in Figure 3.12 is Z(τ, t = t0) from Equation (3.7) when the ini-
tial sampling time is t0. Now, transferring the PDF in Figure 3.12 to voltage
versus time plot in Figure 3.13, at t0, multiple ISI voltage levels (displayed
as dots) and the probability of each dot is known.

The next step is to select a different sampling time point to t1 and then
repeat the same delta function convolution procedure. The other group of
ISI voltage levels (dots) and its probability density can be identified as shown
in Figure 3.14. The complete eye diagram has time sweeping over 2 UIs, so
the range of sampling time t0 to tn should be 2 UIs. The number n describes
the time resolution of the eye diagram. The larger the n, the more time
points with higher density would be in the eye diagram horizontal direction.
Similarly, the ISI voltage level (dots) describes the voltage resolution of the
eye diagram. More dots (2N) there are, more compact and well-defined in
the eye diagram vertical direction. In Figure 3.15, 20 time points are chosen
to sweep over the 2 UIs region of the single-bit response. For each time
point, there is one pre-cursor and two post-cursors, so the number of ISI
superpositions is 24 = 16 including the main cursor itself. The corresponding
16 ISI levels are plotted on top of the response as well. Not only do those dots
represent the ISI voltage levels, but each dot also contains the probability
density value information. If there is a z-axis out of the page, it would be the
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Figure 3.13: ISI combination at t0.

Figure 3.14: ISI combination at t1.
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magnitude of probability. From this plot, the eye shape is gradually formed
as there are more dots surrounding the top and bottom location, leaving the
center region spare and open. Figure 3.16, Figure 3.17 and Figure 3.18 show
the eye diagram when more cursors are taken into consideration and the eye
becomes much denser, as expected.

Figure 3.15: ISI combination from t0 to t20.

Figure 3.16: Eye diagram from 1 pre-cursor and 2 post-cursors.
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Figure 3.17: Eye diagram from 2 pre-cursors and 5 post-cursors.

Figure 3.18: Eye diagram from 3 pre-cursors and 7 post-cursors.
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In the statistical analysis, as shown above, the eye diagram is related to
the number of cursor selections. The number of cursor selections can be also
related to the number of bit patterns running in the transient simulation. For
example, in the case where the pulse response only has a maximum of 3 post
cursors, when all 3 cursors are selected in statistical analysis, it can represent
the situation of 23 = 8 bit patterns: 000, 001, 01, 011, 100, 101, 110, 111, send
into the transient simulation. However, in reality, the pulse response always
experiences multiple post cursors or ISI, therefore the more cursor selections
exist the more bit patterns and stressful waveforms are included. Figure
3.19 illustrates that as the number of cursors increases, both the eye width
and eye height exhibit a gradual decrease and eventual convergence. This
trend persists until the additional cursor’s influence on the ISI effect becomes
negligible. In the pulse response example in Figure 3.19, the convergence
occurs after 12 cursors. This implies that when 212 = 4096 identical bit
patterns are run, the resulting eye diagram from transient simulation (eye
width = 0.595 UI, eye height = 165.7 mV) aligns with the statistical eye
diagram.

Figure 3.19: Eye height and eye width convergence.
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CHAPTER 4

STATISTICAL HIGH-SPEED LINK
METHOD IN NONLINEAR SYSTEM

4.1 Introduction
The eye diagram is of paramount importance in high-speed link systems, as
it serves as a visual representation of the signal quality and integrity. By an-
alyzing the characteristics of the eye diagram, signal integrity (SI) engineers
can identify and diagnose various SI issues such as intersymbol interference
(ISI), crosstalk, timing violations, and amplitude distortions. During the de-
sign phase of high-speed links, engineers also use the eye diagram to validate
and verify the performance of components such as transmitters, receivers,
interconnects, and channels. This ensures that the designed system meets
the required performance criteria before production. Therefore, accurate eye
diagram estimation is the foundation of all next-step evaluations.

The transient time domain simulation approach can achieve accurate sim-
ulation results; however, the time required for simulation increases in propor-
tion to the length of the input bit sequence. For a complex system nowadays,
a standard low BER like 10−12 to 10−18 is typically required to evaluate the
performance. In the transient simulation method, such BER analysis is com-
putationally heavy with at least 1012 to 1018 input bits transmitted into the
system. To remedy lengthy bit sequence simulations, various methods of
fast and accurate eye diagram estimations have been proposed [19, 34, 35],
the majority of which are based on superposition and LTI assumptions.

The SBR [19] is widely used to estimate the worst-case eye diagram and
perform bit-by-bit convolution simulation based on LTI system assumption.
However, due to asymmetric input/output (I/O) buffers or mismatches be-
tween pull-up and pull-down drivers, the rising and falling edge responses are
different. Therefore, the double-edge response (DER) approach is introduced
in [34] with limited nonlinearity consideration. To overcome this limitation,
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the multiple-edge response (MER) [35, 38] considers the impact of previous
multiple bits on the current bit to completely cover the nonlinear effects on
the edge response. The second approach is through statistical perspective
simulation to the eye diagram directly without the system output waveform
requirement, which in general is even faster than the time-domain approach.
In [19], the concept of statistical eye diagram is first used for preliminary
estimation of an eye diagram, which does not require extensive input se-
quence in time-domain simulation, assuming the LTI system with the use of
superposition.

However, as previously stated, with the fast growth in high-speed systems
and the increasing circuit complexity over the past decades, assuming lin-
earity and using the superposition concept in high-speed signaling systems
underestimates the impact of nonlinear effects in circuits. Therefore, the
current conventional fast simulation method is no longer valid for analyzing
high-speed signaling systems with nonlinear components. To properly predict
eye diagrams with nonlinear components in a fast and efficient path, there are
several approaches [15–18, 41–46]. One approach uses the Volterra series to
decompose a nonlinear network into multiple linear systems and then applies
the peak distortion analysis to estimate the worst-case eye margin [15]. Next,
the nonlinear network is represented by the Hammerstein or Wiener models,
and then the eye diagram is still analyzed through the bit sequence transient
simulation [16], which hinders the simulation speed. In [17, 41], a matrix is
created from all combinations of nonlinear responses and a low-rank matrix
representation is found to reduce the number of nonlinear responses needed
to complete the eye diagram for nonlinear circuits and channels. However,
the O(·) time complexity to find a matrix is relatively high. In [42], the
nonlinear package system statistical eye diagram is performed by multiple
short-bit patterns running in parallel to overcome the intensive runtime, but
the amount of short-bit patterns requirement is unknown. The eye diagram
accuracy of a nonlinear buffer can also be improved by an analytically mod-
eled closed-form equation in [43] for a specific receiver. The majority uses
the advanced MER method to estimate the nonlinear system eye diagram by
linear superposition. The method in [18] proposes mth order multiple edge
responses beyond the single bit response, following the convolution approach
in [19] to calculate the statistical eye diagram. In [44–46], the statistical
convolution procedure is separated into linear and nonlinear sections to save
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up the simulation time. While these MER methods have significantly en-
hanced the precision and effectiveness of nonlinear signaling analysis, their
applicability can still be constrained by their reliance on the linear super-
position concept. In addition to the traditional methods mentioned earlier,
machine learning techniques are extensively utilized in modeling high-speed
link systems [9, 12, 13] to address the runtime limitations of full-waveform
simulations. However, it is important to note that these methods do not
directly account for the impacts of nonlinear factors.

In a brief overview of current methods, either the lengthy bit sequence
transient simulation is time-demanding or the majority of fast and efficient
methods for analyzing eye diagrams are designed for LTI systems with non-
linearity trade-off. To tackle these limitations, a new statistical model of the
nonlinear system using the Hammerstein-Wiener model, extended from [47],
utilizes probability density functions with random variable transformations
to statistical eye diagrams directly. This statistical approach offers eye di-
agram simulation in nonlinear systems a new dimension characterized by
enhanced accuracy and efficiency.

This chapter is organized as follows. Section 4.2 solves the nonlinear sys-
tem using the Wiener model and the proposed statistical estimation method
is introduced in detail. In Section 4.3, the results of the statistical eye dia-
gram prediction in various examples are verified and compared against those
obtained from transient simulation. Lastly, it concludes by summarizing the
findings and outlining potential future research directions.

4.2 Nonlinearity Modeling
As integrated circuit density and data rates continue to increase in high-speed
links, nonlinear behaviors become increasingly prominent [48]. Therefore, ac-
curate and efficient modeling of nonlinear circuits is essential. Despite the
preference for linearity in high-speed link systems, transmitters (TX) and
receivers (RX) still exhibit nonlinear behaviors, posing significant challenges
for simulation. In the simplest approach, the TX and RX system can be
treated as an LTI system. This involves applying LTI concepts directly to
the nonlinear circuitry, often by assuming weak or negligible nonlinearity.
However, the error will occur and the result will differ from the expected
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measurement result. The alternate way is through multilinear theory [49].
The nonlinear network is decomposed into multiple linear networks. More
popular approaches are done by block-oriented nonlinear models [50], which
are created using two basic building blocks: an LTI block and a static non-
linear block. There are various ways to construct the model in Figure 4.1.
The model of nonlinearity proposed here is the Wiener model derived from
the Volterra series [51]. It is chosen due to its capability to simplify the
nonlinear system into a cascaded combination of linear dynamic sections fol-
lowed by nonlinear static sections. This flexibility meets the requirements for
statistical analysis and aids in capturing the complex behavior of the system.

Figure 4.1: The different block-oriented structures, connected by LTI blocks
G(q) and S(q) and static nonlinear blocks f(·) and g(·).

4.2.1 Volterra-Wiener Model System

The Volterra-Wiener model is a mathematical framework used to describe
and analyze the behavior of nonlinear systems [52]. It extends the classi-
cal linear Wiener system model by incorporating higher-order nonlinearities
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through the use of the Volterra series. In the Wiener model, the output of a
system is expressed as a convolution of the input signal with a linear impulse
response function. However, in the Volterra-Wiener model, the system’s out-
put is described as a series of convolutions of the input signal with multiple
nonlinear impulse response functions, known as Volterra kernels. Wiener
considered representing the output, y(t), of a nonlinear system as a func-
tional series expansion of its input, u(t) [53]. Mathematically, the Volterra
series expression of the output y(t) is:

y(t) = h0 +
m∑

n=1

Hn[u(t)] (4.1)

in which

Hn[u(t)] =

∫ m

1

. . .

∫ m

1

hn(τ1, . . . , τn)

u(t− τ1) . . . u(t− τn)dτ1 . . . dτn. (4.2)

In these equations, Hn is a Volterra operator and hn(τ1, . . . , τn) is called
the Volterra kernel of the nth order model approximation. The Volterra
series expression can be also viewed as a polynomial series with memory
by introducing the input gain factor, α, so that the new system output
expression, as the Volterra-Wiener system, is then seen to be

y(t) =
m∑

n=0

αnx
n(t) = g(x(t)) (4.3)

which now is a polynomial system of degree m, represented by g(·). The
system is assumed to be stationary linear, and x(t) is the output result of a
convolution by an LTI system, represented by a transfer function

G(q) =
bm(q − z1)(q − z2) . . . (q − zm)

an(q − p1)(q − p2) . . . (q − pn)
(4.4)

where zi are the zeros and pi are the poles. Therefore, for any nonlinear
system, the goal is to recover the system representation parameters in G(q)

and the polynomial coefficients αn through the Wiener system identification
using the maximum likelihood method.

In order to estimate the unknowns, the Wiener model is defined in Figure
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Figure 4.2: The Wiener model, where the input u(t) and the output y(t)
are measurable, but not the intermediate signal x(t).

4.2. The input u(t) and the output y(t) pairs are the only known signal
and x(t) denotes the unmeasurable intermediate signal. w(t) and e(t) are
mutually independent process noise terms that are in use of estimating the
unknown parameters ϑ in the LTI block G(·) and the unknown parameters η
in the static nonlinear block g(·). For convenience, a joint parameter vector
θ is defined as

θ = [ϑT , ηT ]T (4.5)

to describe the unknown intended to be found.
The Maximum Likelihood Method (MLM) is a statistical technique used to

estimate the parameters θ of a model by maximizing the likelihood function,
based on the observation data set Yn = {y1, y2, . . . , yn} and the input data
set Un = {u1, u2, . . . , un}. The likelihood is denoted by pθ(YN):

pθ(YN) = (
1

2π
√
λeλω

)N
N∏
t=1

∫ ∞

−∞
e−

1
2
ϵ(t,θ)dx(t), (4.6)

where

ϵ(t, θ) =
1

λe

(y(t)− f(x(t), η))2 +
1

λω

(x(t)−G(q, ϑ)u(t))2, (4.7)

in which the process noise ω(t) and e(t) are assumed in Gaussian distribution
with zero means and variances λω and λe. The Maximum-Likelihood (ML)
estimate is obtained by

θ̂ = argmax
θ

pθ(YN). (4.8)

Therefore, the likelihood and its gradient are defined and the targeted θ

parameters can be calculated by the either direct gradient-based search ap-
proach or the Expectation-Maximization (EM) approach.
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4.2.2 Random Variable Transformation

Through the Volterra-Wiener model construction of the nonlinear system, the
statistical eye diagram can be identified efficiently, as the flowchart displayed
in Figure 4.3, in which u(t) is a single-bit input, y(t) is a single-bit output of
the nonlinear system, and fY (y, t) is the nonlinear statistical eye diagram to
be found. Once the LTI block has been identified, the SBR statistical analysis
is applied to first find the intermediate statistical eye diagram fX(x, t). A
polynomial function represents the static nonlinear block as

g(x) =
m∑

n=0

αnx
n, (4.9)

where t in x(·) is dropped due to the stationary system. This nonlinear
polynomial function defines the statistical relationship or stochastic trans-
formation between the input and the output of the static nonlinear block
so that the nonlinear statistical eye diagram can be calculated as fY (y, t).
Suppose X, being a random variable with the entries distributed accord-

Figure 4.3: The flowchart of the proposed method through the random
variable transformation.

ing to fX(x, t), represents the SBR output of a comprehensive LTI system
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and the input of the nonlinear system equivalently Then, y = g(x), where
g : R→ R, is the output of a nonlinear mapping from the input X. From the
transformation of the random variable [54], the PDF of y can be calculated
as

fY (y, t) =
∑
i

fX(xi, t)

|g′(xi)|
, (4.10)

where xi is the ith root of y = g(x) and g′(x) denotes the derivative of g(x).
For a monotonic function g(x), which is usually the case in the high-speed
link, the Equation (4.10) can be simplified as

fY (y, t) =
fX(x, t)

|g′(x)|
. (4.11)

Consequently, the statistical eye diagram following the nonlinear system can
be represented as fY (y, t), achieved through a one-to-one function mapping
g(x) that is either monotonic increasing or decreasing. Figure 4.4 shows
how the voltage density fX(x) of the intermediate signal x transfers to the
output voltage density fY (y) at one instant time step. After mapping all
input densities within the interval t ∈ [0, 2T ] through the static nonlinear
block, the resulting 2D PDF statistical eye diagram is obtained.

=
(
)

( )

(
)

Figure 4.4: Nonlinear transformation of a standard normal random variable.
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4.3 Validation of the Proposed Method
To validate the proposed method, three examples are given. The first one is
a theoretical Wiener model system, constructed by a high-speed channel as
the LTI block and a voltage-controlled-voltage-source (VCVS) as the static
nonlinear block. The second example is a 10nm technology Fin Field-Effect
Transistor (FinFET) differential buffer for a pair of Bunch of Wires (BoW)
physical standard [55, 56] at 32 Gbps and 64 Gbps. The last example is a
FinFET high-speed link system with a buffer receiver and a receiver with con-
tinuous time linear equalization (CTLE) and decision feedback equalization
(DFE) at 10 Gbps.

4.3.1 Mathematical Model

Figure 4.5: The mathematical model of a Wiener system.

The ideal Wiener model system is proposed in Figure 4.5 with an LTI
channel combing a nonlinear receiver. The static nonlinear part of the re-
ceiver, as representing by a nonlinear VCVS in the design, is mathematically
expressed as:

y = g(x) = x− 0.1x2 − 0.2x3 (4.12)

where x is the input of a nonlinear component in the range of [−1, 1] and y

is the output of a nonlinear component with nonlinearity in Figure 4.6.
Suppose x(t) is the channel pulse response of a single-ended input bit with

Vlow = 0V and Vhigh = 0.75V , and the intermediate pulse in the Wiener
model, shown in Figure 4.7 (a), and through the g(x), the output y(t) as
nonlinear pulse in Figure 4.7 (b) is obtained. If the direct statistical analysis
method discussed in Chapter 3.4 with the selection of 5 pre-cursors and
50 post-cursors is applied regardless of the nonlinearity, the corresponding
statistical eye diagrams from x(t) and y(t) are displayed in Figure 4.7 (c) and
(d). Figure 4.7 (d) is the statistical eye diagram by assuming the y(t) is the
output of an LTI system by given input x(t). Nonetheless, the expected eye
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Figure 4.6: Receiver nonlinearity.

diagram, derived from a pseudo-random bit sequence (PRBS) of 104 bits and
overlaying the 2-bit waveform obtained from the output of the nonlinear block
g(x), is depicted in Figure 4.8 (a). This transient eye diagram is significantly
different from the eye calculated from the direct statistical analysis applied
on y(t) nonlinear pulse in Figure 4.7 (d).

To obtain the correct statistical eye diagram or PDF of output y, the
Equation (4.11) is applied:

g′(x) = 1− 0.2x− 0.6x2

fY (y, t) =
fX(x, t)

|1− 0.2x− 0.6x2|
(4.13)

The input 2D PDF or statistical eye diagram in Figure 4.7 (c) is weighted by
g′(x) to the resulting output PDF fY (y, t), which is shown in Figure 4.8 (b).
The statistical eye diagram generated by the proposed method closely aligns
with the transient eye diagram, as observed in Figure 4.8. The eye diagram
information like eye height (EH) and eye width (EW) can be calculated
directly from the statistical information of the eye diagram. In Figure 4.8
(c), the voltage PDF is presented by central 20% mean values of one level
and zero level, and the EH is calculated from the difference between the
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Figure 4.7: The single-ended signal eye diagrams through the direct
statistical analysis.
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Figure 4.8: The comparison between the transient simulation and proposed
nonlinear statistical analysis in single-ended signal.
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inner 3σ points of the level 1 and level 0 PDF. Likewise, the EW from time
PDF, calculated by averaging the central 10% of the left crossing and right
crossing time points, in Figure 4.8 (d) is determined by measuring the interval
between the inner 3σ points.
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Figure 4.9: The differential signal eye diagrams through the direct
statistical analysis.

Now, suppose x(t) is the channel pulse response of a differential input bit
with Vlow = −0.75V and Vhigh = 0.75V shown in Figure 4.9 (a), and through
the same nonlinear system g(x), the output y(t) as nonlinear pulse in Figure
4.9 (b) is obtained. By looking at the nonlinearity effects of different voltage
levels in Figure 4.6, the higher voltage end experiences more nonlinearity than
the lower end. However, the eye in 4.9 (b) does not represent such distortion
if applying the statistical analysis directly. The eye diagram comparison in
Figure 4.10 (a) and (b) reveals greater distortion at high voltage levels and
less distortion at low levels, which are the expected and correct eye diagram
simulation results. The corresponding EH and EW are also calculated in
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Figure 4.10: The comparison between the transient simulation and
proposed nonlinear statistical analysis in the differential signal.
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Figure 4.10 (c) and (d). The eye diagram information of the mathematical
Wiener model is summarized in Table 4.1, demonstrating a close estimation
result of the statistical eye with a small deviation from the transient eye. In
terms of simulation runtime, the CPU time for statistical analysis only costs
roughly 40% for a single-ended signal and 60% for a differential signal of
the CPU runtime in SPICE transient simulation. The runtime efficiency in
statistical analysis is directly proportional to the amount of identical voltage
levels. In this instance, the single-ended signal comprises 895 voltage levels
within the range of [−100, 500] mV. Conversely, with differential signaling,
there are 1800 distinct voltage levels spanning [−800, 800] mV, doubling the
range of the single-ended signal. Consequently, the runtime is also doubled
from 2.75 seconds to 4.82 seconds.

Table 4.1: Comparison between the transient and nonlinear statistical
simulation methods in numerical Wiener model example.

Single-Ended Differential
EH (mV) EW (UI) Time (s) EH (mV) EW (UI) Time (s)

Transient 169.3159 0.6005 7.42 354.7546 0.5966 7.86
Statistical 165.6665 0.5922 2.75 344.2349 0.5928 4.82
Error -2.37% -1.38% – -2.82% -0.64% –

4.3.2 Differential FinFET Buffer

Initially, nonlinearity modeling is conducted by decomposing the buffer sys-
tem in Figure 4.11 into the Wiener model, consisting of one LTI part and one
nonlinear part. A single-bit input pulse u(t) is then applied to the buffer sys-
tem to acquire the corresponding channel output response y(t), which helps
to find unknowns in the LTI block and polynomial coefficients through the
Maximum Likelihood statistical technique. Once the LTI system is character-
ized, the intermediate pulse x(t) is readily obtained through the convolution
of u(t) and the transfer function, alongside the intermediate statistical eye
diagram fX(x, t) via direct statistical analysis. Subsequently, utilizing the
known polynomial function g(x) and applying the random variable transfor-
mation, fY (y, t)is naturally calculated.

For this test, a differential signal is transmitted to the 10 nm FinFET
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Figure 4.11: The schematic of differential FinFET buffer system.

Figure 4.12: 2.5D package model with two chiplets.

72



buffer in 32 Gbps and 64 Gbps to validate the eye diagram in the proposed
method. This buffer system consists of the high-speed chiplet-to-chiplet com-
munication links BoW standard shown in Figure 4.12 with 50 Ω characteristic
impedance and the inverters-based FinFET buffer with 50 Ω load impedance.
For 10 nm FinFET, the voltage supply is 0.75 V, so the input differential
signal has a voltage range from -0.75 V to 0.75 V. At a typical BoW transmis-
sion rate of 32 Gbps, a differential single-bit pulse is sent to the TX driver as
input, and the output response of the buffer system is received after one BoW
differential channel. This input-output pair is used for the Wiener system
identification. Then, the intermediate pulse and the polynomial expression
of the nonlinearity are identified. Through direct statistical analysis with the
choice of Npre = 5 and Npost = 50, the intermediate statistical eye diagram is
derived, and the random variable transformation is applied to get the nonlin-
ear statistical eye diagram. In comparison, a 104 PRBS waveform transient
simulation of the same setup is also performed. The transient eye diagram is
constructed from the resulting waveform to compare with the statistical eye
diagram as shown in Figure 4.13. Similarly, at the data rate of 64 Gbps, the
eye diagrams of the two methods are illustrated in Figure 4.14 with a smaller
eye-opening and constrained eye shape due to channel loss at a higher data
rate. The quantitative measurement of the eye diagram information is sum-
marized in Table 4.2 with a small discrepancy between the transient analysis
and the proposed method. The CPU time also has a 70% reduction while
maintaining a high accuracy.

Table 4.2: Comparison between the transient and nonlinear statistical
simulation methods in the differential FinFET buffer example.

32 Gbps 64 Gbps
EH (mV) EW (UI) Time (s) EH (mV) EW (UI) Time (s)

Transient 415.0030 0.8871 14.7 201.7932 0.7768 17.5
Statistical 413.8299 0.8616 4.07 199.0208 0.7723 5.31
Error -0.28% -2.87% – -1.37% -0.58% –
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Figure 4.13: The comparison between the transient simulation and proposed
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4.3.3 High-speed Link System with Rx CTLE and DFE

Equalization is crucial in high-speed link systems to mitigate the effects of
signal distortion caused by various factors such as attenuation, noise, and
frequency-dependent losses. The typical equalization used in Rx is the com-
bination of Continuous-Time Linear Equalization (CTLE) and Decision Feed-
back Equalization (DFE), a nonlinear system, primarily due to its feedback
mechanism [57]. Figure 4.15 shows the topology of this high-speed link sys-
tem with Rx CTLE and DFE, where CTLE is a differential amplifier with
RC source degeneration and CTLE is a summing amplifier with a nonlinear
finite impulse response (FIR) feedback filter. This equalization is to restore
the signal distortion of a USB 3.1 channel at 10 Gbps. There are three
eye diagrams of interest to be detected in this high-speed link system: VCH

the eye diagram at channel output, VCTLE the eye diagram after the CTLE
system, and VOUT the eye diagram after the DFE network. Therefore, 3
Wiener models are required to be identified. The differential single-bit pulse
Vin is defined with Vlow = −750mV , Vhigh = 750mV , Trise = Tfall = 35ps,
and Tpulse = 100ps with period of 10ns. The corresponding output pulse
responses are collected at VCH , VCTLE, and VOUT to form three input-output
pairs for Wiener system identifications.
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Figure 4.15: The schematic of the high-speed link system with Rx CTLE
and DFE.
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Following the proposed analysis and Wiener model decomposition, in the
first Wiener system between Vin and VCH , the intermediate pulse x(t) is de-
rived as well as the polynomial function that can map x(t) to y(t) at VCH .
In this case, 5 pre-cursors and 50 post-cursors are used to implement the
statistical analysis from x(t) to statistical eye diagram fX(x, t). Then, the
nonlinear statistical eye fY (y, t) is mapped from fX(x, t). To assess accuracy,
the transient simulation probes the output waveform at VCH using a 104 bits
PRBS. Subsequently, a transient eye diagram is generated for analysis. The
eye diagrams of the two methods and the voltage and time PDFs are shown
in Figure 4.16. The density difference along the voltage leads to color varia-
tions between two eye diagrams. Similarly, the other two Wiener models for
{Vin, VCTLE} and {Vin, VOUT} are identified and their eye diagrams compar-
isons are presented in Figure 4.17 and Figure 4.18. Table 4.3 summarized
the eye-opening information. The eye-opening results from 104 bits tran-
sient simulation are noted as Transient 1. By comparing this transient result
with the statistical result, the statistical eye height is significantly smaller
in the order of 10%. This occurs because the transmission of bits may not
adequately represent various distorted waveforms. Certain bit patterns can
exert greater stress on the high-speed link system, resulting in more dis-
tortion in the representation of the eye diagram. In this example, 104 bits
are not sufficient to cover most stressful cases. Therefore, 105 bits are sent
to the system to collect the eye diagram again. In Table 4.3, the revised
transient eye diagram outcome is labeled as Transient 2, indicating narrower
eye-opening and fewer errors when compared to the statistical eye diagram
findings. The preference for statistical analysis becomes more evident when
considering simulation runtime comparisons.

In Table 4.4, although transient analysis involves only one simulation to
obtain three results, the total CPU time required for running the proposed
statistical analysis three times remains significantly lower. The runtime in-
crease between Transient 1 and Transient 2 is exponential due to the SPICE
transient analysis nature. The CPU runtime at VCH is longer due to the
larger size in the 2D PDF voltage distribution compared to other cases. This
larger size results from the presence of more identical voltage levels between
-300 mV and 300 mV. The thickness observed in level one and level zero of
the 2D PDF serves as evidence of multiple voltage columns, in contrast to
the thinner level one and level zero observed in the eye diagram. In this

77



LL 

0.008 

0.007 

0.006 

0.005 

� 0.004 

0.003 

0.002 

0.001 

0.000 

Vertical PDF at Center Region of Eye Crossing 
Transient EH=201.7932V, Statistical EH=l99.0208V 

-400

r r r 
I 
I 
I 

.. 
\ 
\ 
\ 
\ 
I 
I 
I 
l 
l 
I 
I 

-200

-
_ 

Trans Level 1 
Trans Level 0 
Stats Level 1 
Stats Level 0 

EH 

0 
Voltage(mV) 

,'\ 
I 
I 
I 
I 
I 
I 
I 
l 
I 

200 

' 
I 
I 
I 
I 
\ 
\ 

400 

Horizontal PDF at Center Region of Eye Crossing 
Transient EW=O. 7768UI, Statistical EW=O. 7723UI 

�

- Trans Right Crossing 
10 "' 

- Trans Left Crossing I I 
I - Stats Right Crossing I 
I - Stats Left Crossing I I 
I I I I 

8 I I I I 
I I I I 
I I I I 
I I I I 

6 I I I I 
LL. I I I I 

I I I I a.. 
I I I I 

4 I I I I 
I I I I 
I I I I 
I I I I 
I I I I 

2 I I EW I I 
I I I I 
I \ I \ 

I \ I \ 
0 , � 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 
Time(UI) 

Transient Eye Diagram Statistical Eye Diagram

Vertical PDF at Center Region of Eye Crossing Horizontal PDF at Center Region of Eye Crossing

Figure 4.16: The comparison between the transient simulation and
proposed nonlinear statistical analysis of the eye diagram at VCH .
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Figure 4.17: The comparison between the transient simulation and
proposed nonlinear statistical analysis of the eye diagram at VCTLE.
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Figure 4.18: The comparison between the transient simulation and
proposed nonlinear statistical analysis of the eye diagram at VOUT .
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example, there are around 9000 voltage levels in the statistical eye diagram
at VCH , compared to about 1500 voltage levels at VCTLE and VOUT . The
CPU runtime in statistical analysis depends on the number of cursors to
the convolution and the number of identical voltage levels. In this nonlinear
high-speed link system example, the proposed method results in a maxi-
mum of 4.41% in error in eye-opening but reduces the CPU runtime from
43 minutes to 28 seconds, which verifies the efficiency and accuracy of this
algorithm.

Table 4.3: Comparison between the transient and nonlinear statistical
simulation methods in the high-speed link example.

VCH VCTLE VOUT

EH (mV) EW (UI) EH (mV) EW (UI) EH (mV) EW (UI)
Transient 1 483.1616 0.8851 165.6665 0.6005 394.2349 0.5966
Transient 2 454.6452 0.8898 143.6442 0.5999 351.4231 0.5912
Statistical 447.9806 0.8782 137.3159 0.5922 344.7546 0.5928
Error 1 -7.28% -0.78 % -17.11% -1.38% -12.55% -0.64%
Error 2 -1.47% -1.30 % -4.41% -1.28% -1.90% -0.27%

Table 4.4: Runtime comparison between the transient and nonlinear
statistical simulation methods in the high-speed link example.

VCH VCTLE VOUT

Transient 1 144 s
Transient 2 43 m 16.9 s
Statistical 16.58 s 5.53 s 5.96 s

4.4 Conclusion
This chapter introduces a novel approach for estimating statistical eye di-
agrams in nonlinear high-speed links through the Volterra-Wiener model
system identification. The method involves approximating the nonlinearity
into the LTI systems and polynomial nonlinear systems and leveraging the
knowledge of density transformation within nonlinear systems to estimate
the statistical eye diagram of the expected signal. The examples of the ideal
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nonlinearity Wiener model, the differential FinFET buffer, and the high-
speed link with nonlinear equalization are analyzed by the proposed method
to provide feasible and accurate eye diagram results. Additionally, the arti-
cle conducts transient simulations in different lengths of bits to validate the
accuracy of this approach as the comparison.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion
In this thesis, the surrogate modeling of high-speed links serves as a pivotal
method for expediting the estimation of eye diagrams, particularly employing
the polynomial chaos expansion technique. Unlike some surrogate modeling
techniques which predict eye height and eye width only [7,8], the polynomial
chaos expansion generates the whole transient waveform containing more in-
formation. Rather than training the complete bit pattern at the input as
a single surrogate model, the approach involves categorizing the input into
four groups of bits based on the last 2-bit transition states, which subse-
quently serve as training sets for four surrogate models. This classification
strategy significantly reduces the time required for solving the unknown co-
efficients within a polynomial chaos expansion matrix, owing to the reduced
matrix dimension. Subsequently, the eye diagram is reconstructed through
the superposition of the outputs from these four surrogate models.

In addition to its application in estimating waveforms and eye diagrams for
high-speed links, the polynomial chaos expansion technique provides impor-
tance in estimating tap values for decision-feedback equalization across vari-
ous channel geometries. This means that engineers can anticipate how to set
up the DFE to effectively restore compromised signals based on their knowl-
edge of the channel, all without running extensive electromagnetic solvers
and channel simulators. Similarly, in microwave filter design, this technique
offers a quicker path to estimating critical parameters like center frequency,
bandwidth, and shape factor directly, from multiple design variables such as
lengths, widths, and permittivity. The fact that these estimations converge
quickly and achieve a validation R2 score of 0.99 highlights the effectiveness
of this modeling approach in Chapter 2.
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Moreover, the necessity for periodic retraining of surrogate models high-
lights the dynamic nature of high-speed link systems. Changes or updates
within the system properties or operating conditions require re-calculation
of the surrogate models to maintain accuracy and reliability in prediction.
This iterative process underscores the importance of adaptability and respon-
siveness in modeling techniques, ensuring that the surrogate models remain
reflective of the evolving system dynamics.

In parallel, this necessity leads to the exploration of a second approach
for eye diagram estimation, employing statistical analysis. While statistical
analysis of eye diagrams has been conventionally applied to linear systems,
the incorporation of proper nonlinearity modeling can enhance the analysis
for nonlinear systems. In Chapter 3, the bit-by-bit method and direct sta-
tistical method for the linear time-invariant system are shown. In Chapter
4, by leveraging the Wiener model and random variable transformation, the
statistical approach provides insights into the probabilistic distribution of eye
diagrams, accounting for the inherent variability and uncertainties associated
with nonlinear systems. This methodological diversity enriches the analyt-
ical toolkit available to engineers, enabling a comprehensive understanding
of system behavior and performance.

The validation of statistical analysis results against transient analysis demon-
strates the robustness and accuracy of the proposed methodology. Three
examples of high-speed link systems with nonlinear conditions are presented
in Chapter 4. The close agreement between statistical and transient analysis
confirms the efficacy of the proposed statistical analysis in capturing the non-
linearity of high-speed link systems. Furthermore, the acceptable error rates
observed highlight the reliability of statistical analysis as a viable alternative
or complement to traditional transient simulation methods.

In summary, the surrogate modeling technique addresses the runtime chal-
lenges associated with transient simulation, while the nonlinear statistical
analysis method tackles nonlinearities in high-speed link systems during sta-
tistical eye diagram estimation. Both approaches have demonstrated effec-
tiveness and accuracy in this dissertation. In future work, combining the
computational efficiency of surrogate models with the probabilistic insights
provided by statistical analysis holds promise for electrical engineers. Engi-
neers could be equipped with this versatile tool to address the multifaceted
challenges posed by nonlinearities and dynamic system environments. This
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synergistic approach could not only enhance the efficiency of eye diagram
estimation but also enrich the analytical capabilities required for advancing
high-speed link technologies.

5.2 Limitations and Future Work
With all the advantages discussed above, there are still some limitations re-
maining with future development. Surrogate models, while efficient, are often
constructed based on a subset of data or a simplified representation of the
original model. This can result in inaccuracies or incomplete representations,
especially when faced with system changes. In the high-speed link example,
the load impedance is not one of the design parameters, therefore whenever
the change in it can significantly impact the accuracy of predictions made by
surrogate models. Furthermore, Polynomial Chaos Expansion models may
not fully capture all the essential nonlinear features of the original model,
leading to potential discrepancies between predictions and actual system be-
havior. To mitigate this limitation, techniques such as Hyperbolic or Sparse
Polynomial Chaos Expansion [58–60] could be explored, offering enhanced
accuracy and robustness.

Similarly, the proposed statistical analysis, while promising, presents its
own challenges. In the discussed example involving high-speed links with
DFE and CTLE, the identification of multiple Wiener models for different
voltage nodes is necessary, which means statistical eyes cannot cascade with
each other. This is because, in the dynamic system either linear or nonlinear,
the density transformation relationship is difficult to define. Therefore, this
process can be computationally intensive and time-consuming. The possible
solution is through the reverse process described in Figure 5.1. Here, the sta-
tistical eye is deconstructed back into an artificial pulse response, which is
then convolved with the LTI channel system to yield the channel-responded
pulse. Subsequently, the statistical eye at VCH can be calculated through
direct statistical analysis. By leveraging this technique, researchers can nav-
igate the complexities of nonlinear systems more effectively, paving the way
for improved modeling and analysis in various domains.

In addition to the algorithm improvement, more comparisons could be done
to prove the advantage of the proposed analysis methods. The IBIS model,
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known for its nonlinear and dynamic characteristics, has been extensively
applied in current simulations for decades. A more comprehensive analysis
would involve comparing circuit-level SPICE simulations, IBIS-AMI models,
and the proposed methodologies to show the computational efficiency and
accuracy of the proposed simulation methods. In future work concerning
nonlinearity diagnosis, once the factors contributing to nonlinear effects are
learned and integrated into the training process, the estimated eye diagram
is able to reflect the corresponding nonlinear behaviors like an asymmetrical
rising and falling time.

Figure 5.1: The illustration of reversing the statistical eye diagram to an
artificial pulse response.
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