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ABSTRACT

This thesis provides a comprehensive and robust approach to decipher an
algorithm that is only partially accurate in and not fully disclosed by the
existing industry tools - crossing point detection in an eye diagram, a fun-
damental starting point of eye parameter extraction. Edge cases where the
existing industry tools fail to deliver accurate analysis are identified, and
this paper’s algorithm is introduced and proved with various cases. Finally,
eye parameter extraction is followed and compared with existing tools for

verification.
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CHAPTER 1

INTRODUCTION

Since the invention of computers, the need for the speed of data transfer
has increased exponentially. Such need has been further driven by increasing
number of electronic devices around us, from computers and smartphones to
smartwatches and vehicles. Enhanced functionality and higher definition for
these devices urged engineers to push the limit for data rates. As engineers
started exhibiting data rates in the Gigabit level, high speed serial link and
the study of signal integrity started to play more important roles. It is es-
timated that the data rate will be pushed to the high-Gigahertz or Terabit
level, due to the high amount of data calculations required in Al models.

Characteristics of an electric channel not only introduces losses and time de-

input
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Figure 1.1: Measured input (red) and output (purple) signals through a
36-inch-long, 50€2 backplane line in FRA4.

lay, but also exhibits non-ideal behaviors such as noise and jitter. Figure 1.1
shows how the output looks like in reality even if the input is a step function.
Furthermore, due to the need of placing channels at very small distances,
signals from one channel may leak into the other channel, a phenomenon

known as crosstalk. There is a plethora of tools and techniques that are used



to assess the characteristics and the performance of digital communication
systems. One of the most widely used tool is the “Eye Diagram”.

The eye diagram is a widely used visualization tool that can help assess
the quality of the signal transitions in electrical communication signals and
channel compliance. Its advantage lies in the fact that it not only visually
illustrates the quality of bit transitions, hence providing an intuitive view
to engineers, but also outputs quantitative measures (eye parameters) for
engineers to directly compare and quantify the degree of non-idealities. Im-
perfections or the characteristics in the channel cause the received signal to
be distorted, even if the transmitter transmits a perfect square wave. The
degree of such distortions — intersymbol interference (ISI), noise, jitter, etc.
— can be assessed using an eye diagram. Eye diagram functionality is avail-
able in oscilloscopes, as well as software EDA simulation tools such as ADS,
Ansys, and Virtuoso.

Even though the eye diagram is simple to construct, extracting the eye
parameters involves an extra step — locating the crossing point. As introduced
in Chapter 2, there exist mathematical definitions for eye parameters, most
of which requires one to locate the crossing point at the 25% of the 2UI
window. By doing so, the most optimum sampling time can be decided to
be the midpoint of the two eye crossing point since it is the most “open”
part of the eye. Reflecting such consideration, eye diagrams that we see are
set with some intentional timing delay. In order to do so, we need to know
exactly at which time instant should the slicing happen. Consider different

slicing timings for a series of time domain voltage waveform:

1 ‘ ‘ : |
B HTATN A |

Figure 1.2: Different eye diagrams (column 2 and 4) formed by choosing
different slicing timings for an identical waveform.

Figure 1.2 shows different eye patterns with different slicing timings, while

the time domain voltage waveform is identical. We see circular-shifted ver-



sions of each other, depending on the time instant chosen for slicing. Since
this is within a 1-UI window, we want to place the crossing point at the cen-
ter, which would be equivalent to 25% point of the 2-UI window. By locating
where the eye crossing point is, we can effectively decide where the slicing
instant should be. The top right of Figure 1.2 would be our desired output
since the crossing point is located at 50% point of the 1-UI window (same as
25% of 2-UI) in the time axis.

In real implementation, clock data recovery (CDR) is often used to pre-
serve the sampling timing on the receiver side. However, engineers run circuit
simulations before the implementation using EDA tools and evaluate the sig-
nal integrity at different nodes. For example, ADS has as the “Eye Probe”
functionality where a user can probe to different nodes of the circuit to assess
signal integrity using eye diagrams. Electrical delay or any form of distortion
can be different, and timing recovery methods such as CDR would not be
applicable. Therefore, simulation tools require a separate algorithm to gen-
erate the eye diagram with the ability to locate the crossing point in order
to quantify the degree of signal integrity.

We as humans can simply point to where an approximate crossing point
would be, but it requires a much more complex method to find the exact
crossing point with various forms of eye shapes. Furthermore, a mathematical
definition of a crossing point needs to be established.

Aforementioned existing tools do have the ability of doing so, but the exact
method remains proprietary, with some inaccuracies in some edge cases. This
thesis aims to illustrate a robust algorithm for eye crossing point detection, a
required step for computing eye parameters. This paper involves not only a
verification of the working cases by validating and comparing eye parameters
extracted by existing tools, but also provide a robust solution that existing
tools fail to compute.

Run time consideration is another important aspect. The goal is to keep
the crossing point detection algorithm comparably faster than transient sim-
ulation run time, which scales with the size of the netlist. While a commonly
used simulator, known as simulation program with integrated circuit empha-
sis (SPICE), has a non-linear computational complexity with respect to cir-
cuit size due to its nature of methodology, there also has been newly proposed
simulation method such as latency insertion method (LIM) [1] that aims to

linearize the computational complexity with larger scale circuits. Therefore,



it is projected that the transient simulation run time will become shorter
while achieving same level of accuracy, also alluding to the importance of

optimizing the run time for this algorithm.

1.1 Outline

The thesis is organized as follows:

Chapter 2 of this thesis introduces necessary background, including the
construction of the eye diagram, mathematical definitions of eye parameters,
and non-linearities.

Chapter 3 visits some of the existing patents and technologies to finding
the eye crossing point, and some drawbacks to these existing approach. Also,
some of the previous attempts of my own made for the solution are presented,
with counter examples illustrating the lack of comprehensiveness.

Chapter 4 dives into the specific steps for the final algorithm to find the
eye crossing point.

Chapter 5 presents the result of the algorithm using various test cases.

Chapter 6 discusses the run time optimization of the algorithm.

Chapter 7 concludes the thesis.



CHAPTER 2

BACKGROUND

2.1 Construction of the eye diagram

The eye diagram is constructed by slicing the time domain signal, usually
the output of a channel, in 2 unit intervals (UI) and overlaying the rising
and falling edges of the transitions. The time domain signal is sliced by a
2-UI window that shifts by 1-UI, and the sliced portions get superposed into
a single 2-UI window. The resulting graph resembles a human eye, hence the
name “eye diagram”. This 2-Ul window represents two transitions, hence
representing 3 bits, from 000, 001, 010... to 111.

slice & -
superpose |

L L i L L L
2 00 02 04 OE 08 10 12 14 16 18 20 22

Figure 2.1: Visual illustration of how time domain signal is sliced to
construct the eye diagram.

Figure 2.1 uses a Pulse Amplitude Modulation 2-level (PAM-2; also known
as non-return-to-zero (NRZ)) signal modulation, where the low voltage rep-
resents a 0, and the high represents a 1. There also exists different signal
modulation schemes for faster data transfer, among with the most commonly
used is PAM-4. PAM-4 uses four voltage levels to represents two bits simul-
taneously. The data bits are logically represented in combinations of 00, 01,
10, or 11. It allows twice of the data speed compared to PAM-2, at the cost



Figure 2.2: Visual illustration of how 3 bit transitions are combined to
construct the eye diagram.

of higher power consumption caused by equalization to minimize BER and
high susceptibility to noise due to smaller voltage difference between adjacent
logic voltage levels. PAM-4 is widely used in optical modules such as 50G

and 500G to empower various forms of carrier networks.

Figure 2.3: A PAM-4 eye diagram, with 4 distinct voltage levels
representing 2-bit combinations — 00, 01, 11, 10.



The waveform that we wish to convert into eye diagrams is generated
using transient simulation with simulation program with integrated circuit
emphasis (SPICE), which takes a netlist that includes information about the
circuit components and their connections and solves for the desired output.
Slicing occurs after SPICE has solved for the output in order to generate the
eye diagram.

Another way that we can generate an eye diagram is by knowing the model
of the channel, for example, through a known S-parameter. If this is known,
the output generation is simplified into taking the convolution between the
inverse FFT of the channel channel and the input bit stream waveform us-
ing pseudo-random binary sequence (PRBS). The slicing methodology is the

same as above. This is illustrated in Figure 2.4 [2].

Channel model in
frequency domain

Inverse FFT

Pseudorandom .
. Convolution
bitstream

Eye diagram

Figure 2.4: Eye diagram simulation process when the channel model is
known.

2.2 Heatmap-based Eye Density Plot

While we generate the eye diagram through overlaying the sliced waveform,
engineers are often interested in a heatmap plot showing the density. While

it is almost impossible to have two sliced waveform that are perfectly identi-



cal, for instance, up to 10th decimal, EDA tools employ histogram method to
bin certain nearby waveform together. Then, bins with higher counts are dis-
played with higher temperature color to illustrate the density, as illustrated
on the right of Figure 2.5.

Figure 2.5: Eye diagram (left) and its density heatmap plot (right).

The heatmap density plot on the right better visually illustrates the distri-
butions of the waveform. For instance, the jitter probability distribution at
the crossing point can be easily visualized by looking at the density heatmap
plot on the right of Figure 2.5, while the left cannot. EDA tools, except Ca-
dence Virtuoso, have such implementation. It saves computational time by
grouping waveform into bins before plotting. This can be easily achieved by
defining a set of colors with respect to bin counts in the plt.hist2d function,
and is implemented into the eye plotting solution provided in this paper as

well.

2.3 Crossing Point Definition

Definition of a crossing point must be established in order to define our
scope of interest. While the output, the crossing point, is a single pair of
coordinates containing the timing and voltage value, there are multiple line
segments that contribute to the crossing point. It is obvious that the rising
and falling edges contribute to the crossing point, but N rising edges and
M falling edges would create NM crossing points, while we need one point
being the output. Furthermore, some edges are close enough such that they
are counted in identical bins in the histogram. We hence need to account for

such weight when calculating a suitable crossing point. Therefore, we can



define the crossing point as the arithmetic mean of all the N M crossing
points generated by N rising edges and M falling edges.

For computational simplicity, we do not necessary need to calculate every
N M crossing point, but rather calculate a single “average contour” for each
of the N rising edges and M falling edges, then calculate the crossing point
between the two average contours. For example, consider a set of linear lines,
with N rising lines defined as y = ax + b,,,n € Z and M falling lines defined
with y = ¢, — dx,n € Z. We would do crossing point-by-crossing point
calculation by solving:

ar + b, = ¢, — dx (2.1)

The resulting crossing point is calculated as:

cm_bn Cm_bn
— 7 Yam = @
a+d Y a+d

+ by (2.2)

-Tnm

The arithmetic mean of these N M crossing points can be calculated as:

1 1. cg—by+cy+by+c3+bs+ ..
xmg:(ﬁ)[mﬂmmgg...}:(E)1 L ajd 519 (2.3)
1 a..ct—by+co—by+ ... by + by + ...
ym‘ngz(H)[?/11+3/22+y33-«-] :(5)[ - . a+2d = ]+ ( - ; )
(2.4)

On the other hand, if we calculate the average contour first, we would get:

bl+b2—|— c1+co+ ...

avgeontour ising = ar + ———————, AQUVGCONLOUT fqiiing = —————— — dx
n

(2.5)

Equating the two linear equations in 2.5, we would get

o) —(by + by + ...
ffxingz(61+62+ ) — (b1 + b2+ ...) (2.6)

n(a + d)
<61+CQ+...)—(b1+b2+...) b1+b2+

n(a+d) n
We see that Equations 2.3, 2.6 and 2.4, 2.7 are equal. Figure 2.6 illustrates
a rather more general case. Top row figures are the heatmap density plots of
the bottom row figures. The middle column figure has uniform distribution of

lines, while the other figures have non-uniform distributions — meaning that



some lines are duplicates and coincide with one another, therefore shown in
deeper colors (red — falling edges, blue — rising edges). While the black dots
show all of the crossing points between every single rising edges, the red dot
is the arithmetic mean of those crossing points. Furthermore, the dashed
black lines are the average contours for each of the rising and falling edges.
We can see that the intersection of the two average contours (black dashed
line) occurs exactly at the red dot.

We can see that while the lines occupy the same Euclidian space, different
line distributions result in different arithmetic mean crossing point. There-

fore, considering the weights created by coinciding curves is important in

defining the crossing point.

Figure 2.6: Crossing point (red dot) with different line distributions in the
same Euclidian space, with their heatmap density plot on the top row.

This definition can be also extended into a multi-crossing point situation.
Figure 2.7 illustrates such case, having two distinct groups of rising edges
and two groups of falling edges, thereby creating 4 noticable crossing points.
In this case, the final crossing point that we want to calculate is identical
as the previous approach. The arithmetic mean of these 4 crossing points
is identical to a single crossing point generated by average contour of rising

and falling edges.
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Figure 2.7: Eye diagram with 4 crossing points in the black dashed circle.

2.4 Channel Distortions

This section explains some of the terminology used to describe both qualita-
tive and quantitative degree of distortions of a channel, which deforms the
shape of the eye diagram, hence posing a challenge in finding the crossing

point.

2.4.1 Inter-Symbol Interference (ISI)

Inter-Symbol Interference (ISI) is a generic term describing the spread of
energy of a symbol over into adjacent symbols, causing interference [3]. Con-
sider Figure 2.8 showing input and output waveform of a transmission line.
Cursors indicate the best positions to sample the waveform, and they are
spaced 1-UI between adjacent ones since the input bit stream would be sep-

arated by 1-UI in the time domain as well. For an ideal channel, we would

Input and Output for 2.5 GHz Pulse Input and Output for 5 GHz Pulse Input and Output for 10 GHz Pulse
100 — Input 1.00 — Input 100 — Input
075 — Output 0.75 4 — Output 0.75 1 — Output
Main-Cursor ® Main-Cursor Main-Cursor
0.50 \ ® Pre-cursor 0.50 1 ® Pre-cursor 0.50 4 ® Pre-cursor
®  Post-cursor ® Post-cursor ® Post-cursor
E 0.25 :E 0.25 1 /\ E 0.25
& o000 B 0.00 B 0.00
£ £ £
S —0.25 1 2 ~0.25 / B —0.25
Lo
—-0.50 \ —0.50 1 x —-0.50
-0.75 -0.75 / —-0.75 4
—1.00 A -1.00 4 -1.00 ad L
[ 1 2 3 4 0.0 0.5 1.0 15 2.0 0.0 0.2 0.4 0.6 0.8 10
Time [ns] Time [ns] Time [ns]

Figure 2.8: Input and output waveform of a transmission line at different
bit rates, with cursors showing ISI

want all of the pre and post cursors to be 0. However, in reality the output

11



waveform is affected by many factors such as delay, jitter, noise, impedance
mismatch, etc, thereby causing nonzero pre and post cursor values. Though
only a single pulse is illustrated in Figure 2.8, the output waveform looks
worse when multiple bits (1s and 0s) are transmitted through the channel, as
the pre and post cursors constructively or destructively interfere with adja-
cent main cursors. This can lead to inaccurate determination of the received
bit, leading to a high BER. In general, pre and post cursors have higher
values with higher bit rates as shown in the Figure, which can worsen the

eye diagram from a signal integrity perspective.

2.4.2 Jitter

While we commonly use noise to describe uncertainties in voltage, jitter is
used to describe uncertainties in the time domain. It is commonly observed
in digital transmission systems and is often the most important aspect to
consider in signal integrity. Similar to ISI, system loss, crosstalk, interference,
reflections can be sources of jitter. Jitter can be classified into two main types
— Random Jitter (RJ) and Deterministic Jitter (DJ). As the name implies,

DJ is further divided into many categories as illustrated in Figure 2.9 [4].

TJ
- Total Jitter
°
>
3
RJ DJ
Random Jitter Deterministic Jitter
PJ DDJ BUJ
Gl Periodic Jitter Data Dependent Jitter Bounded Uncorrelated Jitter
g ,//7
@
|
DCD ISI DDPWS
Duty Cycle Distortion Inter Symbol Interference Data Dependent -
Pulse Width Shrinkaae

Figure 2.9: Jitter classification and analysis level

For the sake of this paper, we focus on the types of jitter that influences
eye shapes near the crossing point — Random Jitter (RJ) and Random Jitter
(PJ).
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Random jitter is a type of jitter that can be modelled by a Gaussian
distribution with the following probability density function:

1 _(Aat—w)?

e 20° (2.8)

PDFRr;(At) =
o\ 2T
where x is the independent variable, corresponding to the amount of time
deviation, o is the RMS value, and p is the mean of the distribution.
Periodic jitter is the jitter that occurs at a fixed frequency. There are
different models for PJ. For instance, the PDF of a single sinusoidal PJ can

be modelled as:

fri(At) =

1
,—A<SAt< A (2.9)
T/ 1 — (At/A)?
When we combine all types of jitter, each jitter components are added
together. In the statistical domain, the total jitter PDF would be equal
to the convolution of each jitter component PDFs. For instance, if jitter

components contain only Gaussian RJ and sinusoidal PJ, the total jitter
PDF would be:

1 _ (At—pw)? 1

PDFTJ(At) = [—6 7] * [ﬂ-m

oV 2w
Equation 2.4.2 is visualized in Figure 2.10. In eye diagrams, dual-modal

—A<At<A (2.10)
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Figure 2.10: PDFr; (left), PDFp; (middle), PDFg; (right)

PDFr; corresponds to dual-modal rising and falling edges, which distin-
guishes the crossing point calculation compared to a regular eye with a single
peak jitter PDF. The model of PJ can be modified such that multi-modal eye
diagrams can be generated, as illustrated in Figure 2.11. It is important to

account for these kinds of eye shapes by considering different combinations
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Figure 2.11: dual-modal PDFr; (left), tri-modal PDFr; (right)

of jitter components.

2.5 Eye Parameter Definitions

While the eye diagram serves as a visualization tool to assess the quality of
the signal, there exist several “eye parameters” that quantitatively evaluate
such quality, supported by their mathematical definitions [5]. The majority
of them require the location of eye crossing points, hence the need for explo-
ration in this paper. This section covers eye parameters for PAM-2 as well
as PAM-4.

2.5.1 PAM-2 - Horizontal Parameters

Eye Width (EW)
EW = (,utg — 3% O'tQ) — (,uﬂ + 3 % O'tl). (211)

Where 1 and o are the mean and the variance of a thin horizontal strip near
the two crossing points. EW hence requires that one specify the vertical

value of the crossing point.

Jitter - Root Mean Square (RMS) and Peak-to-Peak (p-p) Jitter
refers to the time deviation from the ideal timing of the data bit. This is one
of the most important aspect in determining the quality of the digital data
signals, as it directly contributes to the BER. To quantify jitter, a “thin”

14



Two thin histograms
- Left crossing point

Right crossing point

Eye Width

Figure 2.12: Eye Width is measured between the 3¢ inner points.

horizontal strip window is applied to form a histogram. The p-p jitter is

defined as the full width of the histogram, representing the maximum margin,
and the RMS jitter is defined as the standard deviation of the histogram.

Jztterp_p = tmax of histogram — tmin of histogram

Jitt@’/’RMS = Ohistogram

Thin histogram
across
crossing point

(2.12)

(2.13)

Figure 2.13: Jitter measurements are obtained from the histogram data

near the eye crossing point.

It is important to note that it is required to locate where the eye cross-

ing point is in order to obtain these parameters, and Jitter,, can change

depending on how “thin” the horizontal strip window is chosen. EDA simu-

lation tools and oscilloscopes do not have a specific method disclosed to how

“thin” the strip should be.
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Rise Time (tyse) Rise Time refers to the mean transition time of the data

on the upward slope (20 ~ 80%) of an eye.

trise = H80% level — H20% level- (214)

Two thin histograms
- 20% on left of crossing
- 80% on right of crossing

Figure 2.14: Visual representation of t,;g.

Fall Time (tgn) Fall Time refers to the mean transition time of the data

on the downward slope (80 ~ 20%) of an eye.

trise = H20% level — H80% level- (215)

2.5.2 PAM-2 - Vertical Parameters

One Level (Levell) One Level is defined as the average value of the upper
half of 40 ~ 60% of the eye. This value represents the analog voltage value
that represents a digital “17.

Levell = Hupper half of 40 ~ 60% of the eye- (216>

Where 40 ~ 60% segment is with respect to 2-UIs. For example, if Ul = 2ns,

we would take all the “1” (upper) values between 0.8ns to 1.2ns.
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Two thin histograms

20% on right of crossing
80% on left of crossing

0% 40 - 60% 100%
| | | |

20% 80%

Figure 2.16: Visual representation of One Level. Values in the rectangle are
averaged.

Zero Level (Level0) Zero Level is defined as the average value of the
lower half of 40 ~ 60% of the eye. This value represents the analog voltage

value that represents a digital “0”.

Level0 = Hlower half of 40 ~ 60% of the eye- (217>

Where 40 ~ 60% segment is with respect to 2-Uls. For example, if Ul = 2ns,
we would take all the “0” (lower) values between 0.8ns to 1.2ns. We notice
the need of mathematically defining the threshold that differentiates upper
and lower values, of which the vertical value of the eye crossing point can be

an accurate value.
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Figure 2.17: Visual representation of Zero Level. Values in the rectangle are
averaged.

Eye Amplitude (EyeAmp)
EyeAmp = Levell — Level0 (2.18)

Eye Amplitude is the difference between One Level and Zero Level. It tells

the degree of separation between received “0”s and “17s.

Eye Height (EH) Eye Height is the difference between the inner 3¢ points

between the one and zero levels.

Eye
Height

Figure 2.18: Visual representation of Eye Height and Eye Amplitude.

EH = (Levell — 3 % 0pever1) — (Level0 + 3 % 0Level0) (2.19)

Where o refers to the variance of the vertical values between 40 ~ 60% of

the eye.
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Signal-to-Noise Ratio (SNR) Signal-to-Ratio (SNR) is a ratio of the
desired signal level to the level of the background noise plus any distortion.
High SNR values are desired in real world applications. In eye diagram

analysis, SNR is defined as:

L 1-L
SNR — evel evel( (2.20)

OLevell +o Level0

Crossing Percentage (Crossing%) Crossing Percentage tells us at what

% with respect to the eye amplitude is the eye crossing point is located.

100%

% aye
N
N \ 4
Y 4

Crossing

Crossing % —
o Point

r | %
: : n , . A
0%

Zero Level

" 40 - &0

| | | |

I I I 1
20% 80%

Figure 2.19: Visual representation of crossing percentage.

(ycrossing point L@UGZO)
EyeAmp

Crossing% = 100% = (2.21)
Crossing percentage is usually 50%, as one would often set rise time and fall
time to be identical values. However, in cases where non-linearity prevails in
the channel, the received signal’s eye diagram can have crossing percentage
way above or below 50%. Furthermore, current industry EDA tools allow
different rise and fall time, which makes the eye crossing percentage away

from 50% even if the channel has high linearity.
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2.5.3 Other Parameters

2.5.4 PAM-4 Eye Parameters

Figure 2.20: A PAM-4 Eye Diagram with eye parameters labelled

While there are various types of eye parameters for PAM-2, PAM-4 comes
with a new set of parameters similar to those of PAM-2. PAM-4 eye param-

eters are listed in Table 2.1.

Table 2.1: PAM-4 Eye Parameters

Definitions
Timid Midpoint of the maximum horizontal eye opening of the middle eye
AVinia Difference of the mean levels of the +% and -% level voltage in a
+0.025UI time window centered on Ti,iq
AVupp Difference of the mean levels of the 41 and -% level voltage in a
+0.025UI time window centered on Ti,iq
AViow Difference of the mean levels of the —% and -1 level voltage in a
+0.025UT time window centered on Ti,iq
Hnid 106 inner eye width calculated at %
Hupp 1079 inner eye width calculated at Yupp
Hiow 10~6 inner eye width calculated at Yow

2
Vimia 1076 inner eye height calculated in a £0.025UT time window centered on Tpiq

Vupp 1076 inner eye height calculated in a £0.025UI time window centered on Tyupp
Viow 1079 inner eye height calculated in a 4-0.025U1 time window centered on Tjoy

As opposed to PAM-2, PAM-4 parameters do not require one to locate the
crossing point, but rather find T,;q to be placed at the 0.5UI point. This is
because there are many crossing points occur for different level transitions.
For example, crossing point created by 00—10 and 10—00 is not the same
as the crossing created by 00—01 and 01—10 transitions.
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2.6 Pseudo-Random Binary Sequence (PRBS)

In signal integrity, we can use a single pulse response to quantify the degree of
intersymbol interference (ISI) present in a channel that we wish to evaluate.
However, a single pulse does not give us the whole picture. In practice, a
very large number of bits are transmitted through the channel and previous

bits can affect waveform shape of later bits.

12
1.0L _'
0.8 ]
0.6+
0.4
0.2-

0.0 |
1 0 0 0 0 1 0 0 0
-0-2 | | I rrr ‘ rrr | T I rrnrr ‘ rrrr ‘ rrri ‘ o

52 53 54 55 56 57 58 59 6.0
time (nsec)

Voltage (V)

Figure 2.21: Two single pulse responses with different preceding bits.

Figure 2.21 shows two single pulse responses between 5.5 5.8ns, with differ-
ent preceding starting bits. Therefore, in order to evaluate the signal integrity
of a channel, it is important to consider a larger number of bit pattern combi-
nations. The concept of Pseudo-Random Binary Sequence (PRBS) is hence
introduced to mimic different levels of ISI in a channel. PRBS generates
binary square wave patterns which can be convolved with the pulse response
directly to obtain the resulting output waveform. The PRBS can be gener-
ated in a specific pattern using linear-feedback shift register (LFSR), which
ensures there are as many “1”s as there are “0”s. An L-bit LFSR generates
PRBS of length 2F — 1 with 2171 “17s 2071 — 1 “0”s, and 257! edges (rising
and falling). L-bit LFSR takes some bits as input to an XOR gate and its
output is the next bit to be bit-shifted into the register. The least significant
bit (LSB) then becomes the output of the LFSR. The bit locations can be
described as a polynomial. As an example, Figure 2.22 illustrates a 4-bit
LFSR, which uses 3rd and 4th bit as inputs to the XOR gate. It generates
15 bits of PRBS, with 8 “1”s, 7“0”s, and 8 edges [6].

In Figure 2.21, we observed that a single pulse (0—1—0) response can
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Figure 2.22: 4-bit LFSR visual illustration.
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be different if we consider different bit combinations preceding the pulse.
Taking 4-bit LFSR as an example, Figure 2.23 illustrates one period of LFSR
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Figure 2.23: Ilustration of 4-bit LFSR outputs in the time domain.

outputs, as well as each stage’s shift register values. We can see that for every
output (i.e. the LSB of the shift register) 1 and 0, we have all possible 3-bit
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combinations that comes before the current output, thereby considering all
preceding bit combinations before the pulse. Note that “0000” doesn’t exist
since feeding it would generate only 0’s forever. The placement of the XOR
gate with specific bit locations help generate this pattern. This logic gate
structure can be mathematically described as a polynomial of z* + 23 + 1.
Table 2.2 shows LFSRs with different bit lengths:

Table 2.2: L-bit LSFR feedback polynomial and their period

L Feedback Polynomial Period (2% — 1)
4 231 15

5 a3+l 31

6 20 a1 63

7 '+ 2541 127

8 [+ a2l + 25+t +1 255

9 ¥ +a° +1 511

10 204+ 2"+ 1 1023

11 AL | 2047

It can be implied that bigger L-bit LFSR would generate more sophisti-
cated preceding bit patterns before the pulse. Commercial EDA tools such as
ADS employs 8-bit LEFSR as the default mode, though it can be user-defined

as well.

2.7 K-means Clustering Algorithm

During the steps of locating the crossing point, it is crucial to differentiate
transitions that do and do not contribute to the crossing point. For a PAM-2
eye as an example, we would have 1—0 and 0—1 transitions that do con-
tribute to the crossing point, and 1—1 and 0—0 that do not contribute to
the crossing point. Before this classification, we need to find approximate
voltage values for 1—1 and 0—0 transitions. To do so, a vector quantiza-
tion method called K-Means Clustering is an effective solution. While
Chapter 4.4 illustrates the usage of it in more detail, this section explains
the methodology behind this algorithm.

First proposed by Stuart Lloyd of Bell Labs in 1957 as part of a pulse-code

modulation (PCM) technique, the “k-means” algorithm partitions a set of
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data into k sets that minimizes the sum of squares within the cluster [7]. In

mathematical terms, it aims to find:

k
argmin 3~ 3 x - (222)

i=1 x€S;

where p; is the mean of points in S;. p, is also called a centroid. The
algorithm first begins by randomly assigning & mean points. Then, k clusters
are created by grouping every data with the nearest mean. For each cluster, a
centroid using Equation 2.22 is determined, which becomes the new “mean”.
Finally, the above process is repeated until all centroids converge.

This can be a computationally heavy algorithm if the input data is multi-
dimensional, but thankfully our scope narrows down to a single dimension
— voltage. The application of this algorithm is illustrated in more detail in
chapter 4.4
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CHAPTER 3

EXISTING METHODS AND THEIR
DRAWBACKS

Eye diagram functionality is implemented in oscilloscopes, as well as soft-
ware EDA simulation tools such as ADS, Ansys, and Virtuoso. While the
mathematical definitions are already established, the crossing point detection
algorithm remains proprietary as part of the companies’ intellectual proper-
ties. There also had been also a patent that aimed to produce this algorithm.
In this chapter, some inaccuracies of these attempts are identified for each
tool approach, as well as some initial attempts that were proposed on my

own with their drawbacks.

3.1 Current EDA Tools and Patents

3.1.1 Advanced Design System (ADS)

Advanced Design System (ADS) from Keysight is a powerful electronic de-
sign automation (EDA) software platform that provides design solution for
RF, microwave, and high-speed circuits. The “Eye Probe” tool provides eye
diagram analysis solution. In terms of its crossing point detection capability,
it had been observed that its accuracy largely depends on the eye crossing
percentage as defined in Equation 2.5.2. It provides accurate placement of
the eye at 25% of 2-UI window when the crossing percentage is near 50%,
but becomes inaccurate as the percentage deviates from 50%. In fact, in the
help page of the “Eye Probe” tool, it explicitly states that this tool “uses
automatic algorithms to detect eye crossing thresholds. If the eye is closed or
highly distorted, these automated algorithms may fail, resulting in an all-zero
output to the data display”.

Figure 3.1 depicts cases where the error occurs, even though a crossing

point clearly exists. The two figures in the left column are eye diagrams with
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Figure 3.1: Different eye diagrams with eye parameter summary table on
the right — Non-identifiable eye parameters are zeroed-out.

a relatively low bit rate of 2GHz. ADS outputs all zeros in the parameters
output, showing that it is incapable of locating the crossing point. The two
figures in the right colum are eye diagrams with higher bit rate higher than
9GHz. The top right figure at first sight looks like it has located the vertical
and horizontal eye crossing point correctly, with each parameter produced.
However, it is unable to calculate the eye height and eye width. The bottom
right has a similar issue, but with an additional problem that the eye is not
shifted correctly.

More examples with various channels and high bit rates are tested to come
to a conclusion that ADS’s algorithm attempts to find the crossing point by
firstly assuming crossing point occurs near 50% of one and zero level, then
finds mean timing value around that voltage level. This explains why in top
right of Figure 3.1 was able to place the crossing point at 25% of the 2-UI
window by considering a thin horizontal strip near 0.5V, but the bottom right
of the same figure placed the crossing point incorrectly since the preceding
ISI before the crossing point coincided with the 0.5V threshold, therefore
counting not only the crossing point but also the intersections between the
0.5V threshold as well as some of the ISI components. Furthermore, ADS
comes with auto scale issues where some values are not subtracted correctly
such that they are higher than the 2UI value. This is illustrated in the
bottom right of Figure 3.1.
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3.1.2  Ansys Circuits

Ansys is another electronic design software platform, famously known for
is 3D simulation high-frequency structure simuilator (HFSS). Ansys is also
capable of providing eye diagram in “circuits” simulator. Figure 3.2 shows
the option tab for eye plotting. While it does have buttons for automatic eye
delay and crossing amplitude, a user can also uncheck the button to manually
input any value of delay as well as any value of crossing amplitude, which

effectively changes all the eye parameters [8].

Properties q x Properties o x
Name |\/alue| UnitlEvaIual Name IVaIuel UnitlEvaIuat
Unit Interval 1 ns 1Ins Unit Interval 1 ns 1ns
Offset 0 ms Oms Offset 0 ms  Oms
Auta Delay [v Auto Delay [
Auto Compute Cross Amplitude [ Delay Value 0 ps  Ops
Auto Compute Cross Amplitude |_
Crossing Amplitude 0 my  OmY

Figure 3.2: Ansys Circuits eye probe settings tab.

Transient Voltage Plot 1 n circuitinal  ANSYS
- 2022 R2

Y(AEYEPROBE(4243).0ul) [V]

T T T T
0.00 0.J\wAEYEPROBEEZ) out) [mV] 1.00 1.25 1.75 2.00
nt

Tirne [ng]

Figure 3.3: Inaccurate eye diagram produced by Ansys Circuit for a
non-linear eye.

Ansys’ help documentation somewhat explains the logic behind their func-

tionalities, which explains what the buttons in Figure 3.2 do:

“...crossing time is calculated by creating a horizontal histogram
across a small, narrow strip at the middle of the eye. The middle
of the eye is computed as the middle of the vertical extrem-
ities of the eye i.e. the midpoint of max & min voltage values

across the complete eye diagram.”
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“...with Auto Mode “on, the eye width is calculated as the average
of the two peaks of the vertical histogram. This is shown as the
“Eye Crossing Amplitude” in the figure above. Both statistical

and minimum eye widths will be calculated at this amplitude.”

This helps explain why Ansys isn’t able to place the eye correctly in Figure
3.3, since it seems to assume crossing percentage of 50%. Also, the eye width
calculation method is slightly different from the definition in Equation 2.18.
This can be accurate if the variance within the definition window (40% - 60%
of 2UI) is small, but can become inaccurate if either the variance is high, or
if there is significant ISI such that the peaks of the vertical histogram do not

represent voltage values of digital “0” and “1”.

3.1.3 Cadence Virtuoso

Virtuoso, developed by Cadence, is a widely used simulation EDA software
for electrical engineers in RF, IC, and mixed-signal design [9]. While it also
supports eye diagram analysis, it has two critical drawbacks. First, as seen
in Figure 3.4, it requires the user to input a threshold voltage value before
plotting the eye and calculating eye parameters. This value corresponds to
the voltage value of the crossing point.

Secondly, as seen in Figure 3.5, Virtuoso only overlays the waveform in a
single color, unable to show a density plot, which is more visually straight-

forward for a user.

3.1.4 Existing Patent

An expired patent filed by Tektronix called “Algorithm for Finding the Eye
Crossing Level of a Multilevel Signal” gives us an insight into how its oscil-
loscopes employ crossing point search [10].

Figure 3.6 shows part of Tektronix’s patent. It also uses histogram ap-
proach to solve this problem. It places a thin horizontal box at multiple
voltage levels and looks for the minimum standard deviation. Then, the tim-
ing location at which the standard deviation of the horizontal histogram box
is minimum would be the crossing point. For example, top right of Figure

3.6 places a thin horizontal box (box 26) at an arbitrary location, and its
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Figure 3.4: Inaccurate eye diagram produced by Ansys Circuit for a
non-linear eye.
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Figure 3.5: Inaccurate eye diagram produced by Ansys Circuit for a
non-linear eye.

standard deviation is calculated with plot 28 showing its probability distri-
bution function. This is repeated until a minimum is found, which would
correspond to bottom right of Figure 3.6.

Though the numbers are not specifically stated, the width and height of
the thin horitonzal strip as well as its horizontal location seems to be the
most important considerations. It can be surmised that this algorithm can
be very accurate for an eye with minimal ISI and jitter, even being able
to account for non-linear or rise-fall mismatch scenarios leading to crossing

percentage deviating from 50% locations. However, crossing point detection
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Figure 3.6: Flowchart of the algorithm (left) and visual illustration (right).
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can become inaccurate for eyes with high ISI and jitter.
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Figure 3.7: Eye Diagrams with high jitter (left) and high ISI (right), with
their crossing point marked with red cross.

Consider the two eye diagrams in Figure 3.7. For the case of left figure
with high jitter, the “thin horizontal box” approach can become unstable
since the PDF can vary depending on the box’s height, width, and location.
Furthermore, for the case of right figure with high ISI, the PDF would look
different when the width horizontal box is set to different lengths. From
these scenarios, we can see that minimum o point is not always equal to the

eye crossing point.
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3.2 Self-developed Initial attempts

Before presenting the final algorithm in Chapter 3, some of the initial at-
tempts of finding an optimal solution is presented in this section, with counter
examples that invalidate their comprehensiveness.

First idea was to construct a 2D histogram to find the bin with the highest
count, since the crossing point would contain both rising and falling curves.
However, this fails for an eye with bimodal jitter such as one in Figure 3.8.
First of all, the binning method in histogram can result in different count
matrix for different bin size, hence making the output not consistent with
the waveform. Second, it is favorable that we define the crossing point to
be the average of the crossing points when there are multiple crossings, but
the counting method would not be applied correctly for this example as our

desired output would be an empty space (average of the two crossing points).

Figure 3.8: 2D density histogram of identical eye waveform, with bin size of
1000x500 (left) and 500x125 (right).

In order to resolve the second issue, another idea was to keep using the
histogram, but find a horizontal strip with longest consecutive empty count
bins. Left of Figure 3.9 shows a successful calculation of the crossing point,
with red arrow indicating the horizontal strip with longest empty bins. By
finding such strip from both left and right side of the eye diagram, multiple
crossing scenarios can be accounted for. However, as shown in the right
of Figure 77, it can fail when the ISI is significant in a way that results
in undershoots in 1 level and overshoots in 0 level, thereby impeding the
calculation accuracy.

More ideas other than the two presented above were suggested and were
faced with counter examples that revealed their comprehensiveness. Our
goal is not only to validate the existing algorithm which work very well for

“normally” shaped eye, but also account for non-ideal channels that other
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Figure 3.9: Brief illustration of the thin horizontal empty strip method.
Red arrows indicate the finally obtained crossing point boundary, with a
working case (left) and failing case (right).

existing methods are not able to achieve the crossing point detection. Broader
comprehensiveness would allow us to quantify, if so, how “bad” the channel
is without the user having to eyeball the approximate delay they need to

apply in order to proceed with eye parameter analysis.

3.3 Summary Table of Existing Methods

By comparing identical waveforms with different tools, Table 3.1 is estab-
lished as a summary. The desired goal of this paper is to present an algorithm
that can overcome some of the disadvantages or failing cases.

Table 3.1: Summary Table of Eye Diagram Tool Functionality

O =Yes A = Sometimes x = Fails

ADS Ansys Cadence Proposed
Circuits Virtuoso Algorithm
Automatic Eye Centering for
Eye with 50% Crossing A O O O
Automatic Eye Centering for
Eye with non-50% Crossing A A A O
Automatic Eye X, needs to
Parameter Calculation O O define threshold O
Uses Histogram for Eye
Parameter Calculation O O O O
Default Histogram Bin Size ‘ 456 x 321 unknown 500 x 500 user-defined
Heatmap Density Plot | O O X O
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CHAPTER 4

ALGORITHM FOR PAM-2 EYE CROSSING
POINT DETECTION

As introduced in Chapter 2, quantitative eye diagram analysis requires place-
ment of the crossing point at the 0.5 UI location. This chapter dives into the
developed algorithm of finding the eye crossing point for PAM-2 eye diagram
simulation. Figure 4.1 shows the overall process of it, with the left column
representing an overall flowchart and the right with a visual example of it.
The following sections in this chapter goes through the specifics for each of
the blocks in the flowchart and explain the reasoning behind such blocks and
code snippets to illustrate how they are realized.

It is important to consider the runtime of this algorithm, and there had
been a lot of trial-and-errors and comparison of the runtime with different
algorithms or libraries being used. While the initial attempt at construct-
ing the algorithm involved numerous external libraries, runtime optimization
over the course of research resulted in a major use of the Numpy library.
Another major decision was to only utilize the first Ul of the eye diagram.
Even though a typical eye diagram would span across 2 UI, the algorithm
is implemented with 1 UI. As illustrated in Figure 2.1, a 2-UI window is
shifted in 1-UI intervals, implying that considering the left half of the 2-UI
eye diagram is sufficient. Detailed comparisons and runtime considerations

are explained in more detail in Chapter 5.
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4.1 Input and Output Consideration

——
time Vout
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Figure 4.2: Plot of a transient simulation output (left) with actual data
that stores the plot information (right).

The eye diagram is generated from a voltage waveform in the time domain
for bit-by-bit and transient simulation mode. As illustrated in Figure 4.2,
this can be stored as (t, V) coordinate pairs which we can import into two
arrays — one for time and one for corresponding voltage. Additionally, since
the frequency is defined in PRBS generator, Ul can be obtained by taking
the inverse of the frequency. These three are the only inputs required for this

algorithm.

#start reading tzt file that contains (t, V) pairs
data = pd.read_csv(file,sep ='\s+')

voltage = data["Waveform"].to_numpy ()

time = data["time"].to_numpy()/1E-9

#converted to ns for easier analysis

While we only need the time horizontal coordinate of the crossing point
for accurate shifting, we would also need the vertical coordinate for some eye
parameter analysis such as BER and jitter. Therefore, our desired output

would be a single pair of coordinates (tying, Vzing)-

4.2 Slice Waveform at Arbitrary Location

If we know where the exact crossing point is, we can simply choose [tzing —
0.5UI, t4ing +0.5UL, 44,4+ 1.5UI, ...], then the crossing point would be located
at exactly 50% of the UI. However, that is the desired output of this algo-

rithm. Therefore, as the first step of the entire algorithm, we need to decide
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an arbitrary location for slicing location. the eye by slicing the waveform an
arbitrary location. In other words, we construct the 1-UI eye diagram by

choosing a random time point ¢, pitrary and slice the original waveform at:
slicing points = tapitrary + UL % k, where k € Z7* (4.1)

Since such slicing time point can be totally arbitrary at this stage, it is the
best to use non-negative integer intervals as slicing points — [0, UL, 2UI, 3UL...].

This can be simply achieved by the code below:

#input = t_array, output = eye_t

eye_t = [x-int(x/UI)*UI for x in t_array]

The following table illustrates an example with UI=2s. Comparing the input
and the output, we see that the output is subtracted by integer multiples
of Uls such that all elements in the output are bounded by [0, UI]. ”int”

function acts as a mathematical floor function in python.

Table 4.1: A Sample case study with Ul=2s

t_array index i ‘0 1 2 4 5 6 7 8 9 10 11 12 13 14

3
input = t_array[i] | 0 033 0.67 1 1.33 1.67 199 201 233 267 3 333 367 4 433
int(input/UI) O 0 o0 0O 0O O o0 1 1 1 1 1 1 2 2
0
1

int(input/UD*UT [0 0 0 o 0 0 2 2 2 2 2 2 4 4
output eyet |0 0.33 0.67 1.33 1.67 1.99 001 033 067 1 133 1.67 0 0.33

There are several types of eye diagrams, such as bit-by-bit, statistical, and
transient-generated. The first two methods can provide a fast and statistical
estimation of the eye diagram [11]. However, they can only be applied to
linear channels. Transient simulated eye diagrams can yield more accurate
results and can be applied to both linear and nonlinear channels at the cost
of longer simulation times.

In this chapter, we present the LIM method for pulse amplitude modu-
lation 2-level (PAM-2) eye diagram simulation. Methods for both without
and with the effect of crosstalk are introduced. Since LIM has linear compu-
tational complexity, it can be faster than MNA methods which are utilized
for transient-generated eye diagram simulation. We have compared LIM to
both transient and channel simulation in Keysight ADS, in order to test its

accuracy and speed.
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4.3 Finding Approximate Horizontal Eye Center

After a temporary eye is created, we find an approximate horizontal eye
center. For the purpose of this section, only the t;ing appros iS Obtained, and
the voltage crossing point can be neglected. This section is necessary in order
to categorize and store different transitions (00, 01, 10, 11) which is explained
in the next section.

The overall approach is: 1. Extract a voltage level assuming a crossing
percentage (Equation 2.11) of 50%, and draw a horizontal line at that level.
2. Find time values of the intersection between the eye and the horizontal
line. 3. Take the average value of the intersection time values.

Such method would help us locate an approximate location for the eye
crossing by realizing that the PRBS generator generates roughly equal num-
ber of rising and falling edges that form the eye crossing, and taking the
average of these points would give an approximate time value for the cross-
ing point. This seemingly easy task actually involves consideration of all
kinds of eye cases, as well as how the eye is formed in the previous sec-
tion. The following considerations are important for non-linear eyes where

the crossing percentage can deviate away from the assumed 50%.

4.3.1 Removing small ‘2—‘; data points

The first consideration is removing small slope data points and preserving
sharper slope data points which generally correspond to rising and falling
edges. The motivation of this approach is the realization of 1-to-1 and 0-to-0
transitions do not contribute to the intersection. This implementation can-
not perfectly remove all the same level transitions for all eye shapes, such
as an eye with sharp overshoot or undershoot during same level transitions.
Nevertheless, this reduces the total array length to operate with, which di-
rectly impacts the overall runtime. This is achieved by simply obtaining a
slope array using np.gradient function, and setting a threshold to filter out
indexes needed to be removed from the ¢ and V arrays. The following code

block achieves this:

#t = time array, V = woltage array
#compute slope value given t and V arrays

dvdt = np.absolute(np.gradient(V,t)
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voltage (V)

#find average of all slope wvalues

avg_dvdt = sum(dvdt)/len(dvdt)

idx_to_remove = set([i for i in range(len(dvdt)) if dvdt[i] < avg_dvdt])
# print (indezes_to_remove)

V = [i for j, i in enumerate(V) if j not in indexes_to_remove]

t = [i for j, i in enumerate(t) if j not in indexes_to_remove]

4.3.2 Savitzky-Golay Filter for Data Smoothing

The second consideration is for eyes with large ripples that occur near the
50% crossing level when looking for intersections. Figure 4.3 is a voltage

waveform with f = TG H z, with each vertical grid marking every UL

Original Waveform Output of 1st-Order Savgol filter

voltage (V)

22857 24286 25714 27143 28571 30000 31420 22857 24286 25714 217143 28571 30000

time {ns) time (ns)

Figure 4.3: Original 7GHz voltage waveform (left) and output after
applying Savitzky-Golay filter (right).

The red dashed horizontal line is the pre-determined threshold value as-
suming crossing percentage of 50%. Green arrows are the regular transitions
with no issues, but the red ones show minor fluctuations that result in cross-
ing the threshold line multiple times. This makes the output biased where we
take the average of the intersections. Since we are looking for an approximate
point only at this stage, some form of data smoothing technique needs to be
applied. There are several kinds of data smoothing filter, including median
filter, moving average, local regression, which all act as digital low-pass filters
that filter out sudden fluctuations in data. A technique called Savitzky-Golay
filter is chosen due to its capability of handling non-uniform-spaced data and
the slowest runtime compared to other choices.

Developed by Abraham Savitzky and Marcel J.E. Golay, the Savitzky-
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Golay filter is a digital filter that can smooth out abrupt deviations in data
[12]. This is done by taking adjacent data points in an N sized window
to find a polynomial of order K, K < N to find the fitting line with the
least squares. In the case of this paper, we are only interested in K = 1
since we only want to consider the linear information — whether the data is
rising or falling. This filter effectively ensures one crossing point with the
50% reference line for every rising or falling edges and eliminate the effect of
ripple noise in affecting the outcome of this algorithm. The required window
size N is empirically determined to be 25% of array length per UIL. The Scipy

library supports this filter and can be implemented as follows:

N = int(samp_in_1UI/4) #window stize
K=1 #fitting polynomial order
v_filtered = savgol_filter(voltage,N,K)

4.3.3 Looping Through Different Slicing Locations

The final consideration is the slicing location. Consider Figure 4.4, a transient
voltage waveform sliced at two different timings for 1-UlI eye formation. The
red dash horizontal line is obtained by calculating the midpoint of V., and
Vinin, which we wish to find the intersections with the eye. The intersections

are denoted in black boxes, and the orange star indicates the average of these

Iintersections.

Figure 4.4: Intersections with a threshold (black box) and their average
timing point (orange star) with different default eye diagram.

We can see from this example that if the rising and falling edges lie near

the center of the eye, this method is valid, but not the other case where
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they are separated. In order to overcome this caveat, the eye is circular
shifted multiple times, with each time applying the approximate crossing
point calculation. It is then subtracted by the initial shift to find the original
(unshifted) crossing point and appended to an array. The mode of these

stored crossing time values would be the final approximate crossing point.

Loop | t shift | Xing 5(31:1;2 Loop| t shift | Xing ;21111;1
&
s == 0 0*UI 0.5U1 0.5U1 [~ 5 0.5U1 0.4UT :'O-IUI
s .2.»‘ -
| 4
=) 1 0.1UI 0.6UI e 6 0.6U1 0.5UI ;%ggl
"
P~ S 2 | oz2ur | oaur |Gt =va=| 7 | o7ur | osur | AU
¥ Z - = — - - {5
-0.1UI -0.1U1
£ & === 3 0.3UI 0.20I | _ ookl 8 0.7UI 0.6UI
S ~oout |- J \ -m
e . wt-m?:.._;;z_-‘ - -
S . - ol
| 4 &
- 4 | 04Ul | 03Ul :'%lg%llm e | o | osur| oeur | -0.2UL
o ===

10

11

Figure 4.5: Default-sliced eye diagams with different offsets to find the
approximate horizontal crossing point.

A code snippet of the loop would look something like this:

iterate = 11
final_approx_t = []
for i in range(iterate):
time_shifted = time + UI/iteratex*i
#subtract UI/iterate*t to cancel out the offset applied above
approx_t = approx_crossing(time_shifted, voltage, UI) - UI/iteratexi
if (approx_t < 0):
approx_t += UI
final_approx_t.append(approx_t/UI)
final_approx_t = np.round(final_approx_t, 2)

approx_xing = mode(final_approx_t)

The function “approx_crossing” would look like:
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def approx_crossing(t, v, UI):
#vertical shift such that the red dashed line is at O
threshold = sum(voltage)/len(voltage)
v_shift = v - threshold
#find indexes of zero crossing
xing_idx = np.where(np.sign(v_shift[:-1]) !=np.sign(v_shift[1:])) [0]+1
#get time wvalues at those indexes
resultarray = np.take(t, xing_idx)
#1f there are multiple crossings within 1UI, take the average
approx_xing = sum(resultarray)/len(resultarray)

return approx_xing

At the end of this block, the time array is shifted such that the calculated

approximate center is placed at 0.5UI.

1 {t = t - (approx_xing*UI - 0.5%UI)

4.4 Classifying Transitions

Now that the eye crossing point is “somewhat” centered, we can classify the
eye into different transitions. Since a PAM-2 eye with 1-UI window encodes
transitions between two bits, we would have 22 = 4 transitions — 00, 01,
10, 11. In general, a PAM-N eye would encode 2V transitions. Of these
transitions, only 01 and 10 are of our interest. This is simply achieved by
looking at each 1-UI slicing window and comparing first and last data point
to determine a rising or falling edge. In fact, evaluating the sign of the
subtraction between first and last data point of the voltage value is more
accurate and more computationally efficient than obtaining average of the
gradient.

In this process, we would require a threshold voltage level to differentiate
between rising/falling eye waveforms that contribute to the crossing point and
ones that do not. Consider Figure 4.6 where only the 11 and 00 transitions
are plotted. The red lines indicate a “falling” edge if we only consider the
difference between the first and last voltage value, and vice versa for the
blue lines. However, none of these lines correspond to a real transition that
contributes to the eye crossing. Hence, we require an additional condition

that the lines must cross a certain threshold.
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Figure 4.6: 1—1 and 0—0 transitions that are “rising” (blue) and “falling”
(red) due to initial definition.

In order to determine the threshold, we need to compute an approximate
“1” and “0” voltage level and calculate the average. This step is similar to
Section 3.1 where an approximate center is calculated in that we only need
approximate values of the two voltage levels to determine the threshold. This
step considers eyes with overshoots and undershoots under presence of non-
linearity, where there could be significantly higher amplitude of overshoots
on the “1” level than the lower amplitude of undershoots on the “0” level,
and therefore simply taking the midpoint between the maximum and the
minimum voltage value would not be a holistic approach.

To find the voltage values for 1—1 and 0—0 transitions, the k-means al-
gorithm introduced in chapter 2.7 is used. We simply let k£ = 2 and find the
two centroids using this algorithm, which would each correspond to 1—1 and
0—0 transitions. This comes from the observation that identical bit transi-
tions have smaller changes in amplitude and different bit transitions are more
spread out since the voltage level needs to jump from one to another. The
amplitude would be the distance that the algorithm attempts to minimize.
With enough number of bits, the PRBS sequence generates enough number
of data points to determine accurate approximate voltage values for logic 1
and 0.

Figure 4.7 illustrates four eye diagrams with different shapes, with its
voltage histogram plotted on their right. The two red line in the histogram
plot shows the computed centroid. It can be seen that regardless of how
messy the eye is or whether non-linearity is present or not, the k-means
algorithm is able to locate two centroids that best represent voltage values
for 1—1 and 0—0 transitions. K-means clustering is well implemented in

scikit-learn, an open-source machine learning library that is part of Scipy.
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Figure 4.7: Visual illustration of applying k-means clustering. The red
horizontal lines indicate the two calculated centroids, approximating
voltage values for logic 1 and 0.

The following code achieves this:

from sklearn.cluster import KMeans

cluster = 2 #define number of clusters

model = KMeans(n_clusters=cluster, random_state=0, n_init='auto')
kmeans = model.fit(voltage.reshape(-1,1))

centroids = kmeans.cluster_centers_ #y

Vlevel = np.sort(centroids.flatten()) #low to high

threshold_1, threshold_0 = Vlevel[-1], Vlevel[O]

Now we can shift the focus to extracting the desired transitions — rising
and falling edges that contribute to the crossing point. We first take the
midpoint of the two obtained centroids, which will serve as a threshold value.
Waveforms that only intersect with this threshold line will be different bit
transitions, and whether the waveform is a rising or falling edge can be
determined by looking at the start and end of the data within the 1-UI sliced

window.

ThT’eshOld — l'l'levell _;— /’l’levelo (42)

The following code considers a 1-UIl window waveform and extracts rising
or falling edges if it crosses the threshold. The output is stored as a single
nested array with each array element storing an array of data within 1-UI

window if the condition is met.

def eye_risefall_only(t, v, UI, centroid_1, centroid_0):
threshold = (centroid_1+centroid_0)/2
n=20

result_t,result_v, append_t,append_v = [1,[1,[1,[]
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for i in range(len(t)):
if (n*UI <= t[i] <= (n+1)*UI):
append_t.append(t[i] - (n*UI))
append_v.append(v[i])
else:
#0->1 transtition
if(
(append_v[0] < threshold and append_v[-1] > threshold)
or
(append_v[0] > threshold and append_v[-1] < threshold)):
result_t.append(append_t)
result_v.append(append_v)
else:
v_11and00. append (append_v)
append_t,append_v = [],[]
append_t.append(t[i] - (n+1)*UI)
append_v.append (v[i])

n = nt+l

return result_t, result_v, v_11and00

Note that the code doesn’t yet distinguish between rising and falling edges,
but rather first categorizes into different bit transitions (1—1, 0—0) and same
bit transitions (1—0 and 0—1). With enough bits simulated with the PRBS
generator, we can let the new crossing threshold to be the average of the
same bit transition voltage array. From the different bit transitions, and
with the new threshold line established, we can differentiate into rising or

falling edges. The following code achieves this:

for i in range(len(result_t)):
if(result_v[i] [-1] - result_v[i][0] >= O
and result_v[i] [0]<new_threshold
and result_v[i] [-1]>new_threshold):
rising_t.append(append_t) #0->1 transitions
rising_v.append(append_v)
elif(result_v[i] [-1] - result_v[i][0] <= O
and result_v[i] [0]>new_threshold
and result_v[i] [-1]<new_threshold):
falling_t.append(append_t) #1->0 transitions
falling_v.append(append_v)
else:

continue
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4.5 Finding Average Contour

Now the rising and falling waveforms are stored into two different arrays. A
superficial approach at this step is to find every single crossing point between
all of the rising and falling waveforms and take the average, but this entails
two major flaws. First, ripples in waveforms create intersections between
multiple rising (or falling) edges, which are not related to the crossing point
at all. Second, given N UI of total simulation time, there would be approx-
imately % waveforms for each of the rising and falling edges, meaning that
there will be at least Jf—g crossing point calculations that need to be done,
which not only is computationally expensive but also increases the runtime
exponentially. To resolve such issues, the proposed algorithm computes one
weighted mean waveform for each of the rising and falling edges, and the
only one crossing point is calculated. In the case of multiple crossing points
scenario due to multi-modal jitter PDF, it outputs the mean of the crossing
points.

In order to calculate the average contour, the time domain needs to be
aligned for every Ul window, meaning that the waveform data should be
stored in uniform time step. One way to do it is to use the conventional
histogram approach by categorizing data into fixed-width bins such that the
average point for every single vertical bin can be calculated. The transient
simulation in many EDA tools allows users to define a maximum, minimum,
or fixed time step. For fixed time step, smaller time steps have higher preci-
sion in the expense of longer simulation time, and vice versa for larger time
steps. A most common approach is to set a lower or upper bound for time
step size such that runtime can be minimized while maintaining a high pre-
cision. When a fixed time step is used, all data points are aligned vertically,
then the average contour can be easily calculated. On the other hand, for
the case of non-uniform time step, it requires an extra step for calculation.

When dealing with non-uniform time step, the conventional histogram
must be used to bin the unequally-spaced data into equally-sized vertical
bins. However, the problem occurs when different number of data falls into
different bins. For example, it is possible for non-uniform data to have 3 data
points in one vertical bin and only 1 data point in a different bin. When the
average is calculated in this way, the average contour results in erratic spikes

that hinders us from finding the final crossing point. Figure 4.8 depicts such
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Figure 4.8: Average contour (black) calculated with non-uniform time step
edges. Green arrows point to the intersection between the two black curves.

problem, where the crossing between rising and falling average contours is
marked with green arrows. The left figure depicts a small distortion due to
the spikes, and the right figure depicts a relatively bigger distortion where the
erratic spikes make unwanted intersection between the rising and the falling
edge.

This can be mitigated by re-interpolating the waveform data to have uni-
form spacing. Since the final purpose of the algorithm is to display the eye
diagram heat map, of which its resolution can be user-defined by the vertical
and horizontal bin number, we can use the horizontal bin width as the new
uniform time step to be re-interpolated. In most cases where the horizontal
bin width is larger than the largest step size in a transient simulation, size
of arrays can be reduced and hence make the calculations less computation-
ally expensive. Using such method, Figure 4.8 can be refined to Figure 4.9
such that now rising and falling edges are evenly spaced, hence resulting in

a smooth average contour.

Figure 4.9: Average contour (black) calculated with uniform time step
edges.
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The Scipy.interpolate library’s interpld implements this using the follow-

ing logic:

1. Define an equally spaced time array of size binx, where binx is the

number of bins defined for eye plotting.
2. For each element t; and v; in the original time and voltage array, do:

(a) Find at which equally spaced time interval [tiow, thigh] ¢ belongs
to.
(b) Linearly interpolate using (¢;, v;) and (t;11, vi1+1) to find the voltage

tlow+thigh

Upew Value at t = 5

3. Remove duplicate voltage data in the same time interval

The following code is implemented for interpolation:

from scipy.interpolate import interpld
def interpolation_1d(t,v,UI,eyebin_x):
evenspaced_v = []
newt = np.linspace(0, UI, eyebin_x+1)
for i in range(len(t)):
f = interpld(t[i], v[i], kind='linear', fill_value="extrapolate")
newv = f(newt)
evenspaced_v.append (newv)
#find average contour

avg_contour = np.array(evenspaced_v).sum(axis=0) / len(evenspaced_v)

return newt, avg_contour, evenspaced_v

4.6 Computing Final Crossing Point

Now only two curves, the average contour for rising and falling edges, remain.
The intersection would be the final crossing point that we have been looking
for. Given two lines L;, defined by two points (z1,y1), (z2,92), and Lo,
defined by two points (x3,ys), (z4,y4), we can compute the crossing point
P,, P, if Ly and Ly intersect, by [13]:
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T Y| |1 1 xr oyl |y 1
T Yo| |r2 1 T ya| (Y2 1
r3 y3| |r3 1 r3 ys| |yz 1
Ty Ys| |ra 1 Ty Ya| |Ya 1
P, = Py = (4.3)
xy 1)y 1 1 1| |y 1
) 1 Y2 1 i) 1 Y2 1
T3 1 Ys 1 T3 1 Ys 1
Ty 1 Ya 1 Ty 1 Ya 1

Expanding the determinants to obtain the equivalent expression:

(T1y2 — y172) (w3 — T4) — (21 — T2) (V3ys — Y374)
(21— 22) (Y3 — ya) — (1 — y2) (23 — 4)

P, = (4.4)

(l‘1y2 - y1x2) (?/3 - y4) - (y1 - yz) (m3y4 — y3$4)
(x1 — @) (y3 — ya) — (y1 — y2) (w3 — 24) (4.5)

Since our average contour array is evenly spaced, r; = x3 and Ty = x4.

P, =

Then Equations 4.4 and 4.5 simplifies to:

Ar =21 — 29 =23 — 24 (4.6)

A _ _ _ _
p, = T(21Y2 — Y122 — T3ya + Y3T4) _ T1Y2 — Y1%2 — T3Ys + Y3Tg (4.7)

Ax(ys — ya — y1 + 12) Ys —Ya — Y1+ 4o
Py _ ($1y2 - 91952) (93 - y4) - (y1 - y2) (x3y4 - y3x4) (4.8)
Az(ys —ys — 11 + y2)

It is important to note that Equations 4.4 and 4.5 can be used only once

while looping through every adjacent points for each of the rising and falling
data since there should be only one intersection. Furthermore, we can reduce
computational complexity by realizing that since the time arrays of the rising
and falling average contours are already uniformly-spaced, hence Az can
be easily obtained. Therefore, it is sufficient to only compare whether or
not an overlap exists between y intervals of the two adjacent data points.
The calculations using Equations 4.4 and 4.5 are only triggered when an
overlap exist between intervals [y;, y2| and [ys, y4]. Following code describes

the overall process:
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def intersection(xl, yl, x2, y2):

final_x, final_y = [], []

for i in range(len(x1)-1):

#account for rising and falling edge cases

min([y1[i], y1[i+1]11)
yl_max = max([y1[i], y1[i+1]])
min([y2[i], y2[i+111)
y2_max = max([y2[i], y2[i+1]1]1)

yl_min

y2_min

#if intervals overlap

if ((y2_min <= y1[i] <= y2_max) or
(y2_min <= y1[i+1] <= y2_max) or
(yl_min <= y2[i] <= yl_max) or
(yl_min <= y2[i+1] <= yl1_max)

):

t1, t3 = x1[i], x2[i]

t2, t4 = x1[i+1], x2[i+1]
vl, v2 = y1[i], y1[i+1]
v3, v4 = y2[i], y2[i+1]

A = t1*v2 - v1xt2

B = t3*v4 - v3*t4d

denom = (t1-t2)*(v3-v4)-(v1-v2)*(t3-t4)
#calculate crossing points

x_xing = (A*(t3-t4)-(t1-t2)*B)/denom
y_xing = (A*(v3-v4)-(v1-v2)+*B)/denom

else: continue

return final_x, final_y

4.7 Output and Plotting Shifted Eye

The output is a single pair of crossing point tyne and vyne. Noting that
an approximate center was used to first shift the eye to classify waveforms
into different transition categories, we need to cancel out the initial offset
(horizontal only) as well in order to compute the final crossing point. The
code for the crossing point algorithm is concluded by outputting fying, final

and Uxing, final-

{return final_x+(approx_xing - 0.5%UI), final_y

The algorithm concludes at this point. fying, final Would tell us the amount

of shift required in order to place the crossing point at 0.5UI location, and
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Uxing, final WOUld tell us the vertical crossing value, which would be the ref-
erence point for horizontal eye parameter calculations introduced in chapter
2.5.1. After the shift is applied, we can simply apply the slicing introduced
in chapter 4.2, and expand it into 2UI window to complete the eye diagram
plotting.

Though irrelevant to the eye crossing point itself, we also wish to return
the rising and falling edges separately, for two important eye parameters —
Rise Time (t;ise) and Fall Time (tgy) as defined in Equation 2.14 and 2.15.
We can simply return the two outputs from section 4.4, which would be time
and voltage arrays for rising and falling edges. This can greatly simplify eye

parameter calculations at later stages.
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CHAPTER 5

VERIFICATION

The validity of the algorithm is presented in two main ways. First, the eye
crossing detection capability is tested. Second, eye parameters are calculated.
Both of them are directly compared with EDA tools including ADS, Ansys
Circuit, and Cadence Virtuoso. However, direct comparison is only possi-
ble for normal eyes (with crossing percentage = 50%). For abnormal eyes
(with high ISI/jitter/different crossing percentage), only the obtained result
is presented. However, calculations from the EDA tools are also presented

to provide points to their inaccuracy.

5.1 Test Cases

There is an infinite set of combinations that can result in infinitely many
eye shapes, hence it is impossible to fully assess the algorithm, but we can
generate distinguishable cases with different eye diagram shapes to assess it
holistically.

To illustrate the validity, different waveforms with distinct eye shapes are
used to generate the shifted eye diagram. This is achieved by using different
kinds of channel to simulate and form the eye diagram. Ideal channels are
chosen to generate normal eye diagrams, and non-ideal channels are chosen
to generate eye diagrams with high ISI, jitter, or any distortions that make
the eye diagrams “messy” in order to account for extreme cases.

The following is a list of various eye shape scenarios, accounting for numer-
ous kinds of distortions such as ISI and jitter caused by various reasons such
as input mismatch, channel loss, and non-linearity. Note that the shapes of
eye diagrams are more important than how the distortion is introduced in

the channel.
1. Overshoots / Undershoots in 1 Level / 0 Level

o1



2. Single-modal / Multi-modal Jitter PDF
3. Different Crossing Percentage (50%, < 50%, > 50%)

4. Fast / Slow Rise and Fall Time

Though many more examples are tested, 21 test waveforms are listed in this
paper. some of them serve as a verification that is comparable with EDA
tools — meaning that EDA tools are also able to deliver accurate crossing
point detection. Others serve as a verification that some or all EDA tools
cannot acheive accurate crossing point detection, thereby illustrating the
comprehensiveness of the proposed algorithm.

Furthermore, since we initially assume slicing at integer UI locations, it
is needed account for different default slicing locations to prove that the al-
gorithm can shift the eye correctly regardless of its default slicing location.
This can be achieved by applying some offset to the waveform before start-
ing the algorithm, which would effectively generate default (unshifted) eye
diagrams as shown previously in Figure 1.2. In this section, the test bench is
set up such that the offset is equal to % of UI, meaning that each waveform
generates 10 test cases with 0.1UI, 0.2UI, ... amount of time delays to test
the algorithm. Figures below list all the test cases before shifting, with each
case corresponding to 10 cases with different offsets, and shapes labeled ac-
cording to the list above. The eye diagrams are formed with default slicing —
at integer multiples of UL. With 21 test waveforms, it would amount to 210

test cases.
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Test
Case

Eye Density Plot
(before shifting)

Eye Shape Description

Amplitude
Variations

Jitter /
Jitter PDF

Crossing

Percentage £

Fall Time

Degree of
ISI

-

None

Small Jitter
/
Single-
modal

Inter-

o,
B mediate

Inter-
mediate

None

None

Small Jitter
!
Multi-
modal (2)

Inter-

0,
50% mediate

Inter-
mediate

None

None

Inter-
mediate
Jitter
/
Single-
modal

Inter-

30% mediate

Inter-
mediate

None

1 Level
Overshoot,
0 Level
Undershoot

Inter-
mediate
Jitter
/
Multi-
maodal (2)

Inter-

0,
30% mediate

Inter-
mediate

Small

None

Inter-
mediate
Jitter
/
Single-
modal

50% Slow

Slow

Small

None

High
Jitter
!
Single-
modal

50% Slow

Slow

Inter-
mediate

None

High
Jitter
/
Single-
modal

50% Slow

Slow

Inter-
mediate

None

Inter-
mediate
Jitter
/
Single-
modal

Inter-

o,
0% mediate

Inter-
mediate

Small

Figure 5.1: Test Case Table
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Test

Eye Shape Description

Case Eye Density Plot
(before shifting) Amplitude Jitter / Crossing : ; . Degree of
4 Variations | Jitter PDF | Percentage ] e AL ISI
T A -
T 1 Level Small Jitter
Overshoot, / B
9 | 0 Level Single- 50% Fast Fast None
..... ~mnit ftnn e | Undershoot modal
y Large
Periodic
10 None J“:"’ 50% Fast Fast Small
il Multi-
modal
o4 | Level | Small Jitter
\ Undershoot ! 2
W ] < [t}
11 b 0 Level Single- 50% Fast Fast High
P Overshoot modal
1 & 0 Level | Small Jitter
v Undershoot ! - :
12 - & Single- 50% Fast Fast High
Owershoot, modal
A 7“ =l | el | Sl e
\Y, Undershoot, / i
i < 50%
13 ’\ 0 Level Single- 50% Fast Fast High
V. _"‘-L Overshoot modal
1 Level | Small Jitter
Undershoot ! :
* ¥ < 50%
14 R Single- 50% Fast Fast High
Overshoot modal
1 Level | Small Jitter
Overshoot, ! " Inter- Inter- :
= 0 Level Single- 0% mediate mediate High
Undershoot modal
1 & 0 Level | Small Jitter
Undershoot / Inter- Inter- 5
7 > 50°% : v
19 & Single- W4 mediate mediate High
Owershoot, modal

Figure 5.2: Test Case Table (continued)
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Test
Case

Eye Density Plot
(before shifting)

Eye Shape Description

Amplitude
Variations

Jitter /
Jitter PDF

Crossing

Percentage "

Fall Time

Degree of
ISI

17

None

Inter-
mediate
Jitter
/
Single-
modal

Inter-

0,
>30% mediate

Inter-
mediate

Inter-
mediate

18

1 & 0 Level
Undershoot
&
Overshoot,

Inter-
mediate
Jitter
/
Single-
modal

50% Slow

Slow

High

19

0 Level
Undershoot

Inter-
mediate
Jitter
/
Single-
modal

Inter-

[t}
>50% mediate

Inter-
mediate

Inter-
mediate

20

None

High
Jitter
/
Single-
modal

50% Fast

Fast

Inter-
mediate

21

None

High
Jitter
!
Single-
modal

50% Fast

Fast

Inter-
mediate

Figure 5.3: Test Case Table (continued).
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5.2 Verification of the Eye Crossing Point Detection

With the test cases established in section 5.1, eye crossing point detection
algorithm is applied and shifted such that the eye crossing point is at 50%
of the 1-UI window of the eye diagram. The crossing point is marked with a

red cross in the table below.

Test Test
Case Default Eye Shifted Eye Case Default Eye Shifted Eye
# #
e — D f_r"'_'_' ¥ A =Sy — _.m'_._lw: =S
w w 7
1 \ & 11 ‘ 5
\ +
\. e e s R 4 - - T - — -ul_'.\, s s
/i NN \ -
/ 4 \ I A A L W A S
2 \ y / + \ 12 1 -‘l'_ !
av Y o | e
L /

Figure 5.4: Eye Crossing Point Detection Verification Table.
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Test Test
Case Default Eye Shifted Eye Case Default Eye Shifted Eye
# #
7 17
8 18
Sl A <A
‘ﬁf! g \ .
9 i + 19
s s, S—— F O
g U ]
10 + 20
21

Figure 5.5: Eye Crossing Point Detection Verification Table (continued).
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5.3 Verification of Eye Parameters

As eye parameters have their established mathematical definitions, we can
directly compare the calculated eye parameters from the proposed algorithm
with those from current EDA tools. It is achieved by inputting identical
discrete data waveform into different EDA tools. This can be done by ex-
tracting the waveform that we wish to generate the eye diagram from ADS
and set it as a piecewise linear voltage waveform in other tools, which then
they can generate the eye diagram and eye parameters. This is illustrated in

Figure 5.6.
s ADS
ADSS (ilrcunt \ + Transient ——— % ADS Eye Probe J‘
Sl ‘ Simulation
B Ansys - PieceWise-Linear (PWL)
p 4 run tran sim

/

Eye Diagram and Parameters

Eye Diagram and Parameters

\ Virtuoso - PieceWise-Linear (PWL)
run tran sim
\{ Proposed Algorithm ]»

Figure 5.6: Eye Parameter Comparison Methodology.

Eye Diagram and Parameters

Eye Diagram and Parameters

Compare

Table 5.1 summarizes the eye crossing point detection accuracy for the
proposed algorithm and the industry EDA tools, including ADS, Ansys, and
Virtuoso. Ones labelled with a red x are the cases that failed to find the
accurate crossing point. These ones are marked in red in Table 5.2, 5.3, 5.4,

5.5, 5.6 as well.
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Table 5.1: Comparison table for correct eye shifting

Correct Eye Shifting
test case | paper | ADS Ansys Virtuoso

1 O O X O
2 O O X X
3 O O O O
4 O O X O
5 O O O O
6 O O O O
7 O O O O
8 O O O O
9 O O O O
10 O X X O
11 O X O O
12 O < O X
13 O < X X
14 O O X X
15 O O X X
16 O O X X
17 O O X X
18 O O X X
19 O O X O
20 O O X X

O O X X

\v}
—

It can be seen from Table 5.2 that the numbers match very well. While
Virtuoso was able to provide values for all cases, ADS and Ansys had cases
where they were not able to calculate Levell and Level0, therefore outputting
0s as an error. Some failed cases (in red) show a large discrepancy, which
correspond to cases where the program was taking the wrong segment to
calculate the error, implying its imperfection. For example, checking the
boxed range of data Virtuoso selected for Levell and LevelO calculation, we
can see from the left of Figure 5.7 (test case #18) that the box was misplaced
horizontally, and the right of it (test case #19) that the vertical threshold of

the two boxes was interpreted incorrectly.
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Table 5.2: Comparison table for Level 1 and Level 0

Level 1 (V) / Level 0 (V)
test case paper ADS Ansys Virtuoso
1 0.333 /0.001 | 0.332 /0.001 0.332 /0.001 0.332 / 0.002
2 0.333 /0.001 | 0.331 /0.001 0.331 /0.001 0.332 / 0.002
3 0.349 / 0.039 | 0.344 / 0.043  0.341 / 0.046 0.337 / 0.049
4 0.344 / 0.044 | 0.362 / 0.024 0.373 / 0.118 0.327 / 0.061
5 0.213 /-0.215 | 0.212 /-0.214 0.210 / -0.202 0.186 / -0.187
6 0.861 / 0.151 | 0.863 / 0.148  0.858 / 0.152 0.818 / 0.193
7 0.189 /-0.174 | 0.188 /-0.173 0.185 / -0.159 0.160 / -0.148
8 0.290 / -0.309 | 0.288 /-0.306 0.286 /-0.301 0.264 / -0.281
9 0.331 /0.002 | 0.331/0.002 0.331 /0.002 0.333 / 0.538
10 0.331 / 0.002 0/0 0.331 / 0.002 0.330 / 0.004
11 1.379 / 0.008 0/0 1.393 /-0.003 1.420 / -0.003
12 1.956 / 0.028 0/0 1.974 /-0.011 1.931 / 0.002
13 1.136 / 0.016 0/0 1.429 /-0.008 1.364 / 0.019
14 1.497 / -0.027 | 1.4810 / -0.026 1.494 /-0.031 1.534 /-0.021
15 2.536 / -0.482 | 2.546 /-0.482 2.906 / -0.708 3.070 / -0.834
16 2.014 /-0.184 | 2.048 /-0.206 2.738 / -0.617 3.025 / -0.537
17 0.223 / 0.045 | 0.223 /0.044 0.222 / 0.042 0.224 / 0.054
18 3.159 /-0.342 | 3.249 / -0.161 0/0 1.990 / 0.672
19 0.245 / 0.0001 | 0.214 /-0.019 0/0 0.169 / 0.009
20 0.746 / 0.242 | 0.828 / 0.159  0.797 / 0.189  0.817 / 0.170
21 0.725 / 0.265 | 0.711 / 0.246 0/0 0.648 / 0.331

Figure 5.7: Eye diagram generated by Cadence Virtuoso, test case 18 (left)
and 19 (right).
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Table 5.3: Comparison table for Eye Width (EW) and Eye Height (EH)

EW (ns) / EH (V)

test case paper ADS Ansys Virtuoso
1 0.949 / 0.328 | 0.500 / 0.323  0.493 / 0.321  0.987 / 0.323
2 0.693 / 0.327 | 0.400 / 0.317 1.177 / 0.314  0.794 / 0.218
3 0.895 / 0.192 | 0.045 / 0.157 0.414 / 0.126  0.924 / 0.152
4 0.899 / 0.178 | 0.453 / 0.127 -0.014 /-0.034 0.932 / 0.085
5 0.069 / 0.056 | 0.081 / 0.169 0.073 / 0.025 0 /-0.027
6 0.151 / 0.128 | 0.211 / 0.198 0.159 / 0.158 0 /-0.027
7 0.002 / -0.120 0.015/0 0.009 / -0.157 0/-0.178
8 0.042 / 0.400 | 0.046 / 0.435 0.044 / 0.396  0.043 / 0.282
9 0.996 / 0.316 0/0.014 1/0.315 1/0.323
10 -0.071 / 0.320 0/0 -0.102 / 0.318  0.198 / 0.302
11 0.444 / 1.186 0/0 0.448 / 1.311  0.580 / 1.175
12 0.052 / 0.934 0/0 0.388 / 1.412  0.263 / 1.049
13 -0.069 / -0.068 0/0 -0.185 / 1.296  0.100 / 1.061
14 0.065 / 1.128 | 0.162 / 1.283 0.122 / 1.155  0.111 / 1.137
15 -0.060 / -0.070 0/ 1.368 0.133 /-0.294 0.019 / -1.069
16 0.004 / 0.732 | 0.120 / 1.312 0.038 / 0.518  0.085 / 0.522
17 0.898 / 0.104 | 0.945 / 0.123  0.695 / 0.099  0.916 / 0.087
18 -0.062 / -1.792 0.015/0 0/0 0/-2.56
19 0.928 / 0.014 0/0 0/0 0.924 /-0.213
20 -0.108 / -0.218 | 0.064 / 0.206 -0.033 / -0.050 -0.013 / 0.061
21 -0.071 / -0.361 0/0 0/0 0 /-0.559

We have a good match between the proposed algorithm and other EDA
tools. It can be seen that for all three EDA tools, there were cases that they
could not compute the EW and EH at all. Other discrepancies could be from

multiple causes :

1. While identical waveform is imported into the programs to generate the
eye diagram, the transient simulator might have dealt the waveforms

differently, resulting in slightly different outputs.

2. The programs use their own binning method to reduce computational
complexity, and different bin sizes can affect the resulting output pre-

cision

3. The programs seem to use distribution fitting methods, such as a Gaus-
sian distribution, to generate a curve fit to find the o required for EW

and EH calculation

4. Just like the right Figure of 5.7, even if the shifting is done correcrtly,

the program might not determine the threshold between Levell and
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Table 5.4: Comparison table for SNR and Eye Amplitude

SNR / EyeAmp (V)
test case paper ADS Ansys Virtuoso
1 48.9 / 0.332 | 125 /0.331 107 / 0.330 146 / 0.330
2 458 /0.332 | 77 /0.330 63.2 /0.331 9.62 /0.317
3 17.9 /0.310 | 5.85 / 0.302 5.25 / 0.295 6.33 / 0.289
4 17.3 / 0.300 | 3.03 / 0.338 2.74 / 0.362 4.41 / 0.266
) 10.8 / 0.427 | 3.40 / 0.425 3.22 /0.413 2.80 / 0.372
6 11.3 /0.710 | 3.83 / 0.715 3.86 / 0.707 8.94 / 0.720
7 7.06 / 0.362 | 2.22 / 0.360 2.06 / 0.343 1.90 / 0.309
8 19.1 /0.599 | 8.74 / 0.593 9.23 / 0.587 6.23 / 0.545
9 37.5/0.330 | 81.8 / 0.329 71.0 / 0.329 102 / 0.332
10 40.3 / 0.329 0/0 91.9 / 0.329 39.6 / 0.326
11 26.9 / 1.371 0/0 49.2 / 1.396 17.2 / 1.423
12 15.3 / 1.928 0/0 10.4 /1985 6.58 / 1.930
13 9.03 / 1.121 0/0 30.6 / 1.437 14.2 / 1.345
14 21.2 / 1.524 | 13.9 / 1.504 12.4 / 1.525 11.2 / 1.555
15 9.34 / 3.018 | 2.93 / 3.028 2.78 / 3.614 2.36 / 3.904
16 13.1 / 2.198 | 4.51 / 2.254 3.55 / 3.355 3.52 / 3.562
17 17.1 /0178 | 7.16 / 0.179 6.73 / 0.180 6.18 / 0.170
18 5.95 / 3.502 | 2.12 / 3.410 0/0 1.02 / 1.318
19 10.1 / 0.245 | 1.87 / 0.233 0/0 1.285 / 0.159
20 6.41 / 0.503 | 3.41 / 0.669 2.77 / 0.608 3.32 / 0.647
21 4.51 / 0.460 | 1.66 / 0.465 0/0 1.097 / 0.318

LevelO data correctly, therefore resulting in an incorrect value for Eye

Height (EH).

From Table 5.4, we see a very good match for Eye Amplitude (EyeAmp).
However, we see large discrepancies in SNR. SNR is calculated from Equation
2.20 and the denominator os have a large impact on the resulting output.
As mentioned in the previous section, programs can use curve fitting method
to assume a certain distribution to calculate the os, while the proposed al-
gorithm simply calculates the variance using its discrete form. We can see
a large difference for the cases with inaccurate eye crossing point detection
(marked in red). This is especially prevalent in cases where curves are more
spread out, having high variance in the 40% 60% of the 2-UI window, there-
fore hugely impacting the SNR calculation when the shifting is not done

correctly.
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Table 5.5: Comparison table for Jitter (peak-to-peak and RMS)

Jitter,_,(ns) / Jittergars(ns)
test case paper ADS Ansys Virtuoso
1 0.030 / 0.009 0/0 0.005 / 0.001 not provided
2 0.454 / 0.051 | 0.100 / 0.050 0.168 / 0.054 not provided
3 0.096 / 0.018 | 0.053 / 0.014 0.058 / 0.014 not provided
4 0.066 / 0.017 | 0.0475 / 0.0165 0.369 / 0.086 not provided
5 0.032 / 0.005 | 0.020 / 0.005 0.025 / 0.005 not provided
6 0.187 / 0.030 | 0.122 / 0.030  0.165 / 0.029 not provided
7 0.100 / 0.016 | 0.096 / 0.017  0.100 / 0.015 not provided
8 0.008 / 0.001 | 0.004 / 0.001  0.005 / 0.001 not provided
9 0.002 / 0.001 | 0.005 / 0.0025 0.002 / 0.000 not provided
10 0.513 / 0.179 0/0 0.504 / 0.184 not provided
11 0.238 / 0.093 0/0 0.232 / 0.092 not provided
12 0.457 / 0.158 0/0 0.228 / 0.102 not provided
13 0.240 / 0.095 0/0 0.237 / 0.114 not provided
14 0.077 / 0.023 | 0.038 / 0.012 0.048 / 0.013 not provided
15 0.144 / 0.043 | 0.187 / 0.068 0.042 / 0.011 not provided
16 0.090 / 0.033 | 0.080 / 0.032  0.080 / 0.027 not provided
17 0.090 / 0.017 | 0.055 /0.015 0.178 / 0.051 not provided
18 0.100 / 0.027 | 0.085 / 0.025 0/0 not provided
19 0.067 / 0.012 0/ 0.265 0/0 not provided
20 0.143 / 0.042 | 0.143 / 0.034  0.081 / 0.029 not provided
21 0.091 / 0.027 | 0.091 / 0.027 0/0 not provided

Jitter calculation is done by chossing values in a thin strip near the cross-
ing point, but how thin it should be is not only undefined mathematically,
but also different in different EDA tools. For this paper, 5% values of the
Eye Amplitude are chosen as the boundaries of the thin strip. The differ-
ence caused by this can increase when there is high jitter, or when there are
ripples that causes the algorithm to choose different range of data with dif-
ferent strip thickness. Considering these uncertainties, we see a good match
between the algorithm and the EDA tools. It is also important to note that
Cadence Virtuoso does not provide Jitter,_, and Jitterrys as part of its

eye parameters.
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Table 5.6: Comparison table for rise time and fall time

Risetime (ns) / Falltime (ns)
test case paper ADS Ansys Virtuoso
1 0.180 / 0.180 | 0.18 / 0.18  0.181 / 0.181 0.182 / 0.182
2 0.180 / 0.180 | 0.18 /0.18 0.181 / 0.181 0.175 / 0.175
3 0.268 / 0.264 | 0.302 / 0.280 0.233 / 0.232 0.219 / 0.218
4 0.245 / 0.251 | 0.304 / 0.302 0.490 / 0.103 0.085 / 0.074
5 0.068 / 0.067 | 0.070 / 0.068 0.064 / 0.062 0.052 / 0.051
6 0.186 / 0.183 | 0.197 / 0.194 0.189 / 0.187 0.157 / 0.151
7 0.063 / 0.059 | 0.063 / 0.057 0.068 / 0.063 0.043 / 0.042
8 0.020 / 0.020 | 0.002 / 0.002 0.002 / 0.002 0.018 / 0.018
9 0.025 / 0.025 | 0.003 / 0.003 0.025 / 0.025 0.026 / 0.026
10 0.062 / 0.066 0/0 0.070 / 0.069 0.063 / 0.063
11 0.164 / 0.184 0/0 0.146 / 0.150  0.040 / 0.029
12 0.297 / 0.170 0/0 0.281 / 0.160 0.153 / -0.632
13 0.184 / 0.169 0/0 0.151 / 0.170  0.039 / 0.025
14 0.019 / 0.012 | 0.041 / 0.048 0.019 / 0.010 0.039 / 0.024
15 0.052 / 0.077 | 0.085 / 0.117 0.064 / 0.077 0.032 / 0.037
16 0.063 / 0.054 | 0.034 / 0.075 0.067 / 0.093 0.042 / 0.077
17 0.229 / 0.325 | 0.164 / 0.452 0.217 / 0.298 0.095 / 0.264
18 0.029 / 0.039 | 0.036 / 0.039 0/0 0.005 / 0.009
19 0.325 / 0.461 | 0.304 / 0.225 0/0 0.109 / -0.023
20 0.084 / 0.089 | 0.064 / 0.088 0.065 / 0.060 0.033 / 0.043
21 0.048 / 0.039 | 0.045 / 0.047 0/0 0.027 / 0.029

We also observe a good match here. The causes of discrepancy could come
from the programs unable to accurately classify rising and falling edges. For
example, test case #14 has overshoots in 0 level and undershoots in 1 level
that coincides with the crossing point, as illustrated in the left of Figure 5.8.
The proposed algorithm can accurately distinguish rising and falling edges,

while other EDA tools seem to have failing cases.

Figure 5.8: Eye diagram for test case #14, with correctly classified rising
(middle) and falling (right) edges.

In conclusion, it is demonstrated that the proposed algorithm provides
more accurate analysis of eye parameters, while other EDA tools have edge

cases that fail to deliver them, or deliver them inaccurately.
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CHAPTER 6

RUN TIME OPTIMIZATION

6.1 Run Time Summary

To test the original goal of having a very short run time compared to the
transient simulation run time, identical channel with different transient sim-
ulation stop time is tested. 2000ns is often a minimum metric for statistical
analysis, while on the scale of 100ns is sufficient to visualize the eye diagram
and locate any signal distortions. Following tables list run time results of
two cases — case #3, a 100x100 Power Distribution Network at 1GHz, and

case #20. a 6-inch long meandered coupled microstrip line at 9GHz.

Table 6.1: Run time and relative percentage to transient simulation time
for test case #3

Test case #3 - 100x100 Run Time (s) (Relative to
Power Distribution Network (PDN) Transient Simulation Run Time (%))
Transient Simulation Input Array | Transient Crossing Point Eye Diagram Eye Parameter
Stop Time (ns) Length Simulation Detection Plotting Calculation
100 11187 26.23 0.09 (0.34%)  0.17 (0.65%)  0.07 (0.27%)
1000 104497 96.44 0.67 (0.69%)  0.42 (0.44%)  0.33 (0.34%)
5000 217764 498.92 1.34 (0.27%)  0.89 (0.18%) 0.9 (0.18%)
10000 1057467 958.28 6.52 (0.68%)  2.29 (0.24%)  4.41 (0.46%)

Table 6.2: Run Time and relative percentage to transient simulation time
for test case #20

Test case #20 - 6-inch long Run Time (s) (Relative to Transient
meandered coupled microstrip line Simulation Run Time (%))
Transient Simulation Input Array | Transient Crossing Point Eye Diagram Eye Parameter
Stop Time (ns) Length Simulation Detection Plotting Calculation
100 14406 5.83 0.28 (4.80%)  0.26 (4.46%)  0.18 (3.09%)
1000 144006 48.93 2.39 (4.88%)  1.31 (2.68%) 2.4 (4.90%)
10000 1440006 491.38 20.21 (4.11%) 16.24 (3.30%) 19.69 (4.01%)
40000 5760006 1997.67 28.19 (1.41%) 22.11 (1.11%) 23.11 (1.16%)

We can see from the above tables that the relative run time compared to

the transient simulation run time is less than 5%, with test case #3 having
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it less than 1%. Though not listed in this paper, all other test cases were
also run and verified that the relative run time percentage stays below 5% of
the transient simulation run time. Therefore, it is implied that the proposed
algorithm is comparable to, if not faster than, industry EDA tools, while
having higher accuracy in crossing point detection

It is also important to note that the transient simulation run time, as well
as the crossing point detection algorithm run time depends on computational
speed. For reference, this paper’s data is tested with a Macbook Pro (14-inch,
2021) with 8-core CPU and 14-core GPU. Larger-scale computing machines
would be able to run the software faster. Furthermore, it is expected that
the improvements of computational capability and optimization of python
libraries would reduce the run time in the near future.

Furthermore, if this is implemented along witht the transient simulator,
the algorithm can be initiated during the transient simulator such that the
software can run the transient simulation and append the simulated waveform
into the algorithm simultaneously in order to further minimize the run time.

In terms of the algorithm itself, many approaches have been implemented
and tested for same functionality, of which the fastest ones are chosen.
List comprehension is generally faster than the numpy library when deal-
ing with variable sized nested arrays. For example, it had been discovered
that sum()/len() is much faster than np.average function, and list append is
faster than np.hstack. When using the binning method, plt.hist2d by default
plots the 2D histogram, while np.hist2d doesn’t, thereby saving computa-
tional time when plotting is not needed. When implementing the Savitzky-
Golay Filter, we are only interested in K = 1, hence the filter function in the
Scipy library is custom-modified such that computational time is minimized.
Even though the problem initially seemed simple, it involved great effort at-
tempting different methodologies in order to achieve the goal of minimal run

time.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, we introduced the algorithm for crossing point detection in
eye diagrams. This algorithm provides a comprehensive approach to the
crossing point detection, not only verifying its validity in comparison with
current EDA tools, but also enabling accurate eye shifting such that more
accurate eye parameter calculations can be achieved.

The algorithm was tested with various test cases with very different eye
shapes, enabling accurate quantification of the signal quality in signal in-
tegrity, which existing EDA tools could not achieve. Furthermore, this algo-
rithm also accounts for non-linearities, which becomes prevalent in practical
applications as we shift into higher bit rates and crosstalks due to smaller
transistor sizes. Inspired by Moore’s law, the operation speed of electronic
devices strives to increase, and new inventions will result in high-speed sys-
tems in a more compact form. Inventions such as LIM [1] is a great example
of an attempt to reduce simulation runtime as it aims to achieve runtime
linearity with larger circuit sizes. Having a fast simulation tool is essential
for engineers, and consequently economy of scale can be achieved to realize

what we dream of much earlier.

7.2  Future Work

This paper focuses on eye diagrams generated from transient simulation,
which is a continuous waveform in the time domain. Channel Simulation is
another method that uses convolution between a single pulse response and

PRBS, which is generally faster than the transient simulation [14]. There also

67



exists the statistical simulation [15], which constructs the eye diagram using
large scale statistical properties, which is not fully explored in this paper.
A statistical eye takes a single pulse response and overlays every possible
combinations (4 and -) of the ISI, which is more useful for statistical analysis
such as BER or bathtub plots. Nevertheless, the illustrated algorithm in
Chapter 4 can be applied to find the crossing point for statistical eye diagrams
as well since the algorithm looks at each UI and classifies into rising and
falling edges.

While this paper focuses on PAM-2 eye diagrams, it can be extended into
PAM-4 or PAM-N as well. However, There are more than 1 crossing point
for PAM-4 and above, urging the need for an agreed definition of the refer-
enced eye crossing point. For PAM-4, It is possible to modify the algorithm
such that, if the threshold voltage is set properly, all different level transi-
tions are separated (rising/falling edges for each of 00—00, 00—01, 00—10,
00—11, 01—00, ... and so on). For PAM-8 and above schemes, there isn’t a
universally agreed set of definitions that quantify the quality of channel, as
these schemes are employed very lately. Nevertheless, this paper’s algorithm
sets an important milestone for shifting adjustment algorithm needed for eye

parameter calculations.

68



1]

REFERENCES

Z. Yi, “Latency insertion method for fast high-speed link and ic simu-
lation,” M.S. thesis, University of Illinois Urbana-Champaign, Urbana,
[linois, 2023.

“What is an eye diagram — systematics,” Systematics.co.il,
2024. [Online]. Available:  https://www.systematics.co.il/pcb-blog/
what-is-an-eye-diagram /

T.Ha, Tri, Theory and Design of Digital Communications. Monterey,
CA: Cambridge, 2011. [Online]. Available: http://www.cambridge.org/
9780521761741.pdf

Anritsu, “Jitter analysis - basic classification of jitter compo-
nents using sampling scope,” Application Note, 2012. [Online].
Available:  https://dl.cdn-anritsu.com/en-au/test-measurement /files/
Application-Notes/Application-Note/MP2100A_EF3100.pdf

Anritsu, “Understanding eye pattern measurements,” Application Note,
2010.

Advantest, “Dsp-based testing fundamentals 50 prbs (pseudo
random  binary sequence),”  Application Note, 2013. [On-
line].  Available: https://www3.advantest.com/documents/11348 /
3e95df23-22f5-441e-8598-f1d99¢2382cb#:~:text=LFSR%20(Linear%
20Feedback%20Shift %20Register)&text=When%20the%20shift %
20register%20is, top%200f%20the%20bit %20stream. \ textbf

C. Piech, “K means,” Stanford.edu, 2013. [Online]. Available:
https://stanford.edu/~cpiech/cs221/handouts/kmeans.html

“Ansoft designer 7.0 - eye measurements,” Mweda.com, 2024. [Online].
Available: http://www.mweda.com/designer/ansoft-designer /reports/
EyeMeasurements.htm

“Virtuosity: New eye diagram measurements,” Cadence.com, 02 2018.
[Online]. Available: https://community.cadence.com/cadence_blogs_8/
b/cic/posts/virtuosity-eye-diagram-measurements

69



[10]

[11]

W. A. Finke, “Algorithm for finding the eye crossing level of a
multilevel signal,” 06 2000. [Online]. Available: https://patentimages.
storage.googleapis.com/36/e3/80/6204a95e745120/US6614434.pdf

B. Shi, Y. Zhou, T. Nguyen, and J. Schutt-Aine, “Statistical method for
eye diagram simulation in a high-speed link nonlinear system,” in 2022
IEEE Flectrical Design of Advanced Packaging and Systems (EDAPS),
2022, pp. 1-3.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data
by simplified least squares procedures.” Analytical Chemistry, vol. 36,
pp. 1627-1639, 07 1964.

Glassner, Andrew S., The Graphic Gems Series — A Col-
lection of  Practical Techniques for the Computer  Graph-
ics  Programmer. Palo Alto, CA: Cambridge, 1992. [Online].
Available: https://theswissbay.ch/pdf/Gentoomen%20Library /Game%
20Development /Programming /Graphics%20Gems%203.pdf

S. Bobi, “Characterization of channel simulation method with jitter and
equalization effect on eye diagram,” M.S. thesis, University of Illinois
Urbana-Champaign, Urbana, Illinois, 2020.

S. Bobi, “Eye diagram modeling and statistical simulation in nonlin-
ear high-speed link systems,” Ph.D. dissertation, University of Illinois
Urbana-Champaign, Urbana, Illinois, 2024.

70



