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ABSTRACT

This thesis provides a comprehensive and robust approach to decipher an

algorithm that is only partially accurate in and not fully disclosed by the

existing industry tools - crossing point detection in an eye diagram, a fun-

damental starting point of eye parameter extraction. Edge cases where the

existing industry tools fail to deliver accurate analysis are identified, and

this paper’s algorithm is introduced and proved with various cases. Finally,

eye parameter extraction is followed and compared with existing tools for

verification.
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CHAPTER 1

INTRODUCTION

Since the invention of computers, the need for the speed of data transfer

has increased exponentially. Such need has been further driven by increasing

number of electronic devices around us, from computers and smartphones to

smartwatches and vehicles. Enhanced functionality and higher definition for

these devices urged engineers to push the limit for data rates. As engineers

started exhibiting data rates in the Gigabit level, high speed serial link and

the study of signal integrity started to play more important roles. It is es-

timated that the data rate will be pushed to the high-Gigahertz or Terabit

level, due to the high amount of data calculations required in AI models.

Characteristics of an electric channel not only introduces losses and time de-

Figure 1.1: Measured input (red) and output (purple) signals through a
36-inch-long, 50Ω backplane line in FR4.

lay, but also exhibits non-ideal behaviors such as noise and jitter. Figure 1.1

shows how the output looks like in reality even if the input is a step function.

Furthermore, due to the need of placing channels at very small distances,

signals from one channel may leak into the other channel, a phenomenon

known as crosstalk. There is a plethora of tools and techniques that are used
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to assess the characteristics and the performance of digital communication

systems. One of the most widely used tool is the “Eye Diagram”.

The eye diagram is a widely used visualization tool that can help assess

the quality of the signal transitions in electrical communication signals and

channel compliance. Its advantage lies in the fact that it not only visually

illustrates the quality of bit transitions, hence providing an intuitive view

to engineers, but also outputs quantitative measures (eye parameters) for

engineers to directly compare and quantify the degree of non-idealities. Im-

perfections or the characteristics in the channel cause the received signal to

be distorted, even if the transmitter transmits a perfect square wave. The

degree of such distortions – intersymbol interference (ISI), noise, jitter, etc.

– can be assessed using an eye diagram. Eye diagram functionality is avail-

able in oscilloscopes, as well as software EDA simulation tools such as ADS,

Ansys, and Virtuoso.

Even though the eye diagram is simple to construct, extracting the eye

parameters involves an extra step – locating the crossing point. As introduced

in Chapter 2, there exist mathematical definitions for eye parameters, most

of which requires one to locate the crossing point at the 25% of the 2UI

window. By doing so, the most optimum sampling time can be decided to

be the midpoint of the two eye crossing point since it is the most “open”

part of the eye. Reflecting such consideration, eye diagrams that we see are

set with some intentional timing delay. In order to do so, we need to know

exactly at which time instant should the slicing happen. Consider different

slicing timings for a series of time domain voltage waveform:

Figure 1.2: Different eye diagrams (column 2 and 4) formed by choosing
different slicing timings for an identical waveform.

Figure 1.2 shows different eye patterns with different slicing timings, while

the time domain voltage waveform is identical. We see circular-shifted ver-
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sions of each other, depending on the time instant chosen for slicing. Since

this is within a 1-UI window, we want to place the crossing point at the cen-

ter, which would be equivalent to 25% point of the 2-UI window. By locating

where the eye crossing point is, we can effectively decide where the slicing

instant should be. The top right of Figure 1.2 would be our desired output

since the crossing point is located at 50% point of the 1-UI window (same as

25% of 2-UI) in the time axis.

In real implementation, clock data recovery (CDR) is often used to pre-

serve the sampling timing on the receiver side. However, engineers run circuit

simulations before the implementation using EDA tools and evaluate the sig-

nal integrity at different nodes. For example, ADS has as the “Eye Probe”

functionality where a user can probe to different nodes of the circuit to assess

signal integrity using eye diagrams. Electrical delay or any form of distortion

can be different, and timing recovery methods such as CDR would not be

applicable. Therefore, simulation tools require a separate algorithm to gen-

erate the eye diagram with the ability to locate the crossing point in order

to quantify the degree of signal integrity.

We as humans can simply point to where an approximate crossing point

would be, but it requires a much more complex method to find the exact

crossing point with various forms of eye shapes. Furthermore, a mathematical

definition of a crossing point needs to be established.

Aforementioned existing tools do have the ability of doing so, but the exact

method remains proprietary, with some inaccuracies in some edge cases. This

thesis aims to illustrate a robust algorithm for eye crossing point detection, a

required step for computing eye parameters. This paper involves not only a

verification of the working cases by validating and comparing eye parameters

extracted by existing tools, but also provide a robust solution that existing

tools fail to compute.

Run time consideration is another important aspect. The goal is to keep

the crossing point detection algorithm comparably faster than transient sim-

ulation run time, which scales with the size of the netlist. While a commonly

used simulator, known as simulation program with integrated circuit empha-

sis (SPICE), has a non-linear computational complexity with respect to cir-

cuit size due to its nature of methodology, there also has been newly proposed

simulation method such as latency insertion method (LIM) [1] that aims to

linearize the computational complexity with larger scale circuits. Therefore,
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it is projected that the transient simulation run time will become shorter

while achieving same level of accuracy, also alluding to the importance of

optimizing the run time for this algorithm.

1.1 Outline

The thesis is organized as follows:

Chapter 2 of this thesis introduces necessary background, including the

construction of the eye diagram, mathematical definitions of eye parameters,

and non-linearities.

Chapter 3 visits some of the existing patents and technologies to finding

the eye crossing point, and some drawbacks to these existing approach. Also,

some of the previous attempts of my own made for the solution are presented,

with counter examples illustrating the lack of comprehensiveness.

Chapter 4 dives into the specific steps for the final algorithm to find the

eye crossing point.

Chapter 5 presents the result of the algorithm using various test cases.

Chapter 6 discusses the run time optimization of the algorithm.

Chapter 7 concludes the thesis.
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CHAPTER 2

BACKGROUND

2.1 Construction of the eye diagram

The eye diagram is constructed by slicing the time domain signal, usually

the output of a channel, in 2 unit intervals (UI) and overlaying the rising

and falling edges of the transitions. The time domain signal is sliced by a

2-UI window that shifts by 1-UI, and the sliced portions get superposed into

a single 2-UI window. The resulting graph resembles a human eye, hence the

name “eye diagram”. This 2-UI window represents two transitions, hence

representing 3 bits, from 000, 001, 010... to 111.

Figure 2.1: Visual illustration of how time domain signal is sliced to
construct the eye diagram.

Figure 2.1 uses a Pulse Amplitude Modulation 2-level (PAM-2, also known

as non-return-to-zero (NRZ)) signal modulation, where the low voltage rep-

resents a 0, and the high represents a 1. There also exists different signal

modulation schemes for faster data transfer, among with the most commonly

used is PAM-4. PAM-4 uses four voltage levels to represents two bits simul-

taneously. The data bits are logically represented in combinations of 00, 01,

10, or 11. It allows twice of the data speed compared to PAM-2, at the cost
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Figure 2.2: Visual illustration of how 3 bit transitions are combined to
construct the eye diagram.

of higher power consumption caused by equalization to minimize BER and

high susceptibility to noise due to smaller voltage difference between adjacent

logic voltage levels. PAM-4 is widely used in optical modules such as 50G

and 500G to empower various forms of carrier networks.

Figure 2.3: A PAM-4 eye diagram, with 4 distinct voltage levels
representing 2-bit combinations – 00, 01, 11, 10.

6



The waveform that we wish to convert into eye diagrams is generated

using transient simulation with simulation program with integrated circuit

emphasis (SPICE), which takes a netlist that includes information about the

circuit components and their connections and solves for the desired output.

Slicing occurs after SPICE has solved for the output in order to generate the

eye diagram.

Another way that we can generate an eye diagram is by knowing the model

of the channel, for example, through a known S-parameter. If this is known,

the output generation is simplified into taking the convolution between the

inverse FFT of the channel channel and the input bit stream waveform us-

ing pseudo-random binary sequence (PRBS). The slicing methodology is the

same as above. This is illustrated in Figure 2.4 [2].

Figure 2.4: Eye diagram simulation process when the channel model is
known.

2.2 Heatmap-based Eye Density Plot

While we generate the eye diagram through overlaying the sliced waveform,

engineers are often interested in a heatmap plot showing the density. While

it is almost impossible to have two sliced waveform that are perfectly identi-
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cal, for instance, up to 10th decimal, EDA tools employ histogram method to

bin certain nearby waveform together. Then, bins with higher counts are dis-

played with higher temperature color to illustrate the density, as illustrated

on the right of Figure 2.5.

Figure 2.5: Eye diagram (left) and its density heatmap plot (right).

The heatmap density plot on the right better visually illustrates the distri-

butions of the waveform. For instance, the jitter probability distribution at

the crossing point can be easily visualized by looking at the density heatmap

plot on the right of Figure 2.5, while the left cannot. EDA tools, except Ca-

dence Virtuoso, have such implementation. It saves computational time by

grouping waveform into bins before plotting. This can be easily achieved by

defining a set of colors with respect to bin counts in the plt.hist2d function,

and is implemented into the eye plotting solution provided in this paper as

well.

2.3 Crossing Point Definition

Definition of a crossing point must be established in order to define our

scope of interest. While the output, the crossing point, is a single pair of

coordinates containing the timing and voltage value, there are multiple line

segments that contribute to the crossing point. It is obvious that the rising

and falling edges contribute to the crossing point, but N rising edges and

M falling edges would create NM crossing points, while we need one point

being the output. Furthermore, some edges are close enough such that they

are counted in identical bins in the histogram. We hence need to account for

such weight when calculating a suitable crossing point. Therefore, we can
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define the crossing point as the arithmetic mean of all the NM crossing

points generated by N rising edges and M falling edges.

For computational simplicity, we do not necessary need to calculate every

NM crossing point, but rather calculate a single “average contour” for each

of the N rising edges and M falling edges, then calculate the crossing point

between the two average contours. For example, consider a set of linear lines,

with N rising lines defined as y = ax+ bn, n ∈ Z and M falling lines defined

with y = cn − dx, n ∈ Z. We would do crossing point-by-crossing point

calculation by solving:

ax+ bn = cm − dx (2.1)

The resulting crossing point is calculated as:

xnm =
cm − bn
a+ d

, ynm = a
cm − bn
a+ d

+ bn (2.2)

The arithmetic mean of these NM crossing points can be calculated as:

xxing = (
1

n
)[x11 + x22 + x33...] = (

1

n
)
c1 − b1 + c2 + b2 + c3 + b3 + ...

a+ d
(2.3)

yxing = (
1

n
)[y11 + y22 + y33...] = (

a

n
)[
c1 − b1 + c2 − b2 + ...

a+ d
] + (

b1 + b2 + ...

n
)

(2.4)

On the other hand, if we calculate the average contour first, we would get:

avgcontourrising = ax+
b1 + b2 + ...

n
, avgcontourfalling =

c1 + c2 + ...

n
− dx

(2.5)

Equating the two linear equations in 2.5, we would get

xxing =
(c1 + c2 + ...)− (b1 + b2 + ...)

n(a+ d)
(2.6)

yxing = a
(c1 + c2 + ...)− (b1 + b2 + ...)

n(a+ d)
+

b1 + b2 + ...

n
(2.7)

We see that Equations 2.3, 2.6 and 2.4, 2.7 are equal. Figure 2.6 illustrates

a rather more general case. Top row figures are the heatmap density plots of

the bottom row figures. The middle column figure has uniform distribution of

lines, while the other figures have non-uniform distributions – meaning that
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some lines are duplicates and coincide with one another, therefore shown in

deeper colors (red – falling edges, blue – rising edges). While the black dots

show all of the crossing points between every single rising edges, the red dot

is the arithmetic mean of those crossing points. Furthermore, the dashed

black lines are the average contours for each of the rising and falling edges.

We can see that the intersection of the two average contours (black dashed

line) occurs exactly at the red dot.

We can see that while the lines occupy the same Euclidian space, different

line distributions result in different arithmetic mean crossing point. There-

fore, considering the weights created by coinciding curves is important in

defining the crossing point.

Figure 2.6: Crossing point (red dot) with different line distributions in the
same Euclidian space, with their heatmap density plot on the top row.

This definition can be also extended into a multi-crossing point situation.

Figure 2.7 illustrates such case, having two distinct groups of rising edges

and two groups of falling edges, thereby creating 4 noticable crossing points.

In this case, the final crossing point that we want to calculate is identical

as the previous approach. The arithmetic mean of these 4 crossing points

is identical to a single crossing point generated by average contour of rising

and falling edges.
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Figure 2.7: Eye diagram with 4 crossing points in the black dashed circle.

2.4 Channel Distortions

This section explains some of the terminology used to describe both qualita-

tive and quantitative degree of distortions of a channel, which deforms the

shape of the eye diagram, hence posing a challenge in finding the crossing

point.

2.4.1 Inter-Symbol Interference (ISI)

Inter-Symbol Interference (ISI) is a generic term describing the spread of

energy of a symbol over into adjacent symbols, causing interference [3]. Con-

sider Figure 2.8 showing input and output waveform of a transmission line.

Cursors indicate the best positions to sample the waveform, and they are

spaced 1-UI between adjacent ones since the input bit stream would be sep-

arated by 1-UI in the time domain as well. For an ideal channel, we would

Figure 2.8: Input and output waveform of a transmission line at different
bit rates, with cursors showing ISI

want all of the pre and post cursors to be 0. However, in reality the output
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waveform is affected by many factors such as delay, jitter, noise, impedance

mismatch, etc, thereby causing nonzero pre and post cursor values. Though

only a single pulse is illustrated in Figure 2.8, the output waveform looks

worse when multiple bits (1s and 0s) are transmitted through the channel, as

the pre and post cursors constructively or destructively interfere with adja-

cent main cursors. This can lead to inaccurate determination of the received

bit, leading to a high BER. In general, pre and post cursors have higher

values with higher bit rates as shown in the Figure, which can worsen the

eye diagram from a signal integrity perspective.

2.4.2 Jitter

While we commonly use noise to describe uncertainties in voltage, jitter is

used to describe uncertainties in the time domain. It is commonly observed

in digital transmission systems and is often the most important aspect to

consider in signal integrity. Similar to ISI, system loss, crosstalk, interference,

reflections can be sources of jitter. Jitter can be classified into two main types

– Random Jitter (RJ) and Deterministic Jitter (DJ). As the name implies,

DJ is further divided into many categories as illustrated in Figure 2.9 [4].

Figure 2.9: Jitter classification and analysis level

For the sake of this paper, we focus on the types of jitter that influences

eye shapes near the crossing point – Random Jitter (RJ) and Random Jitter

(PJ).
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Random jitter is a type of jitter that can be modelled by a Gaussian

distribution with the following probability density function:

PDFRJ(∆t) =
1

σ
√
2π

e−
(∆t−µ)2

2σ2 (2.8)

where x is the independent variable, corresponding to the amount of time

deviation, σ is the RMS value, and µ is the mean of the distribution.

Periodic jitter is the jitter that occurs at a fixed frequency. There are

different models for PJ. For instance, the PDF of a single sinusoidal PJ can

be modelled as:

fPJ(∆t) =
1

π
√

1− (∆t/A)2
,−A ≤ ∆t ≤ A (2.9)

When we combine all types of jitter, each jitter components are added

together. In the statistical domain, the total jitter PDF would be equal

to the convolution of each jitter component PDFs. For instance, if jitter

components contain only Gaussian RJ and sinusoidal PJ, the total jitter

PDF would be:

PDFTJ(∆t) = [
1

σ
√
2π

e−
(∆t−µ)2

2σ2 ] ∗ [ 1

π
√
1− (∆t/A)2

],−A ≤ ∆t ≤ A (2.10)

Equation 2.4.2 is visualized in Figure 2.10. In eye diagrams, dual-modal

Figure 2.10: PDFTJ (left), PDFPJ (middle), PDFRJ (right)

PDFTJ corresponds to dual-modal rising and falling edges, which distin-

guishes the crossing point calculation compared to a regular eye with a single

peak jitter PDF. The model of PJ can be modified such that multi-modal eye

diagrams can be generated, as illustrated in Figure 2.11. It is important to

account for these kinds of eye shapes by considering different combinations
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Figure 2.11: dual-modal PDFTJ (left), tri-modal PDFTJ (right)

of jitter components.

2.5 Eye Parameter Definitions

While the eye diagram serves as a visualization tool to assess the quality of

the signal, there exist several “eye parameters” that quantitatively evaluate

such quality, supported by their mathematical definitions [5]. The majority

of them require the location of eye crossing points, hence the need for explo-

ration in this paper. This section covers eye parameters for PAM-2 as well

as PAM-4.

2.5.1 PAM-2 - Horizontal Parameters

Eye Width (EW)

EW = (µt2 − 3 ∗ σt2)− (µt1 + 3 ∗ σt1). (2.11)

Where µ and σ are the mean and the variance of a thin horizontal strip near

the two crossing points. EW hence requires that one specify the vertical

value of the crossing point.

Jitter - Root Mean Square (RMS) and Peak-to-Peak (p-p) Jitter

refers to the time deviation from the ideal timing of the data bit. This is one

of the most important aspect in determining the quality of the digital data

signals, as it directly contributes to the BER. To quantify jitter, a “thin”
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Figure 2.12: Eye Width is measured between the 3σ inner points.

horizontal strip window is applied to form a histogram. The p-p jitter is

defined as the full width of the histogram, representing the maximum margin,

and the RMS jitter is defined as the standard deviation of the histogram.

Jitterp-p = tmax of histogram − tmin of histogram (2.12)

JitterRMS = σhistogram (2.13)

Figure 2.13: Jitter measurements are obtained from the histogram data
near the eye crossing point.

It is important to note that it is required to locate where the eye cross-

ing point is in order to obtain these parameters, and Jitterp-p can change

depending on how “thin” the horizontal strip window is chosen. EDA simu-

lation tools and oscilloscopes do not have a specific method disclosed to how

“thin” the strip should be.
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Rise Time (trise) Rise Time refers to the mean transition time of the data

on the upward slope (20 ∼ 80%) of an eye.

trise = µ80% level − µ20% level. (2.14)

Figure 2.14: Visual representation of trise.

Fall Time (tfall) Fall Time refers to the mean transition time of the data

on the downward slope (80 ∼ 20%) of an eye.

trise = µ20% level − µ80% level. (2.15)

2.5.2 PAM-2 - Vertical Parameters

One Level (Level1) One Level is defined as the average value of the upper

half of 40 ∼ 60% of the eye. This value represents the analog voltage value

that represents a digital “1”.

Level1 = µupper half of 40 ∼ 60% of the eye. (2.16)

Where 40 ∼ 60% segment is with respect to 2-UIs. For example, if UI = 2ns,

we would take all the “1” (upper) values between 0.8ns to 1.2ns.
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Figure 2.15: Visual representation of tfall.

Figure 2.16: Visual representation of One Level. Values in the rectangle are
averaged.

Zero Level (Level0) Zero Level is defined as the average value of the

lower half of 40 ∼ 60% of the eye. This value represents the analog voltage

value that represents a digital “0”.

Level0 = µlower half of 40 ∼ 60% of the eye. (2.17)

Where 40 ∼ 60% segment is with respect to 2-UIs. For example, if UI = 2ns,

we would take all the “0” (lower) values between 0.8ns to 1.2ns. We notice

the need of mathematically defining the threshold that differentiates upper

and lower values, of which the vertical value of the eye crossing point can be

an accurate value.
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Figure 2.17: Visual representation of Zero Level. Values in the rectangle are
averaged.

Eye Amplitude (EyeAmp)

EyeAmp = Level1− Level0 (2.18)

Eye Amplitude is the difference between One Level and Zero Level. It tells

the degree of separation between received “0”s and “1”s.

Eye Height (EH) Eye Height is the difference between the inner 3σ points

between the one and zero levels.

Figure 2.18: Visual representation of Eye Height and Eye Amplitude.

EH = (Level1− 3 ∗ σLevel1)− (Level0 + 3 ∗ σLevel0) (2.19)

Where σ refers to the variance of the vertical values between 40 ∼ 60% of

the eye.
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Signal-to-Noise Ratio (SNR) Signal-to-Ratio (SNR) is a ratio of the

desired signal level to the level of the background noise plus any distortion.

High SNR values are desired in real world applications. In eye diagram

analysis, SNR is defined as:

SNR =
Level1− Level0

σLevel1 + σLevel0

(2.20)

Crossing Percentage (Crossing%) Crossing Percentage tells us at what

% with respect to the eye amplitude is the eye crossing point is located.

Figure 2.19: Visual representation of crossing percentage.

Crossing% = 100% ∗ (ycrossing point − Level0)

EyeAmp
(2.21)

Crossing percentage is usually 50%, as one would often set rise time and fall

time to be identical values. However, in cases where non-linearity prevails in

the channel, the received signal’s eye diagram can have crossing percentage

way above or below 50%. Furthermore, current industry EDA tools allow

different rise and fall time, which makes the eye crossing percentage away

from 50% even if the channel has high linearity.

19



2.5.3 Other Parameters

2.5.4 PAM-4 Eye Parameters

Figure 2.20: A PAM-4 Eye Diagram with eye parameters labelled

While there are various types of eye parameters for PAM-2, PAM-4 comes

with a new set of parameters similar to those of PAM-2. PAM-4 eye param-

eters are listed in Table 2.1.

Table 2.1: PAM-4 Eye Parameters

Definitions

Tmid Midpoint of the maximum horizontal eye opening of the middle eye
AVmid Difference of the mean levels of the + 1

3
and - 1

3
level voltage in a

±0.025UI time window centered on Tmid

AVupp Difference of the mean levels of the +1 and - 1
3
level voltage in a

±0.025UI time window centered on Tmid

AVlow Difference of the mean levels of the - 1
3
and -1 level voltage in a

±0.025UI time window centered on Tmid

Hmid 10−6 inner eye width calculated at Vmid
2

Hupp 10−6 inner eye width calculated at
Vupp

2

Hlow 10−6 inner eye width calculated at Vlow
2

Vmid 10−6 inner eye height calculated in a ±0.025UI time window centered on Tmid

Vupp 10−6 inner eye height calculated in a ±0.025UI time window centered on Tupp

Vlow 10−6 inner eye height calculated in a ±0.025UI time window centered on Tlow

As opposed to PAM-2, PAM-4 parameters do not require one to locate the

crossing point, but rather find Tmid to be placed at the 0.5UI point. This is

because there are many crossing points occur for different level transitions.

For example, crossing point created by 00→10 and 10→00 is not the same

as the crossing created by 00→01 and 01→10 transitions.
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2.6 Pseudo-Random Binary Sequence (PRBS)

In signal integrity, we can use a single pulse response to quantify the degree of

intersymbol interference (ISI) present in a channel that we wish to evaluate.

However, a single pulse does not give us the whole picture. In practice, a

very large number of bits are transmitted through the channel and previous

bits can affect waveform shape of later bits.

Figure 2.21: Two single pulse responses with different preceding bits.

Figure 2.21 shows two single pulse responses between 5.5 5.8ns, with differ-

ent preceding starting bits. Therefore, in order to evaluate the signal integrity

of a channel, it is important to consider a larger number of bit pattern combi-

nations. The concept of Pseudo-Random Binary Sequence (PRBS) is hence

introduced to mimic different levels of ISI in a channel. PRBS generates

binary square wave patterns which can be convolved with the pulse response

directly to obtain the resulting output waveform. The PRBS can be gener-

ated in a specific pattern using linear-feedback shift register (LFSR), which

ensures there are as many “1”s as there are “0”s. An L-bit LFSR generates

PRBS of length 2L − 1 with 2L−1 “1”s, 2L−1 − 1 “0”s, and 2L−1 edges (rising

and falling). L-bit LFSR takes some bits as input to an XOR gate and its

output is the next bit to be bit-shifted into the register. The least significant

bit (LSB) then becomes the output of the LFSR. The bit locations can be

described as a polynomial. As an example, Figure 2.22 illustrates a 4-bit

LFSR, which uses 3rd and 4th bit as inputs to the XOR gate. It generates

15 bits of PRBS, with 8 “1”s, 7“0”s, and 8 edges [6].

In Figure 2.21, we observed that a single pulse (0→1→0) response can
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Figure 2.22: 4-bit LFSR visual illustration.

be different if we consider different bit combinations preceding the pulse.

Taking 4-bit LFSR as an example, Figure 2.23 illustrates one period of LFSR

Figure 2.23: Illustration of 4-bit LFSR outputs in the time domain.

outputs, as well as each stage’s shift register values. We can see that for every

output (i.e. the LSB of the shift register) 1 and 0, we have all possible 3-bit
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combinations that comes before the current output, thereby considering all

preceding bit combinations before the pulse. Note that “0000” doesn’t exist

since feeding it would generate only 0’s forever. The placement of the XOR

gate with specific bit locations help generate this pattern. This logic gate

structure can be mathematically described as a polynomial of x4 + x3 + 1.

Table 2.2 shows LFSRs with different bit lengths:

Table 2.2: L-bit LSFR feedback polynomial and their period

L Feedback Polynomial Period (2L − 1)

4 x4 + x3 + 1 15
5 x5 + x3 + 1 31
6 x6 + x5 + 1 63
7 x7 + x6 + 1 127
8 x8 + x6 + x5 + x4 + 1 255
9 x9 + x5 + 1 511
10 x10 + x7 + 1 1023
11 x11 + x9 + 1 2047

It can be implied that bigger L-bit LFSR would generate more sophisti-

cated preceding bit patterns before the pulse. Commercial EDA tools such as

ADS employs 8-bit LFSR as the default mode, though it can be user-defined

as well.

2.7 K-means Clustering Algorithm

During the steps of locating the crossing point, it is crucial to differentiate

transitions that do and do not contribute to the crossing point. For a PAM-2

eye as an example, we would have 1→0 and 0→1 transitions that do con-

tribute to the crossing point, and 1→1 and 0→0 that do not contribute to

the crossing point. Before this classification, we need to find approximate

voltage values for 1→1 and 0→0 transitions. To do so, a vector quantiza-

tion method called K-Means Clustering is an effective solution. While

Chapter 4.4 illustrates the usage of it in more detail, this section explains

the methodology behind this algorithm.

First proposed by Stuart Lloyd of Bell Labs in 1957 as part of a pulse-code

modulation (PCM) technique, the “k-means” algorithm partitions a set of
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data into k sets that minimizes the sum of squares within the cluster [7]. In

mathematical terms, it aims to find:

argmin
S

k∑
i=1

∑
x∈Si

∥x− µi∥
2 (2.22)

where µi is the mean of points in Si. µi is also called a centroid. The

algorithm first begins by randomly assigning k mean points. Then, k clusters

are created by grouping every data with the nearest mean. For each cluster, a

centroid using Equation 2.22 is determined, which becomes the new “mean”.

Finally, the above process is repeated until all centroids converge.

This can be a computationally heavy algorithm if the input data is multi-

dimensional, but thankfully our scope narrows down to a single dimension

– voltage. The application of this algorithm is illustrated in more detail in

chapter 4.4
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CHAPTER 3

EXISTING METHODS AND THEIR
DRAWBACKS

Eye diagram functionality is implemented in oscilloscopes, as well as soft-

ware EDA simulation tools such as ADS, Ansys, and Virtuoso. While the

mathematical definitions are already established, the crossing point detection

algorithm remains proprietary as part of the companies’ intellectual proper-

ties. There also had been also a patent that aimed to produce this algorithm.

In this chapter, some inaccuracies of these attempts are identified for each

tool approach, as well as some initial attempts that were proposed on my

own with their drawbacks.

3.1 Current EDA Tools and Patents

3.1.1 Advanced Design System (ADS)

Advanced Design System (ADS) from Keysight is a powerful electronic de-

sign automation (EDA) software platform that provides design solution for

RF, microwave, and high-speed circuits. The “Eye Probe” tool provides eye

diagram analysis solution. In terms of its crossing point detection capability,

it had been observed that its accuracy largely depends on the eye crossing

percentage as defined in Equation 2.5.2. It provides accurate placement of

the eye at 25% of 2-UI window when the crossing percentage is near 50%,

but becomes inaccurate as the percentage deviates from 50%. In fact, in the

help page of the “Eye Probe” tool, it explicitly states that this tool “uses

automatic algorithms to detect eye crossing thresholds. If the eye is closed or

highly distorted, these automated algorithms may fail, resulting in an all-zero

output to the data display”.

Figure 3.1 depicts cases where the error occurs, even though a crossing

point clearly exists. The two figures in the left column are eye diagrams with
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Figure 3.1: Different eye diagrams with eye parameter summary table on
the right – Non-identifiable eye parameters are zeroed-out.

a relatively low bit rate of 2GHz. ADS outputs all zeros in the parameters

output, showing that it is incapable of locating the crossing point. The two

figures in the right colum are eye diagrams with higher bit rate higher than

9GHz. The top right figure at first sight looks like it has located the vertical

and horizontal eye crossing point correctly, with each parameter produced.

However, it is unable to calculate the eye height and eye width. The bottom

right has a similar issue, but with an additional problem that the eye is not

shifted correctly.

More examples with various channels and high bit rates are tested to come

to a conclusion that ADS’s algorithm attempts to find the crossing point by

firstly assuming crossing point occurs near 50% of one and zero level, then

finds mean timing value around that voltage level. This explains why in top

right of Figure 3.1 was able to place the crossing point at 25% of the 2-UI

window by considering a thin horizontal strip near 0.5V, but the bottom right

of the same figure placed the crossing point incorrectly since the preceding

ISI before the crossing point coincided with the 0.5V threshold, therefore

counting not only the crossing point but also the intersections between the

0.5V threshold as well as some of the ISI components. Furthermore, ADS

comes with auto scale issues where some values are not subtracted correctly

such that they are higher than the 2UI value. This is illustrated in the

bottom right of Figure 3.1.
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3.1.2 Ansys Circuits

Ansys is another electronic design software platform, famously known for

is 3D simulation high-frequency structure simuilator (HFSS). Ansys is also

capable of providing eye diagram in “circuits” simulator. Figure 3.2 shows

the option tab for eye plotting. While it does have buttons for automatic eye

delay and crossing amplitude, a user can also uncheck the button to manually

input any value of delay as well as any value of crossing amplitude, which

effectively changes all the eye parameters [8].

Figure 3.2: Ansys Circuits eye probe settings tab.

Figure 3.3: Inaccurate eye diagram produced by Ansys Circuit for a
non-linear eye.

Ansys’ help documentation somewhat explains the logic behind their func-

tionalities, which explains what the buttons in Figure 3.2 do:

“...crossing time is calculated by creating a horizontal histogram

across a small, narrow strip at the middle of the eye. The middle

of the eye is computed as the middle of the vertical extrem-

ities of the eye i.e. the midpoint of max & min voltage values

across the complete eye diagram.”
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“...with Auto Mode “on, the eye width is calculated as the average

of the two peaks of the vertical histogram. This is shown as the

“Eye Crossing Amplitude” in the figure above. Both statistical

and minimum eye widths will be calculated at this amplitude.”

This helps explain why Ansys isn’t able to place the eye correctly in Figure

3.3, since it seems to assume crossing percentage of 50%. Also, the eye width

calculation method is slightly different from the definition in Equation 2.18.

This can be accurate if the variance within the definition window (40% - 60%

of 2UI) is small, but can become inaccurate if either the variance is high, or

if there is significant ISI such that the peaks of the vertical histogram do not

represent voltage values of digital “0” and “1”.

3.1.3 Cadence Virtuoso

Virtuoso, developed by Cadence, is a widely used simulation EDA software

for electrical engineers in RF, IC, and mixed-signal design [9]. While it also

supports eye diagram analysis, it has two critical drawbacks. First, as seen

in Figure 3.4, it requires the user to input a threshold voltage value before

plotting the eye and calculating eye parameters. This value corresponds to

the voltage value of the crossing point.

Secondly, as seen in Figure 3.5, Virtuoso only overlays the waveform in a

single color, unable to show a density plot, which is more visually straight-

forward for a user.

3.1.4 Existing Patent

An expired patent filed by Tektronix called “Algorithm for Finding the Eye

Crossing Level of a Multilevel Signal” gives us an insight into how its oscil-

loscopes employ crossing point search [10].

Figure 3.6 shows part of Tektronix’s patent. It also uses histogram ap-

proach to solve this problem. It places a thin horizontal box at multiple

voltage levels and looks for the minimum standard deviation. Then, the tim-

ing location at which the standard deviation of the horizontal histogram box

is minimum would be the crossing point. For example, top right of Figure

3.6 places a thin horizontal box (box 26) at an arbitrary location, and its
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Figure 3.4: Inaccurate eye diagram produced by Ansys Circuit for a
non-linear eye.

Figure 3.5: Inaccurate eye diagram produced by Ansys Circuit for a
non-linear eye.

standard deviation is calculated with plot 28 showing its probability distri-

bution function. This is repeated until a minimum is found, which would

correspond to bottom right of Figure 3.6.

Though the numbers are not specifically stated, the width and height of

the thin horitonzal strip as well as its horizontal location seems to be the

most important considerations. It can be surmised that this algorithm can

be very accurate for an eye with minimal ISI and jitter, even being able

to account for non-linear or rise-fall mismatch scenarios leading to crossing

percentage deviating from 50% locations. However, crossing point detection
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Figure 3.6: Flowchart of the algorithm (left) and visual illustration (right).

can become inaccurate for eyes with high ISI and jitter.

Figure 3.7: Eye Diagrams with high jitter (left) and high ISI (right), with
their crossing point marked with red cross.

Consider the two eye diagrams in Figure 3.7. For the case of left figure

with high jitter, the “thin horizontal box” approach can become unstable

since the PDF can vary depending on the box’s height, width, and location.

Furthermore, for the case of right figure with high ISI, the PDF would look

different when the width horizontal box is set to different lengths. From

these scenarios, we can see that minimum σ point is not always equal to the

eye crossing point.
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3.2 Self-developed Initial attempts

Before presenting the final algorithm in Chapter 3, some of the initial at-

tempts of finding an optimal solution is presented in this section, with counter

examples that invalidate their comprehensiveness.

First idea was to construct a 2D histogram to find the bin with the highest

count, since the crossing point would contain both rising and falling curves.

However, this fails for an eye with bimodal jitter such as one in Figure 3.8.

First of all, the binning method in histogram can result in different count

matrix for different bin size, hence making the output not consistent with

the waveform. Second, it is favorable that we define the crossing point to

be the average of the crossing points when there are multiple crossings, but

the counting method would not be applied correctly for this example as our

desired output would be an empty space (average of the two crossing points).

Figure 3.8: 2D density histogram of identical eye waveform, with bin size of
1000x500 (left) and 500x125 (right).

In order to resolve the second issue, another idea was to keep using the

histogram, but find a horizontal strip with longest consecutive empty count

bins. Left of Figure 3.9 shows a successful calculation of the crossing point,

with red arrow indicating the horizontal strip with longest empty bins. By

finding such strip from both left and right side of the eye diagram, multiple

crossing scenarios can be accounted for. However, as shown in the right

of Figure ??, it can fail when the ISI is significant in a way that results

in undershoots in 1 level and overshoots in 0 level, thereby impeding the

calculation accuracy.

More ideas other than the two presented above were suggested and were

faced with counter examples that revealed their comprehensiveness. Our

goal is not only to validate the existing algorithm which work very well for

“normally” shaped eye, but also account for non-ideal channels that other
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Figure 3.9: Brief illustration of the thin horizontal empty strip method.
Red arrows indicate the finally obtained crossing point boundary, with a
working case (left) and failing case (right).

existing methods are not able to achieve the crossing point detection. Broader

comprehensiveness would allow us to quantify, if so, how “bad” the channel

is without the user having to eyeball the approximate delay they need to

apply in order to proceed with eye parameter analysis.

3.3 Summary Table of Existing Methods

By comparing identical waveforms with different tools, Table 3.1 is estab-

lished as a summary. The desired goal of this paper is to present an algorithm

that can overcome some of the disadvantages or failing cases.

Table 3.1: Summary Table of Eye Diagram Tool Functionality

⃝ = Yes △ = Sometimes × = Fails

ADS
Ansys
Circuits

Cadence
Virtuoso

Proposed
Algorithm

Automatic Eye Centering for
Eye with 50% Crossing

△ ⃝ ⃝ ⃝

Automatic Eye Centering for
Eye with non-50% Crossing

△ △ △ ⃝

Automatic Eye
Parameter Calculation

⃝ ⃝ ×, needs to
define threshold

⃝

Uses Histogram for Eye
Parameter Calculation

⃝ ⃝ ⃝ ⃝

Default Histogram Bin Size 456 × 321 unknown 500 × 500 user-defined

Heatmap Density Plot ⃝ ⃝ × ⃝
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CHAPTER 4

ALGORITHM FOR PAM-2 EYE CROSSING
POINT DETECTION

As introduced in Chapter 2, quantitative eye diagram analysis requires place-

ment of the crossing point at the 0.5 UI location. This chapter dives into the

developed algorithm of finding the eye crossing point for PAM-2 eye diagram

simulation. Figure 4.1 shows the overall process of it, with the left column

representing an overall flowchart and the right with a visual example of it.

The following sections in this chapter goes through the specifics for each of

the blocks in the flowchart and explain the reasoning behind such blocks and

code snippets to illustrate how they are realized.

It is important to consider the runtime of this algorithm, and there had

been a lot of trial-and-errors and comparison of the runtime with different

algorithms or libraries being used. While the initial attempt at construct-

ing the algorithm involved numerous external libraries, runtime optimization

over the course of research resulted in a major use of the Numpy library.

Another major decision was to only utilize the first UI of the eye diagram.

Even though a typical eye diagram would span across 2 UI, the algorithm

is implemented with 1 UI. As illustrated in Figure 2.1, a 2-UI window is

shifted in 1-UI intervals, implying that considering the left half of the 2-UI

eye diagram is sufficient. Detailed comparisons and runtime considerations

are explained in more detail in Chapter 5.
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Figure 4.1: General flowchart overview of the algorithm.

34



4.1 Input and Output Consideration

Figure 4.2: Plot of a transient simulation output (left) with actual data
that stores the plot information (right).

The eye diagram is generated from a voltage waveform in the time domain

for bit-by-bit and transient simulation mode. As illustrated in Figure 4.2,

this can be stored as (t, V) coordinate pairs which we can import into two

arrays – one for time and one for corresponding voltage. Additionally, since

the frequency is defined in PRBS generator, UI can be obtained by taking

the inverse of the frequency. These three are the only inputs required for this

algorithm.

1 #start reading txt file that contains (t, V) pairs

2 data = pd.read_csv(file,sep ='\s+')

3 voltage = data["Waveform"].to_numpy()

4 time = data["time"].to_numpy()/1E-9

5 #converted to ns for easier analysis

While we only need the time horizontal coordinate of the crossing point

for accurate shifting, we would also need the vertical coordinate for some eye

parameter analysis such as BER and jitter. Therefore, our desired output

would be a single pair of coordinates (txing, vxing).

4.2 Slice Waveform at Arbitrary Location

If we know where the exact crossing point is, we can simply choose [txing −
0.5UI, txing+0.5UI, txing+1.5UI, ...], then the crossing point would be located

at exactly 50% of the UI. However, that is the desired output of this algo-

rithm. Therefore, as the first step of the entire algorithm, we need to decide
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an arbitrary location for slicing location. the eye by slicing the waveform an

arbitrary location. In other words, we construct the 1-UI eye diagram by

choosing a random time point tarbitrary and slice the original waveform at:

slicing points = tarbitrary +UI ∗ k,where k ∈ Z+ (4.1)

Since such slicing time point can be totally arbitrary at this stage, it is the

best to use non-negative integer intervals as slicing points – [0,UI, 2UI, 3UI...].

This can be simply achieved by the code below:

1 #input = t_array, output = eye_t

2 eye_t = [x-int(x/UI)*UI for x in t_array]

The following table illustrates an example with UI=2s. Comparing the input

and the output, we see that the output is subtracted by integer multiples

of UIs such that all elements in the output are bounded by [0, UI]. ”int”

function acts as a mathematical floor function in python.

Table 4.1: A Sample case study with UI=2s

t array index i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

input = t array[i] 0 0.33 0.67 1 1.33 1.67 1.99 2.01 2.33 2.67 3 3.33 3.67 4 4.33
int(input/UI) 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2

int(input/UI)*UI 0 0 0 0 0 0 0 2 2 2 2 2 2 4 4
output eye t 0 0.33 0.67 1 1.33 1.67 1.99 0.01 0.33 0.67 1 1.33 1.67 0 0.33

There are several types of eye diagrams, such as bit-by-bit, statistical, and

transient-generated. The first two methods can provide a fast and statistical

estimation of the eye diagram [11]. However, they can only be applied to

linear channels. Transient simulated eye diagrams can yield more accurate

results and can be applied to both linear and nonlinear channels at the cost

of longer simulation times.

In this chapter, we present the LIM method for pulse amplitude modu-

lation 2-level (PAM-2) eye diagram simulation. Methods for both without

and with the effect of crosstalk are introduced. Since LIM has linear compu-

tational complexity, it can be faster than MNA methods which are utilized

for transient-generated eye diagram simulation. We have compared LIM to

both transient and channel simulation in Keysight ADS, in order to test its

accuracy and speed.
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4.3 Finding Approximate Horizontal Eye Center

After a temporary eye is created, we find an approximate horizontal eye

center. For the purpose of this section, only the txing,approx is obtained, and

the voltage crossing point can be neglected. This section is necessary in order

to categorize and store different transitions (00, 01, 10, 11) which is explained

in the next section.

The overall approach is: 1. Extract a voltage level assuming a crossing

percentage (Equation 2.11) of 50%, and draw a horizontal line at that level.

2. Find time values of the intersection between the eye and the horizontal

line. 3. Take the average value of the intersection time values.

Such method would help us locate an approximate location for the eye

crossing by realizing that the PRBS generator generates roughly equal num-

ber of rising and falling edges that form the eye crossing, and taking the

average of these points would give an approximate time value for the cross-

ing point. This seemingly easy task actually involves consideration of all

kinds of eye cases, as well as how the eye is formed in the previous sec-

tion. The following considerations are important for non-linear eyes where

the crossing percentage can deviate away from the assumed 50%.

4.3.1 Removing small dV
dt data points

The first consideration is removing small slope data points and preserving

sharper slope data points which generally correspond to rising and falling

edges. The motivation of this approach is the realization of 1-to-1 and 0-to-0

transitions do not contribute to the intersection. This implementation can-

not perfectly remove all the same level transitions for all eye shapes, such

as an eye with sharp overshoot or undershoot during same level transitions.

Nevertheless, this reduces the total array length to operate with, which di-

rectly impacts the overall runtime. This is achieved by simply obtaining a

slope array using np.gradient function, and setting a threshold to filter out

indexes needed to be removed from the t and V arrays. The following code

block achieves this:

1 #t = time array, V = voltage array

2 #compute slope value given t and V arrays

3 dvdt = np.absolute(np.gradient(V,t)
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4 #find average of all slope values

5 avg_dvdt = sum(dvdt)/len(dvdt)

6 idx_to_remove = set([i for i in range(len(dvdt)) if dvdt[i] < avg_dvdt])

7 # print(indexes_to_remove)

8 V = [i for j, i in enumerate(V) if j not in indexes_to_remove]

9 t = [i for j, i in enumerate(t) if j not in indexes_to_remove]

4.3.2 Savitzky-Golay Filter for Data Smoothing

The second consideration is for eyes with large ripples that occur near the

50% crossing level when looking for intersections. Figure 4.3 is a voltage

waveform with f = 7GHz, with each vertical grid marking every UI.

Figure 4.3: Original 7GHz voltage waveform (left) and output after
applying Savitzky-Golay filter (right).

The red dashed horizontal line is the pre-determined threshold value as-

suming crossing percentage of 50%. Green arrows are the regular transitions

with no issues, but the red ones show minor fluctuations that result in cross-

ing the threshold line multiple times. This makes the output biased where we

take the average of the intersections. Since we are looking for an approximate

point only at this stage, some form of data smoothing technique needs to be

applied. There are several kinds of data smoothing filter, including median

filter, moving average, local regression, which all act as digital low-pass filters

that filter out sudden fluctuations in data. A technique called Savitzky-Golay

filter is chosen due to its capability of handling non-uniform-spaced data and

the slowest runtime compared to other choices.

Developed by Abraham Savitzky and Marcel J.E. Golay, the Savitzky-
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Golay filter is a digital filter that can smooth out abrupt deviations in data

[12]. This is done by taking adjacent data points in an N sized window

to find a polynomial of order K,K < N to find the fitting line with the

least squares. In the case of this paper, we are only interested in K = 1

since we only want to consider the linear information – whether the data is

rising or falling. This filter effectively ensures one crossing point with the

50% reference line for every rising or falling edges and eliminate the effect of

ripple noise in affecting the outcome of this algorithm. The required window

size N is empirically determined to be 25% of array length per UI. The Scipy

library supports this filter and can be implemented as follows:

1 N = int(samp_in_1UI/4) #window size

2 K = 1 #fitting polynomial order

3 v_filtered = savgol_filter(voltage,N,K)

4.3.3 Looping Through Different Slicing Locations

The final consideration is the slicing location. Consider Figure 4.4, a transient

voltage waveform sliced at two different timings for 1-UI eye formation. The

red dash horizontal line is obtained by calculating the midpoint of Vmax and

Vmin, which we wish to find the intersections with the eye. The intersections

are denoted in black boxes, and the orange star indicates the average of these

intersections.

Figure 4.4: Intersections with a threshold (black box) and their average
timing point (orange star) with different default eye diagram.

We can see from this example that if the rising and falling edges lie near

the center of the eye, this method is valid, but not the other case where
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they are separated. In order to overcome this caveat, the eye is circular

shifted multiple times, with each time applying the approximate crossing

point calculation. It is then subtracted by the initial shift to find the original

(unshifted) crossing point and appended to an array. The mode of these

stored crossing time values would be the final approximate crossing point.

Figure 4.5: Default-sliced eye diagams with different offsets to find the
approximate horizontal crossing point.

A code snippet of the loop would look something like this:

1 iterate = 11

2 final_approx_t = []

3 for i in range(iterate):

4 time_shifted = time + UI/iterate*i

5 #subtract UI/iterate*i to cancel out the offset applied above

6 approx_t = approx_crossing(time_shifted, voltage, UI) - UI/iterate*i

7 if(approx_t < 0):

8 approx_t += UI

9 final_approx_t.append(approx_t/UI)

10 final_approx_t = np.round(final_approx_t, 2)

11 approx_xing = mode(final_approx_t)

The function “approx crossing” would look like:
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1 def approx_crossing(t, v, UI):

2 #vertical shift such that the red dashed line is at 0

3 threshold = sum(voltage)/len(voltage)

4 v_shift = v - threshold

5 #find indexes of zero crossing

6 xing_idx = np.where(np.sign(v_shift[:-1])!=np.sign(v_shift[1:]))[0]+1

7 #get time values at those indexes

8 resultarray = np.take(t, xing_idx)

9 #if there are multiple crossings within 1UI, take the average

10 approx_xing = sum(resultarray)/len(resultarray)

11 return approx_xing

At the end of this block, the time array is shifted such that the calculated

approximate center is placed at 0.5UI.

1 t = t - (approx_xing*UI - 0.5*UI)

4.4 Classifying Transitions

Now that the eye crossing point is “somewhat” centered, we can classify the

eye into different transitions. Since a PAM-2 eye with 1-UI window encodes

transitions between two bits, we would have 22 = 4 transitions – 00, 01,

10, 11. In general, a PAM-N eye would encode 2N transitions. Of these

transitions, only 01 and 10 are of our interest. This is simply achieved by

looking at each 1-UI slicing window and comparing first and last data point

to determine a rising or falling edge. In fact, evaluating the sign of the

subtraction between first and last data point of the voltage value is more

accurate and more computationally efficient than obtaining average of the

gradient.

In this process, we would require a threshold voltage level to differentiate

between rising/falling eye waveforms that contribute to the crossing point and

ones that do not. Consider Figure 4.6 where only the 11 and 00 transitions

are plotted. The red lines indicate a “falling” edge if we only consider the

difference between the first and last voltage value, and vice versa for the

blue lines. However, none of these lines correspond to a real transition that

contributes to the eye crossing. Hence, we require an additional condition

that the lines must cross a certain threshold.
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Figure 4.6: 1→1 and 0→0 transitions that are “rising” (blue) and “falling”
(red) due to initial definition.

In order to determine the threshold, we need to compute an approximate

“1” and “0” voltage level and calculate the average. This step is similar to

Section 3.1 where an approximate center is calculated in that we only need

approximate values of the two voltage levels to determine the threshold. This

step considers eyes with overshoots and undershoots under presence of non-

linearity, where there could be significantly higher amplitude of overshoots

on the “1” level than the lower amplitude of undershoots on the “0” level,

and therefore simply taking the midpoint between the maximum and the

minimum voltage value would not be a holistic approach.

To find the voltage values for 1→1 and 0→0 transitions, the k-means al-

gorithm introduced in chapter 2.7 is used. We simply let k = 2 and find the

two centroids using this algorithm, which would each correspond to 1→1 and

0→0 transitions. This comes from the observation that identical bit transi-

tions have smaller changes in amplitude and different bit transitions are more

spread out since the voltage level needs to jump from one to another. The

amplitude would be the distance that the algorithm attempts to minimize.

With enough number of bits, the PRBS sequence generates enough number

of data points to determine accurate approximate voltage values for logic 1

and 0.

Figure 4.7 illustrates four eye diagrams with different shapes, with its

voltage histogram plotted on their right. The two red line in the histogram

plot shows the computed centroid. It can be seen that regardless of how

messy the eye is or whether non-linearity is present or not, the k-means

algorithm is able to locate two centroids that best represent voltage values

for 1→1 and 0→0 transitions. K-means clustering is well implemented in

scikit-learn, an open-source machine learning library that is part of Scipy.
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Figure 4.7: Visual illustration of applying k-means clustering. The red
horizontal lines indicate the two calculated centroids, approximating
voltage values for logic 1 and 0.

The following code achieves this:

1 from sklearn.cluster import KMeans

2 cluster = 2 #define number of clusters

3 model = KMeans(n_clusters=cluster, random_state=0, n_init='auto')

4 kmeans = model.fit(voltage.reshape(-1,1))

5 centroids = kmeans.cluster_centers_ #y

6 Vlevel = np.sort(centroids.flatten()) #low to high

7 threshold_1, threshold_0 = Vlevel[-1], Vlevel[0]

Now we can shift the focus to extracting the desired transitions – rising

and falling edges that contribute to the crossing point. We first take the

midpoint of the two obtained centroids, which will serve as a threshold value.

Waveforms that only intersect with this threshold line will be different bit

transitions, and whether the waveform is a rising or falling edge can be

determined by looking at the start and end of the data within the 1-UI sliced

window.

Threshold =
µlevel1 + µlevel0

2
(4.2)

The following code considers a 1-UI window waveform and extracts rising

or falling edges if it crosses the threshold. The output is stored as a single

nested array with each array element storing an array of data within 1-UI

window if the condition is met.

1 def eye_risefall_only(t, v, UI, centroid_1, centroid_0):

2 threshold = (centroid_1+centroid_0)/2

3 n = 0

4 result_t,result_v, append_t,append_v = [],[],[],[]
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5 for i in range(len(t)):

6 if(n*UI <= t[i] <= (n+1)*UI):

7 append_t.append(t[i] - (n*UI))

8 append_v.append(v[i])

9 else:

10 #0->1 transition

11 if(

12 (append_v[0] < threshold and append_v[-1] > threshold)

13 or

14 (append_v[0] > threshold and append_v[-1] < threshold)):

15 result_t.append(append_t)

16 result_v.append(append_v)

17 else:

18 v_11and00.append(append_v)

19 append_t,append_v = [],[]

20 append_t.append(t[i] - (n+1)*UI)

21 append_v.append(v[i])

22 n = n+1

23 return result_t, result_v, v_11and00

Note that the code doesn’t yet distinguish between rising and falling edges,

but rather first categorizes into different bit transitions (1→1, 0→0) and same

bit transitions (1→0 and 0→1). With enough bits simulated with the PRBS

generator, we can let the new crossing threshold to be the average of the

same bit transition voltage array. From the different bit transitions, and

with the new threshold line established, we can differentiate into rising or

falling edges. The following code achieves this:

1 for i in range(len(result_t)):

2 if(result_v[i][-1] - result_v[i][0] >= 0

3 and result_v[i][0]<new_threshold

4 and result_v[i][-1]>new_threshold):

5 rising_t.append(append_t) #0->1 transitions

6 rising_v.append(append_v)

7 elif(result_v[i][-1] - result_v[i][0] <= 0

8 and result_v[i][0]>new_threshold

9 and result_v[i][-1]<new_threshold):

10 falling_t.append(append_t) #1->0 transitions

11 falling_v.append(append_v)

12 else:

13 continue
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4.5 Finding Average Contour

Now the rising and falling waveforms are stored into two different arrays. A

superficial approach at this step is to find every single crossing point between

all of the rising and falling waveforms and take the average, but this entails

two major flaws. First, ripples in waveforms create intersections between

multiple rising (or falling) edges, which are not related to the crossing point

at all. Second, given N UI of total simulation time, there would be approx-

imately N
4
waveforms for each of the rising and falling edges, meaning that

there will be at least N2

16
crossing point calculations that need to be done,

which not only is computationally expensive but also increases the runtime

exponentially. To resolve such issues, the proposed algorithm computes one

weighted mean waveform for each of the rising and falling edges, and the

only one crossing point is calculated. In the case of multiple crossing points

scenario due to multi-modal jitter PDF, it outputs the mean of the crossing

points.

In order to calculate the average contour, the time domain needs to be

aligned for every UI window, meaning that the waveform data should be

stored in uniform time step. One way to do it is to use the conventional

histogram approach by categorizing data into fixed-width bins such that the

average point for every single vertical bin can be calculated. The transient

simulation in many EDA tools allows users to define a maximum, minimum,

or fixed time step. For fixed time step, smaller time steps have higher preci-

sion in the expense of longer simulation time, and vice versa for larger time

steps. A most common approach is to set a lower or upper bound for time

step size such that runtime can be minimized while maintaining a high pre-

cision. When a fixed time step is used, all data points are aligned vertically,

then the average contour can be easily calculated. On the other hand, for

the case of non-uniform time step, it requires an extra step for calculation.

When dealing with non-uniform time step, the conventional histogram

must be used to bin the unequally-spaced data into equally-sized vertical

bins. However, the problem occurs when different number of data falls into

different bins. For example, it is possible for non-uniform data to have 3 data

points in one vertical bin and only 1 data point in a different bin. When the

average is calculated in this way, the average contour results in erratic spikes

that hinders us from finding the final crossing point. Figure 4.8 depicts such
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Figure 4.8: Average contour (black) calculated with non-uniform time step
edges. Green arrows point to the intersection between the two black curves.

problem, where the crossing between rising and falling average contours is

marked with green arrows. The left figure depicts a small distortion due to

the spikes, and the right figure depicts a relatively bigger distortion where the

erratic spikes make unwanted intersection between the rising and the falling

edge.

This can be mitigated by re-interpolating the waveform data to have uni-

form spacing. Since the final purpose of the algorithm is to display the eye

diagram heat map, of which its resolution can be user-defined by the vertical

and horizontal bin number, we can use the horizontal bin width as the new

uniform time step to be re-interpolated. In most cases where the horizontal

bin width is larger than the largest step size in a transient simulation, size

of arrays can be reduced and hence make the calculations less computation-

ally expensive. Using such method, Figure 4.8 can be refined to Figure 4.9

such that now rising and falling edges are evenly spaced, hence resulting in

a smooth average contour.

Figure 4.9: Average contour (black) calculated with uniform time step
edges.
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The Scipy.interpolate library’s interp1d implements this using the follow-

ing logic:

1. Define an equally spaced time array of size binx, where binx is the

number of bins defined for eye plotting.

2. For each element ti and vi in the original time and voltage array, do:

(a) Find at which equally spaced time interval [tlow, thigh] ti belongs

to.

(b) Linearly interpolate using (ti, vi) and (ti+1, vi+1) to find the voltage

vnew value at t =
tlow+thigh

2

3. Remove duplicate voltage data in the same time interval

The following code is implemented for interpolation:

1 from scipy.interpolate import interp1d

2 def interpolation_1d(t,v,UI,eyebin_x):

3 evenspaced_v = []

4 newt = np.linspace(0, UI, eyebin_x+1)

5 for i in range(len(t)):

6 f = interp1d(t[i], v[i], kind='linear', fill_value="extrapolate")

7 newv = f(newt)

8 evenspaced_v.append(newv)

9 #find average contour

10 avg_contour = np.array(evenspaced_v).sum(axis=0) / len(evenspaced_v)

11 return newt, avg_contour, evenspaced_v

4.6 Computing Final Crossing Point

Now only two curves, the average contour for rising and falling edges, remain.

The intersection would be the final crossing point that we have been looking

for. Given two lines L1, defined by two points (x1, y1), (x2, y2), and L2,

defined by two points (x3, y3), (x4, y4), we can compute the crossing point

Px, Py, if L1 and L2 intersect, by [13]:
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(4.3)

Expanding the determinants to obtain the equivalent expression:

Px =
(x1y2 − y1x2) (x3 − x4)− (x1 − x2) (x3y4 − y3x4)

(x1 − x2) (y3 − y4)− (y1 − y2) (x3 − x4)
(4.4)

Py =
(x1y2 − y1x2) (y3 − y4)− (y1 − y2) (x3y4 − y3x4)

(x1 − x2) (y3 − y4)− (y1 − y2) (x3 − x4)
(4.5)

Since our average contour array is evenly spaced, x1 = x3 and x2 = x4.

Then Equations 4.4 and 4.5 simplifies to:

∆x = x1 − x2 = x3 − x4 (4.6)

Px =
∆x(x1y2 − y1x2 − x3y4 + y3x4)

∆x(y3 − y4 − y1 + y2)
=

x1y2 − y1x2 − x3y4 + y3x4

y3 − y4 − y1 + y2
(4.7)

Py =
(x1y2 − y1x2) (y3 − y4)− (y1 − y2) (x3y4 − y3x4)

∆x(y3 − y4 − y1 + y2)
(4.8)

It is important to note that Equations 4.4 and 4.5 can be used only once

while looping through every adjacent points for each of the rising and falling

data since there should be only one intersection. Furthermore, we can reduce

computational complexity by realizing that since the time arrays of the rising

and falling average contours are already uniformly-spaced, hence ∆x can

be easily obtained. Therefore, it is sufficient to only compare whether or

not an overlap exists between y intervals of the two adjacent data points.

The calculations using Equations 4.4 and 4.5 are only triggered when an

overlap exist between intervals [y1, y2] and [y3, y4]. Following code describes

the overall process:
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1 def intersection(x1, y1, x2, y2):

2 final_x, final_y = [], []

3 for i in range(len(x1)-1):

4 #account for rising and falling edge cases

5 y1_min = min([y1[i], y1[i+1]])

6 y1_max = max([y1[i], y1[i+1]])

7 y2_min = min([y2[i], y2[i+1]])

8 y2_max = max([y2[i], y2[i+1]])

9 #if intervals overlap

10 if((y2_min <= y1[i] <= y2_max) or

11 (y2_min <= y1[i+1] <= y2_max) or

12 (y1_min <= y2[i] <= y1_max) or

13 (y1_min <= y2[i+1] <= y1_max)

14 ):

15 t1, t3 = x1[i], x2[i]

16 t2, t4 = x1[i+1], x2[i+1]

17 v1, v2 = y1[i], y1[i+1]

18 v3, v4 = y2[i], y2[i+1]

19 A = t1*v2 - v1*t2

20 B = t3*v4 - v3*t4

21 denom = (t1-t2)*(v3-v4)-(v1-v2)*(t3-t4)

22 #calculate crossing points

23 x_xing = (A*(t3-t4)-(t1-t2)*B)/denom

24 y_xing = (A*(v3-v4)-(v1-v2)*B)/denom

25 else: continue

26 return final_x, final_y

4.7 Output and Plotting Shifted Eye

The output is a single pair of crossing point txing and vxing. Noting that

an approximate center was used to first shift the eye to classify waveforms

into different transition categories, we need to cancel out the initial offset

(horizontal only) as well in order to compute the final crossing point. The

code for the crossing point algorithm is concluded by outputting txing, final

and vxing, final.

1 return final_x+(approx_xing - 0.5*UI), final_y

The algorithm concludes at this point. txing, final would tell us the amount

of shift required in order to place the crossing point at 0.5UI location, and
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vxing, final would tell us the vertical crossing value, which would be the ref-

erence point for horizontal eye parameter calculations introduced in chapter

2.5.1. After the shift is applied, we can simply apply the slicing introduced

in chapter 4.2, and expand it into 2UI window to complete the eye diagram

plotting.

Though irrelevant to the eye crossing point itself, we also wish to return

the rising and falling edges separately, for two important eye parameters –

Rise Time (trise) and Fall Time (tfall) as defined in Equation 2.14 and 2.15.

We can simply return the two outputs from section 4.4, which would be time

and voltage arrays for rising and falling edges. This can greatly simplify eye

parameter calculations at later stages.
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CHAPTER 5

VERIFICATION

The validity of the algorithm is presented in two main ways. First, the eye

crossing detection capability is tested. Second, eye parameters are calculated.

Both of them are directly compared with EDA tools including ADS, Ansys

Circuit, and Cadence Virtuoso. However, direct comparison is only possi-

ble for normal eyes (with crossing percentage = 50%). For abnormal eyes

(with high ISI/jitter/different crossing percentage), only the obtained result

is presented. However, calculations from the EDA tools are also presented

to provide points to their inaccuracy.

5.1 Test Cases

There is an infinite set of combinations that can result in infinitely many

eye shapes, hence it is impossible to fully assess the algorithm, but we can

generate distinguishable cases with different eye diagram shapes to assess it

holistically.

To illustrate the validity, different waveforms with distinct eye shapes are

used to generate the shifted eye diagram. This is achieved by using different

kinds of channel to simulate and form the eye diagram. Ideal channels are

chosen to generate normal eye diagrams, and non-ideal channels are chosen

to generate eye diagrams with high ISI, jitter, or any distortions that make

the eye diagrams “messy” in order to account for extreme cases.

The following is a list of various eye shape scenarios, accounting for numer-

ous kinds of distortions such as ISI and jitter caused by various reasons such

as input mismatch, channel loss, and non-linearity. Note that the shapes of

eye diagrams are more important than how the distortion is introduced in

the channel.

1. Overshoots / Undershoots in 1 Level / 0 Level
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2. Single-modal / Multi-modal Jitter PDF

3. Different Crossing Percentage (50%, < 50%, > 50%)

4. Fast / Slow Rise and Fall Time

Though many more examples are tested, 21 test waveforms are listed in this

paper. some of them serve as a verification that is comparable with EDA

tools – meaning that EDA tools are also able to deliver accurate crossing

point detection. Others serve as a verification that some or all EDA tools

cannot acheive accurate crossing point detection, thereby illustrating the

comprehensiveness of the proposed algorithm.

Furthermore, since we initially assume slicing at integer UI locations, it

is needed account for different default slicing locations to prove that the al-

gorithm can shift the eye correctly regardless of its default slicing location.

This can be achieved by applying some offset to the waveform before start-

ing the algorithm, which would effectively generate default (unshifted) eye

diagrams as shown previously in Figure 1.2. In this section, the test bench is

set up such that the offset is equal to 1
10

of UI, meaning that each waveform

generates 10 test cases with 0.1UI, 0.2UI, ... amount of time delays to test

the algorithm. Figures below list all the test cases before shifting, with each

case corresponding to 10 cases with different offsets, and shapes labeled ac-

cording to the list above. The eye diagrams are formed with default slicing –

at integer multiples of UI. With 21 test waveforms, it would amount to 210

test cases.
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Figure 5.1: Test Case Table
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Figure 5.2: Test Case Table (continued)
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Figure 5.3: Test Case Table (continued).
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5.2 Verification of the Eye Crossing Point Detection

With the test cases established in section 5.1, eye crossing point detection

algorithm is applied and shifted such that the eye crossing point is at 50%

of the 1-UI window of the eye diagram. The crossing point is marked with a

red cross in the table below.

Figure 5.4: Eye Crossing Point Detection Verification Table.
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Figure 5.5: Eye Crossing Point Detection Verification Table (continued).
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5.3 Verification of Eye Parameters

As eye parameters have their established mathematical definitions, we can

directly compare the calculated eye parameters from the proposed algorithm

with those from current EDA tools. It is achieved by inputting identical

discrete data waveform into different EDA tools. This can be done by ex-

tracting the waveform that we wish to generate the eye diagram from ADS

and set it as a piecewise linear voltage waveform in other tools, which then

they can generate the eye diagram and eye parameters. This is illustrated in

Figure 5.6.

Figure 5.6: Eye Parameter Comparison Methodology.

Table 5.1 summarizes the eye crossing point detection accuracy for the

proposed algorithm and the industry EDA tools, including ADS, Ansys, and

Virtuoso. Ones labelled with a red × are the cases that failed to find the

accurate crossing point. These ones are marked in red in Table 5.2, 5.3, 5.4,

5.5, 5.6 as well.
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Table 5.1: Comparison table for correct eye shifting

Correct Eye Shifting
test case paper ADS Ansys Virtuoso

1 ⃝ ⃝ × ⃝
2 ⃝ ⃝ × ×
3 ⃝ ⃝ ⃝ ⃝
4 ⃝ ⃝ × ⃝
5 ⃝ ⃝ ⃝ ⃝
6 ⃝ ⃝ ⃝ ⃝
7 ⃝ ⃝ ⃝ ⃝
8 ⃝ ⃝ ⃝ ⃝
9 ⃝ ⃝ ⃝ ⃝
10 ⃝ × × ⃝
11 ⃝ × ⃝ ⃝
12 ⃝ × ⃝ ×
13 ⃝ × × ×
14 ⃝ ⃝ × ×
15 ⃝ ⃝ × ×
16 ⃝ ⃝ × ×
17 ⃝ ⃝ × ×
18 ⃝ ⃝ × ×
19 ⃝ ⃝ × ⃝
20 ⃝ ⃝ × ×
21 ⃝ ⃝ × ×

It can be seen from Table 5.2 that the numbers match very well. While

Virtuoso was able to provide values for all cases, ADS and Ansys had cases

where they were not able to calculate Level1 and Level0, therefore outputting

0s as an error. Some failed cases (in red) show a large discrepancy, which

correspond to cases where the program was taking the wrong segment to

calculate the error, implying its imperfection. For example, checking the

boxed range of data Virtuoso selected for Level1 and Level0 calculation, we

can see from the left of Figure 5.7 (test case #18) that the box was misplaced

horizontally, and the right of it (test case #19) that the vertical threshold of

the two boxes was interpreted incorrectly.
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Table 5.2: Comparison table for Level 1 and Level 0

Level 1 (V) / Level 0 (V)
test case paper ADS Ansys Virtuoso

1 0.333 / 0.001 0.332 / 0.001 0.332 / 0.001 0.332 / 0.002
2 0.333 / 0.001 0.331 / 0.001 0.331 / 0.001 0.332 / 0.002
3 0.349 / 0.039 0.344 / 0.043 0.341 / 0.046 0.337 / 0.049
4 0.344 / 0.044 0.362 / 0.024 0.373 / 0.118 0.327 / 0.061
5 0.213 / -0.215 0.212 / -0.214 0.210 / -0.202 0.186 / -0.187
6 0.861 / 0.151 0.863 / 0.148 0.858 / 0.152 0.818 / 0.193
7 0.189 / -0.174 0.188 / -0.173 0.185 / -0.159 0.160 / -0.148
8 0.290 / -0.309 0.288 / -0.306 0.286 / -0.301 0.264 / -0.281
9 0.331 / 0.002 0.331 / 0.002 0.331 / 0.002 0.333 / 0.538
10 0.331 / 0.002 0 / 0 0.331 / 0.002 0.330 / 0.004
11 1.379 / 0.008 0 / 0 1.393 / -0.003 1.420 / -0.003
12 1.956 / 0.028 0 / 0 1.974 / -0.011 1.931 / 0.002
13 1.136 / 0.016 0 / 0 1.429 / -0.008 1.364 / 0.019
14 1.497 / -0.027 1.4810 / -0.026 1.494 / -0.031 1.534 / -0.021
15 2.536 / -0.482 2.546 / -0.482 2.906 / -0.708 3.070 / -0.834
16 2.014 / -0.184 2.048 / -0.206 2.738 / -0.617 3.025 / -0.537
17 0.223 / 0.045 0.223 / 0.044 0.222 / 0.042 0.224 / 0.054
18 3.159 / -0.342 3.249 / -0.161 0 / 0 1.990 / 0.672
19 0.245 / 0.0001 0.214 / -0.019 0 / 0 0.169 / 0.009
20 0.746 / 0.242 0.828 / 0.159 0.797 / 0.189 0.817 / 0.170
21 0.725 / 0.265 0.711 / 0.246 0 / 0 0.648 / 0.331

Figure 5.7: Eye diagram generated by Cadence Virtuoso, test case 18 (left)
and 19 (right).
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Table 5.3: Comparison table for Eye Width (EW) and Eye Height (EH)

EW (ns) / EH (V)
test case paper ADS Ansys Virtuoso

1 0.949 / 0.328 0.500 / 0.323 0.493 / 0.321 0.987 / 0.323
2 0.693 / 0.327 0.400 / 0.317 1.177 / 0.314 0.794 / 0.218
3 0.895 / 0.192 0.045 / 0.157 0.414 / 0.126 0.924 / 0.152
4 0.899 / 0.178 0.453 / 0.127 -0.014 / -0.034 0.932 / 0.085
5 0.069 / 0.056 0.081 / 0.169 0.073 / 0.025 0 / -0.027
6 0.151 / 0.128 0.211 / 0.198 0.159 / 0.158 0 / -0.027
7 0.002 / -0.120 0.015 / 0 0.009 / -0.157 0 / -0.178
8 0.042 / 0.400 0.046 / 0.435 0.044 / 0.396 0.043 / 0.282
9 0.996 / 0.316 0 / 0.014 1 / 0.315 1 / 0.323
10 -0.071 / 0.320 0 / 0 -0.102 / 0.318 0.198 / 0.302
11 0.444 / 1.186 0 / 0 0.448 / 1.311 0.580 / 1.175
12 0.052 / 0.934 0 / 0 0.388 / 1.412 0.263 / 1.049
13 -0.069 / -0.068 0 / 0 -0.185 / 1.296 0.100 / 1.061
14 0.065 / 1.128 0.162 / 1.283 0.122 / 1.155 0.111 / 1.137
15 -0.060 / -0.070 0 / 1.368 0.133 / -0.294 0.019 / -1.069
16 0.004 / 0.732 0.120 / 1.312 0.038 / 0.518 0.085 / 0.522
17 0.898 / 0.104 0.945 / 0.123 0.695 / 0.099 0.916 / 0.087
18 -0.062 / -1.792 0.015 / 0 0 / 0 0 / -2.56
19 0.928 / 0.014 0 / 0 0 / 0 0.924 / -0.213
20 -0.108 / -0.218 0.064 / 0.206 -0.033 / -0.050 -0.013 / 0.061
21 -0.071 / -0.361 0 / 0 0 / 0 0 / -0.559

We have a good match between the proposed algorithm and other EDA

tools. It can be seen that for all three EDA tools, there were cases that they

could not compute the EW and EH at all. Other discrepancies could be from

multiple causes :

1. While identical waveform is imported into the programs to generate the

eye diagram, the transient simulator might have dealt the waveforms

differently, resulting in slightly different outputs.

2. The programs use their own binning method to reduce computational

complexity, and different bin sizes can affect the resulting output pre-

cision

3. The programs seem to use distribution fitting methods, such as a Gaus-

sian distribution, to generate a curve fit to find the σ required for EW

and EH calculation

4. Just like the right Figure of 5.7, even if the shifting is done correcrtly,

the program might not determine the threshold between Level1 and
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Table 5.4: Comparison table for SNR and Eye Amplitude

SNR / EyeAmp (V)
test case paper ADS Ansys Virtuoso

1 48.9 / 0.332 125 / 0.331 107 / 0.330 146 / 0.330
2 45.8 / 0.332 77 / 0.330 63.2 / 0.331 9.62 / 0.317
3 17.9 / 0.310 5.85 / 0.302 5.25 / 0.295 6.33 / 0.289
4 17.3 / 0.300 3.03 / 0.338 2.74 / 0.362 4.41 / 0.266
5 10.8 / 0.427 3.40 / 0.425 3.22 / 0.413 2.80 / 0.372
6 11.3 / 0.710 3.83 / 0.715 3.86 / 0.707 8.94 / 0.720
7 7.06 / 0.362 2.22 / 0.360 2.06 / 0.343 1.90 / 0.309
8 19.1 / 0.599 8.74 / 0.593 9.23 / 0.587 6.23 / 0.545
9 37.5 / 0.330 81.8 / 0.329 71.0 / 0.329 102 / 0.332
10 40.3 / 0.329 0 / 0 91.9 / 0.329 39.6 / 0.326
11 26.9 / 1.371 0 / 0 49.2 / 1.396 17.2 / 1.423
12 15.3 / 1.928 0 / 0 10.4 / 1.985 6.58 / 1.930
13 9.03 / 1.121 0 / 0 30.6 / 1.437 14.2 / 1.345
14 21.2 / 1.524 13.9 / 1.504 12.4 / 1.525 11.2 / 1.555
15 9.34 / 3.018 2.93 / 3.028 2.78 / 3.614 2.36 / 3.904
16 13.1 / 2.198 4.51 / 2.254 3.55 / 3.355 3.52 / 3.562
17 17.1 / 0.178 7.16 / 0.179 6.73 / 0.180 6.18 / 0.170
18 5.95 / 3.502 2.12 / 3.410 0 / 0 1.02 / 1.318
19 10.1 / 0.245 1.87 / 0.233 0 / 0 1.285 / 0.159
20 6.41 / 0.503 3.41 / 0.669 2.77 / 0.608 3.32 / 0.647
21 4.51 / 0.460 1.66 / 0.465 0 / 0 1.097 / 0.318

Level0 data correctly, therefore resulting in an incorrect value for Eye

Height (EH).

From Table 5.4, we see a very good match for Eye Amplitude (EyeAmp).

However, we see large discrepancies in SNR. SNR is calculated from Equation

2.20 and the denominator σs have a large impact on the resulting output.

As mentioned in the previous section, programs can use curve fitting method

to assume a certain distribution to calculate the σs, while the proposed al-

gorithm simply calculates the variance using its discrete form. We can see

a large difference for the cases with inaccurate eye crossing point detection

(marked in red). This is especially prevalent in cases where curves are more

spread out, having high variance in the 40% 60% of the 2-UI window, there-

fore hugely impacting the SNR calculation when the shifting is not done

correctly.
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Table 5.5: Comparison table for Jitter (peak-to-peak and RMS)

Jitterp−p(ns) / JitterRMS(ns)
test case paper ADS Ansys Virtuoso

1 0.030 / 0.009 0 / 0 0.005 / 0.001 not provided
2 0.454 / 0.051 0.100 / 0.050 0.168 / 0.054 not provided
3 0.096 / 0.018 0.053 / 0.014 0.058 / 0.014 not provided
4 0.066 / 0.017 0.0475 / 0.0165 0.369 / 0.086 not provided
5 0.032 / 0.005 0.020 / 0.005 0.025 / 0.005 not provided
6 0.187 / 0.030 0.122 / 0.030 0.165 / 0.029 not provided
7 0.100 / 0.016 0.096 / 0.017 0.100 / 0.015 not provided
8 0.008 / 0.001 0.004 / 0.001 0.005 / 0.001 not provided
9 0.002 / 0.001 0.005 / 0.0025 0.002 / 0.000 not provided
10 0.513 / 0.179 0 / 0 0.504 / 0.184 not provided
11 0.238 / 0.093 0 / 0 0.232 / 0.092 not provided
12 0.457 / 0.158 0 / 0 0.228 / 0.102 not provided
13 0.240 / 0.095 0 / 0 0.237 / 0.114 not provided
14 0.077 / 0.023 0.038 / 0.012 0.048 / 0.013 not provided
15 0.144 / 0.043 0.187 / 0.068 0.042 / 0.011 not provided
16 0.090 / 0.033 0.080 / 0.032 0.080 / 0.027 not provided
17 0.090 / 0.017 0.055 / 0.015 0.178 / 0.051 not provided
18 0.100 / 0.027 0.085 / 0.025 0 / 0 not provided
19 0.067 / 0.012 0 / 0.265 0 / 0 not provided
20 0.143 / 0.042 0.143 / 0.034 0.081 / 0.029 not provided
21 0.091 / 0.027 0.091 / 0.027 0 / 0 not provided

Jitter calculation is done by chossing values in a thin strip near the cross-

ing point, but how thin it should be is not only undefined mathematically,

but also different in different EDA tools. For this paper, ±5% values of the

Eye Amplitude are chosen as the boundaries of the thin strip. The differ-

ence caused by this can increase when there is high jitter, or when there are

ripples that causes the algorithm to choose different range of data with dif-

ferent strip thickness. Considering these uncertainties, we see a good match

between the algorithm and the EDA tools. It is also important to note that

Cadence Virtuoso does not provide Jitterp−p and JitterRMS as part of its

eye parameters.
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Table 5.6: Comparison table for rise time and fall time

Risetime (ns) / Falltime (ns)
test case paper ADS Ansys Virtuoso

1 0.180 / 0.180 0.18 / 0.18 0.181 / 0.181 0.182 / 0.182
2 0.180 / 0.180 0.18 / 0.18 0.181 / 0.181 0.175 / 0.175
3 0.268 / 0.264 0.302 / 0.280 0.233 / 0.232 0.219 / 0.218
4 0.245 / 0.251 0.304 / 0.302 0.490 / 0.103 0.085 / 0.074
5 0.068 / 0.067 0.070 / 0.068 0.064 / 0.062 0.052 / 0.051
6 0.186 / 0.183 0.197 / 0.194 0.189 / 0.187 0.157 / 0.151
7 0.063 / 0.059 0.063 / 0.057 0.068 / 0.063 0.043 / 0.042
8 0.020 / 0.020 0.002 / 0.002 0.002 / 0.002 0.018 / 0.018
9 0.025 / 0.025 0.003 / 0.003 0.025 / 0.025 0.026 / 0.026
10 0.062 / 0.066 0 / 0 0.070 / 0.069 0.063 / 0.063
11 0.164 / 0.184 0 / 0 0.146 / 0.150 0.040 / 0.029
12 0.297 / 0.170 0 / 0 0.281 / 0.160 0.153 / -0.632
13 0.184 / 0.169 0 / 0 0.151 / 0.170 0.039 / 0.025
14 0.019 / 0.012 0.041 / 0.048 0.019 / 0.010 0.039 / 0.024
15 0.052 / 0.077 0.085 / 0.117 0.064 / 0.077 0.032 / 0.037
16 0.063 / 0.054 0.034 / 0.075 0.067 / 0.093 0.042 / 0.077
17 0.229 / 0.325 0.164 / 0.452 0.217 / 0.298 0.095 / 0.264
18 0.029 / 0.039 0.036 / 0.039 0 / 0 0.005 / 0.009
19 0.325 / 0.461 0.304 / 0.225 0 / 0 0.109 / -0.023
20 0.084 / 0.089 0.064 / 0.088 0.065 / 0.060 0.033 / 0.043
21 0.048 / 0.039 0.045 / 0.047 0 / 0 0.027 / 0.029

We also observe a good match here. The causes of discrepancy could come

from the programs unable to accurately classify rising and falling edges. For

example, test case #14 has overshoots in 0 level and undershoots in 1 level

that coincides with the crossing point, as illustrated in the left of Figure 5.8.

The proposed algorithm can accurately distinguish rising and falling edges,

while other EDA tools seem to have failing cases.

Figure 5.8: Eye diagram for test case #14, with correctly classified rising
(middle) and falling (right) edges.

In conclusion, it is demonstrated that the proposed algorithm provides

more accurate analysis of eye parameters, while other EDA tools have edge

cases that fail to deliver them, or deliver them inaccurately.
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CHAPTER 6

RUN TIME OPTIMIZATION

6.1 Run Time Summary

To test the original goal of having a very short run time compared to the

transient simulation run time, identical channel with different transient sim-

ulation stop time is tested. 2000ns is often a minimum metric for statistical

analysis, while on the scale of 100ns is sufficient to visualize the eye diagram

and locate any signal distortions. Following tables list run time results of

two cases – case #3, a 100×100 Power Distribution Network at 1GHz, and

case #20. a 6-inch long meandered coupled microstrip line at 9GHz.

Table 6.1: Run time and relative percentage to transient simulation time
for test case #3

Test case #3 - 100x100
Power Distribution Network (PDN)

Run Time (s) (Relative to
Transient Simulation Run Time (%))

Transient Simulation
Stop Time (ns)

Input Array
Length

Transient
Simulation

Crossing Point
Detection

Eye Diagram
Plotting

Eye Parameter
Calculation

100 11187 26.23 0.09 (0.34%) 0.17 (0.65%) 0.07 (0.27%)
1000 104497 96.44 0.67 (0.69%) 0.42 (0.44%) 0.33 (0.34%)
5000 217764 498.92 1.34 (0.27%) 0.89 (0.18%) 0.9 (0.18%)
10000 1057467 958.28 6.52 (0.68%) 2.29 (0.24%) 4.41 (0.46%)

Table 6.2: Run Time and relative percentage to transient simulation time
for test case #20

Test case #20 - 6-inch long
meandered coupled microstrip line

Run Time (s) (Relative to Transient
Simulation Run Time (%))

Transient Simulation
Stop Time (ns)

Input Array
Length

Transient
Simulation

Crossing Point
Detection

Eye Diagram
Plotting

Eye Parameter
Calculation

100 14406 5.83 0.28 (4.80%) 0.26 (4.46%) 0.18 (3.09%)
1000 144006 48.93 2.39 (4.88%) 1.31 (2.68%) 2.4 (4.90%)
10000 1440006 491.38 20.21 (4.11%) 16.24 (3.30%) 19.69 (4.01%)
40000 5760006 1997.67 28.19 (1.41%) 22.11 (1.11%) 23.11 (1.16%)

We can see from the above tables that the relative run time compared to

the transient simulation run time is less than 5%, with test case #3 having

65



it less than 1%. Though not listed in this paper, all other test cases were

also run and verified that the relative run time percentage stays below 5% of

the transient simulation run time. Therefore, it is implied that the proposed

algorithm is comparable to, if not faster than, industry EDA tools, while

having higher accuracy in crossing point detection

It is also important to note that the transient simulation run time, as well

as the crossing point detection algorithm run time depends on computational

speed. For reference, this paper’s data is tested with a Macbook Pro (14-inch,

2021) with 8-core CPU and 14-core GPU. Larger-scale computing machines

would be able to run the software faster. Furthermore, it is expected that

the improvements of computational capability and optimization of python

libraries would reduce the run time in the near future.

Furthermore, if this is implemented along witht the transient simulator,

the algorithm can be initiated during the transient simulator such that the

software can run the transient simulation and append the simulated waveform

into the algorithm simultaneously in order to further minimize the run time.

In terms of the algorithm itself, many approaches have been implemented

and tested for same functionality, of which the fastest ones are chosen.

List comprehension is generally faster than the numpy library when deal-

ing with variable sized nested arrays. For example, it had been discovered

that sum()/len() is much faster than np.average function, and list append is

faster than np.hstack. When using the binning method, plt.hist2d by default

plots the 2D histogram, while np.hist2d doesn’t, thereby saving computa-

tional time when plotting is not needed. When implementing the Savitzky-

Golay Filter, we are only interested in K = 1, hence the filter function in the

Scipy library is custom-modified such that computational time is minimized.

Even though the problem initially seemed simple, it involved great effort at-

tempting different methodologies in order to achieve the goal of minimal run

time.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, we introduced the algorithm for crossing point detection in

eye diagrams. This algorithm provides a comprehensive approach to the

crossing point detection, not only verifying its validity in comparison with

current EDA tools, but also enabling accurate eye shifting such that more

accurate eye parameter calculations can be achieved.

The algorithm was tested with various test cases with very different eye

shapes, enabling accurate quantification of the signal quality in signal in-

tegrity, which existing EDA tools could not achieve. Furthermore, this algo-

rithm also accounts for non-linearities, which becomes prevalent in practical

applications as we shift into higher bit rates and crosstalks due to smaller

transistor sizes. Inspired by Moore’s law, the operation speed of electronic

devices strives to increase, and new inventions will result in high-speed sys-

tems in a more compact form. Inventions such as LIM [1] is a great example

of an attempt to reduce simulation runtime as it aims to achieve runtime

linearity with larger circuit sizes. Having a fast simulation tool is essential

for engineers, and consequently economy of scale can be achieved to realize

what we dream of much earlier.

7.2 Future Work

This paper focuses on eye diagrams generated from transient simulation,

which is a continuous waveform in the time domain. Channel Simulation is

another method that uses convolution between a single pulse response and

PRBS, which is generally faster than the transient simulation [14]. There also
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exists the statistical simulation [15], which constructs the eye diagram using

large scale statistical properties, which is not fully explored in this paper.

A statistical eye takes a single pulse response and overlays every possible

combinations (+ and -) of the ISI, which is more useful for statistical analysis

such as BER or bathtub plots. Nevertheless, the illustrated algorithm in

Chapter 4 can be applied to find the crossing point for statistical eye diagrams

as well since the algorithm looks at each UI and classifies into rising and

falling edges.

While this paper focuses on PAM-2 eye diagrams, it can be extended into

PAM-4 or PAM-N as well. However, There are more than 1 crossing point

for PAM-4 and above, urging the need for an agreed definition of the refer-

enced eye crossing point. For PAM-4, It is possible to modify the algorithm

such that, if the threshold voltage is set properly, all different level transi-

tions are separated (rising/falling edges for each of 00→00, 00→01, 00→10,

00→11, 01→00, ... and so on). For PAM-8 and above schemes, there isn’t a

universally agreed set of definitions that quantify the quality of channel, as

these schemes are employed very lately. Nevertheless, this paper’s algorithm

sets an important milestone for shifting adjustment algorithm needed for eye

parameter calculations.
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