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ABSTRACT 

  

The analysis of high-speed networks is often carried out using transistor level simulation 

tools which have large computational time. This leads to a limitation in terms of the amount of 

time spent generating an optimal design and accurately analyzing the system. Therefore, there is a 

need for fast and accurate modeling of packages and boards, which is the key for developing high 

performance devices. With increasing complexity, thermal effects significantly impact the systems 

performance as well. Hence, the fast model should be able to perform electro-thermal co-

simulations as well. By integrating thermal analysis with electrical simulations, we can optimize 

designs for efficiency without overheating issues.  This thesis discusses a machine learning based 

approach using neural networks to generate a fast model, eliminating the need to run long 

simulations using EM solvers often. This helps in creating the most optimal design faster without 

going through many iterations. ML based fast learned model is obtained for a differential PTH. 

An effective way to generate datasets for training the ML model is discussed. The generated ML 

model shows a 200X improvement over HFSS while simulating a single design using the Inference 

model of the neural network. This thesis also discusses a method using machine learning to 

perform electro-thermal simulations. The proposed method shows a 220X speedup when 

compared to the two-way coupling process for electro-thermal simulations.  
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CHAPTER 1 

INTRODUCTION 

 

1.1.  Problem Statement 

In recent decades, the scaling of electronic packaging technologies has become a key 

enabler in meeting the growing demands for higher data rates, increased integration density, and 

improved power efficiency in modern computing and communication systems. Advances in 

packaging—such as 2.5D interposers, 3D stacked integrated circuits (3D ICs), and system-in-

package solutions—have significantly improved system performance by reducing form factor, 

interconnect length, and power consumption. However, these benefits come at the cost of increased 

complexity in electromagnetic behavior due to high-density interconnects, tighter pitch vias, and 

heterogeneous integration across multiple silicon and package layers [1]. 

As packaging technologies evolve, signal integrity (SI) has emerged as a critical 

consideration in the design of high-speed systems. SI refers to the ability of a signal to propagate 

from the transmitter to the receiver without significant distortion, loss, or interference. In high-

speed digital systems, even minor discontinuities in interconnects—such as vias, connectors, or 

transmission line stubs—can lead to reflection, crosstalk, jitter, and inter-symbol interference (ISI), 

all of which degrade system performance. These effects become especially pronounced at multi-

gigabit data rates, where the signal rise/fall times are on the order of tens of picoseconds and 

wavelengths become comparable to physical feature sizes on the board or package [2]. As a result, 

accurate modeling and analysis of SI behavior in the package and board have become integral to 

the early stages of system design. 
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Traditionally, signal integrity analysis has relied heavily on electromagnetic (EM) solvers 

and circuit simulators that numerically solve Maxwell’s equations to predict the behavior of 

interconnect structures. Full-wave 3D EM solvers, such as Ansys HFSS, CST Microwave Studio, 

etc., provide highly accurate broadband characterization of packages and PCBs by employing 

methods like the Finite Element Method (FEM), Finite Difference Time Domain (FDTD), or 

Method of Moments (MoM). These tools are capable of extracting S-parameters, impedance 

profiles, and time-domain responses from complex geometries and multi-layer structures, 

including vias, transmission lines, and connectors. Circuit-level simulators like HSPICE are often 

used in conjunction with extracted parasitics to evaluate eye diagrams, bit error rates (BER), and 

jitter performance under realistic signaling conditions [3], [4]. 

Despite their accuracy, these traditional EM-based methods suffer from significant 

computational bottlenecks. As modern packages incorporate multiple layers, high via densities, 

and complex transitions, the mesh size required to resolve fine geometrical details leads to an 

exponential increase in simulation time and memory consumption. It is not uncommon for a single 

high-fidelity full-wave simulation of a via or BGA breakout region to take several hours to days, 

especially when broadband responses over 0–100 GHz are required. Furthermore, design processes 

increasingly demand rapid iterations for design space exploration (DSE), sensitivity analysis, and 

optimization, which require hundreds or thousands of simulation runs. Performing such tasks using 

conventional EM solvers is not only time-consuming but often computationally infeasible [5]. 

Another challenge associated with traditional methods is the lack of scalability in 

supporting uncertainty quantification (UQ) and statistical analysis, which are essential in 

addressing process variations and manufacturing tolerances. Monte Carlo simulations, which 

require repeated runs with varied parameters, become prohibitive in terms of computational effort 
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when relying solely on full-wave solvers. This constraint hinders the ability to explore worst-case 

scenarios and robust design margins effectively. Additionally, the iterative nature of co-design—

where package, board, and IC design must be tuned concurrently—further amplifies the demand 

for fast, accurate, and flexible analysis tools [6].  

To address these limitations, there is a growing interest in developing surrogate modeling 

approaches that can replicate the behavior of EM solvers with a fraction of the computational cost. 

These include reduced-order modeling (ROM), machine learning (ML) techniques, and behavioral 

modeling using neural networks. Such methods aim to bridge the gap between accuracy and 

computational efficiency, enabling faster design cycles while retaining the fidelity required for 

high-performance applications. 

This dissertation discusses a method using ML techniques to develop fast and accurate 

models for SI analysis.  The design of complex interconnection schemes involves the 

characterization of individual components within the system. This means that the frequency 

response of these components needs to be analyzed. The obtained frequency response in terms of 

S-parameters is then also used for time-domain simulations. The S-parameters of the designed 

components are generally obtained using EM solvers like HFSS, which, as discussed, can be time 

consuming. Recent literature has shown that traditional EM solvers can be replaced by a machine 

learning model that is fast and accurate. The machine learning (ML) model can predict the S-

parameters for a particular design space once it is trained with the data in the design space. This 

trained ML model generates the predicted S-parameters accurately and is much faster than the 

traditional EM solvers and therefore can replace the EM solvers during the design process [5]. 

 This dissertation is structured as follows: The motivation for developing a ML model is 

discussed in Chapter 1 along with an overview of S-parameters and Machine Learning algorithms. 
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Chapter 2 discusses the neural network architecture used to develop the ML model. In Chapter 3, 

the effectiveness of using neural networks is tested by developing a ML model for a plated through 

hole package. The technique used for generating efficient datasets for training purposes is also 

described along with the performance results when compared to traditional simulations. Chapter 4 

expands the scope of the NN framework to electro-thermal analysis by developing an ML model 

of a PTH that can also predict the temperature. Two-way coupling is used for generating the dataset 

for training the model for electro-thermal co-design. Chapter 5 summarizes the advantages of using 

ML models over the traditional solvers and discusses its limitations and future scope. 

 

1.2. Overview of Scattering parameters and Signal Integrity (SI) analysis 

 
Scattering parameters, commonly referred to as S-parameters, are fundamental to the 

characterization of high-frequency electronic systems. They describe how electrical signals behave 

as they encounter discontinuities in a multi-port network, such as vias, connectors, transmission 

lines, and package interfaces. Unlike impedance or admittance parameters, which require voltage 

and current measurements at each port, S-parameters relate incident and reflected voltage waves, 

making them particularly suitable for high-frequency and RF applications where direct current and 

voltage measurement is challenging [3]. 

S-parameters are defined in the frequency domain and are typically extracted using vector 

network analyzers (VNAs) or electromagnetic (EM) solvers. For a given frequency, they provide 

a complete description of how a network reflects and transmits signals between ports. As a result, 

they are extensively used in SI analysis to model and simulate the performance of interconnects in 

printed circuit boards (PCBs), packages, and integrated circuits (ICs). They help quantify losses, 

impedance mismatches, and crosstalk that affect the quality of signals propagating in the system. 
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Their ability to capture broadband frequency behavior makes them indispensable in high-speed 

digital design, where signal degradation can result in eye closure, jitter, and bit errors. As 

frequency increases, transmission losses typically become more pronounced due to dielectric loss, 

conductor skin effect, and radiation. Reflections may also increase if impedance discontinuities 

are present. Therefore, accurate modeling and understanding of S-parameters across a broad 

frequency range is critical for designing robust high-speed systems. 

 

1.2.1. Definition of S-parameters 

For an N-port network, let 𝑎𝑖 represent the incident wave at port 𝑖, and 𝑏𝑖 represent reflected 

wave at the same port. The S-parameter matrix S is defined as: 

𝑏𝑖 = ∑ 𝑆𝑖𝑗𝑎𝑗
𝑁
𝑗=1 ,  for 𝑖 = 1,2, … , 𝑁                                             (1.1) 

or in matrix form: 

𝒃 = 𝑺 ⋅ 𝒂                                                  (1.2) 

where 𝒂 = [𝑎1, 𝑎2, … , 𝑎𝑁]𝑇 is the vector of incident waves, 𝒃 = [𝑏, 𝑏, … , 𝑏𝑁]𝑇 is the vector of 

reflected waves, 𝑺 is the N x N S-parameter matrix  

 

Each element 𝑆𝑖𝑗 describes the ratio of the reflected wave at port 𝑖 to the incident wave at port 𝑗, 

with all other ports terminated in matched loads is: 

𝑆(𝑖𝑗) = (𝑏𝑖/𝑎𝑗)|
(𝑎𝑗=0,¥𝑘≠𝑗)

                                                  (1.3) 

𝑆𝑖𝑖 is the reflection coefficient at port 𝑖, 𝑆𝑖𝑗 is the transmission coefficient from port 𝑗 to port 𝑖. 
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1.2.2. S-parameters of a 4-port Network 

A 4-port system is common in differential signaling environments such as high-speed serial 

links, Plated-through hole (PTH), etc. The S-matrix of a 4-port system is: 

𝑺 =  [

𝑺𝟏𝟏 𝑺𝟏𝟐 𝑺𝟏𝟑 𝑺𝟏𝟒

𝑺𝟐𝟏 𝑺𝟐𝟐 𝑺𝟐𝟑 𝑺𝟐𝟒

𝑺𝟑𝟏 𝑺𝟑𝟐 𝑺𝟑𝟑 𝑺𝟑𝟒

𝑺𝟒𝟏 𝑺𝟒𝟐 𝑺𝟒𝟑 𝑺𝟒𝟒

]                                             (1.4) 

Here, each term has a specific representation: 𝑆11 is the reflection at port 1, 𝑆21 is the transmission 

from port 1 to port 2, 𝑆31 𝑆41 represent the crosstalk from port 1 to ports 3 and 4, 𝑆34 is the 

transmission from port 4 to port 3, etc. If the system is reciprocal, then 𝑆𝑖𝑗 = 𝑆𝑗𝑖 and if the system 

is lossless, then the S-matrix is unitary (𝑆𝐻𝑆 = 𝐼).  

 

 S-parameters provide a fundamental and efficient way to model and analyze high-

frequency behavior in multi-port systems. In the domain of signal integrity, they enable designers 

to understand and mitigate losses, reflections, and crosstalk in interconnect structures with great 

accuracy. Their matrix-based formulation and compatibility with both frequency- and time-

domain simulation frameworks make them indispensable for modern high-speed system design. 

Therefore, we use S-parameters for SI analysis of packages in the frequency domain in this work.  

 

1.3. Review of Machine Learning Algorithms 

 
Machine learning (ML) is a branch of artificial intelligence that allows systems to 

automatically learn from data and improve from experience without being explicitly programmed. 

It has become a cornerstone technology in a wide range of applications, from natural language 

processing to computer vision and, more recently, electronic design automation and SI analysis. 
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             At the heart of many ML models lie neural networks—computational structures inspired 

by the human brain. Neural networks have demonstrated state-of-the-art performance in tasks 

involving pattern recognition, regression, classification, and complex nonlinear modeling. 

 

1.3.1. Fundamentals of Neural Networks 

Neural networks are composed of layers of interconnected units called artificial neurons or 

nodes. These neurons mimic the function of biological neurons by aggregating weighted inputs 

and applying an activation function to produce an output. 

An artificial neuron takes multiple inputs, each associated with a weight, and computes a 

weighted sum. A bias term is added to shift the activation function. This sum is passed through an 

activation function to produce the final output. Mathematically, the output of a single neuron can 

be represented as: 

z = ∑ (𝑤ᵢ ∗ 𝑥ᵢ)𝑛
𝑖=1 + 𝑏                                                  (1.5) 

𝑦 = 𝜑(𝑧)                                                               (1.6) 

where xᵢ are the inputs, wᵢ are the weights, b is the bias, z is the linear combination, and φ(z) is the 

activation function. 

 

Figure 1.1:   Single artificial neuron [6] 
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Common activation functions include sigmoid in Equation (1.7), rectified linear unit (RELU) in 

Equation (1.8), hyperbolic tangent in Equation (1.9) and exponential linear unit (ELU) in 

Equation (1.10).    

𝜑(𝑧) =
1

1+𝑒−𝑧
                                                            (1.7) 

𝜑(𝑧) = 𝑚𝑎𝑥(0, 𝑧)                                                      (1.8) 

𝜑(𝑧) =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧                                                            (1.9) 

𝜑(𝑧) = {
𝑧  𝑖𝑓 𝑧 > 0

𝛼 ∗ (𝑒𝑧 − 1) 𝑤ℎ𝑒𝑟𝑒 𝛼 > 0 
                                   (1.10) 

 

 

1.3.2. Simple Neural Network Framework 

Neural networks are organized into layers: an input layer, one or more hidden layers, and 

an output layer. Each layer contains several neurons, and each neuron in a layer is connected to 

every neuron in the subsequent layer, forming a fully connected network or feed-forward neural 

network (FNN). 

 

1.3.3. Phases involved in Machine Learning 

1.3.3.1. Training Phase 

Training is the process through which a neural network learns the optimal weights and 

biases that minimize the difference between predicted and actual outputs. This process can be 

broken into multiple stages: 

 

 



9 

 

Stage 1: Forward propagation 

In forward propagation, input data is passed through the network layer by layer. At each neuron, 

the weighted sum of inputs is computed and passed through the activation function to produce the 

output as per Equation (1.11). The final output layer produces the network's prediction. The 

forward propagation operation can be seen in Figure 1.2.  

Let 𝒙 be the input vector and 𝑦 ̂be the predicted output: 

𝑦̂  =  𝑓(𝐱;  𝐖,  𝐛)                                                    (1.11) 

Where 𝐖 and 𝒃 represent the set of all weights and biases in the network respectively.  

 

Stage 2: Reduce Loss 

The network's performance is evaluated using a loss function, which quantifies the difference 

between the predicted output 𝑦̂ and the true output 𝑦. Common loss functions include mean 

squared error (MSE) in Equation (1.12) and normalized mean squared error (NMSE) in Equation 

(1.13). 

𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖) 2𝑁

𝑖=1                                                    (1.12) 

𝑁𝑀𝑆𝐸 =  
𝑀𝑆𝐸

𝑉𝑎𝑟(𝑦)
                                                    (1.13) 

where MSE is the Mean Squared Error and Var(y) is the variance of the true values. NMSE 

provides a normalized metric that makes performance evaluation more consistent across different 

datasets. 
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Stage 3: Backpropagation 

Backpropagation is an algorithm used to update model weights by computing gradients of the loss 

function with respect to each parameter. The process involves computing the loss, calculating the 

gradient of the loss with respect to each parameter using the chain rule, propagating the error 

backward through the layers, and updating weights using an optimization algorithm. The update 

rule using gradient descent is given in Equation (1.14). The backpropagation operation can be seen 

in Figure 1.2. 

𝑤𝑖𝑗
𝑡+1 = 𝑤𝑖

𝑡 − 𝜂
𝜕𝐿

𝜕𝑤𝑖𝑗
                                                (1.14) 

where 𝜂 is the learning rate, 
𝜕𝐿

𝜕𝑤𝑖𝑗
 is, the gradient of the loss with respect to weight 

𝑤𝑖𝑗 and 𝑡 denotes the iteration step.  

  

Figure 1.2:   Forward and Backpropagation in Feed Forward Neural Network [6] 
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1.3.3.2. Inference Phase 

Once the model is trained, it enters the inference phase, where it is used to make predictions 

on new, unseen data. In this phase, only forward propagation is used—no gradients or weight 

updates are performed. The model takes in an input vector, computes activations layer by layer, 

and outputs the prediction. Inference is typically fast and efficient, making trained neural networks 

suitable for deployment in real-time applications 

Neural networks represent a powerful class of machine learning models capable of 

approximating highly complex functions. The core component, the artificial neuron, enables 

networks to learn nonlinear relationships through a process involving forward propagation, error 

measurement via a loss function, and weight updates through backpropagation. The flexibility and 

adaptability of neural networks make them especially suitable for domains where traditional 

models fail to capture underlying data patterns. 

There are several types of neural networks that are available namely the Feed-forward 

neural networks (FNNs), Convolutional Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs), Autoencoders and Variational autoencoders (VAEs) and many more. Each of these neural 

networks provide useful for a different type of application. Here, FNNs and CNNs are discussed 

in detail.  

 

1.3.4. Feed-Forward Neural Networks (FNNs) 

A Feed-forward Neural Network (FNN) is the simplest form of artificial neural network 

wherein the information moves only in one direction—from input nodes through hidden layers to 

output nodes. There are no cycles or loops in the network. Each layer in an FNN consists of neurons 
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that are connected to all neurons in the subsequent layer, making the architecture fully connected 

as shown in Figure 1.2. 

The structure of a typical FNN includes an input layer that receives the raw data, one or 

more hidden layers where intermediate processing occurs, and an output layer that delivers the 

final prediction or classification. At each neuron, a weighted sum of inputs is calculated and passed 

through a nonlinear activation function, such as ReLU, sigmoid, or tanh, to introduce non-linearity 

into the model. This allows FNNs to learn complex relationships between input features and output 

targets. 

FNNs are particularly suited for supervised learning tasks, where they are trained on 

labeled data. One of the core applications of FNNs is in regression problems, where the goal is to 

predict a continuous-valued output from a set of input features. Another key application area is 

classification, where FNNs are used to assign input data to predefined categories. One of the key 

advantages of FNNs is their simplicity and interpretability. Because of their straightforward 

architecture, FNNs are relatively easy to implement and train. They are also versatile, capable of 

approximating any continuous function given sufficient neurons and layers. Moreover, the lack of 

feedback loops makes FNNs stable during training and suitable for static datasets, where temporal 

dependencies are not involved. 

Despite their strengths, FNNs also exhibit several limitations. One major drawback is their 

inefficiency in handling data with spatial or temporal structures, such as images or time series. In 

such cases, FNNs fail to exploit local correlations, which results in a large number of parameters 

and reduced performance. They also tend to struggle with scalability; as the size of the input 

increases, the number of connections—and thus computational costs grow rapidly. Furthermore, 
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FNNs are prone to overfitting, especially when trained on small datasets without proper 

regularization techniques [7].  

 In recent years, alternative architectures such as Convolutional Neural Networks (CNNs) 

and Recurrent Neural Networks (RNNs) have been developed to overcome these limitations by 

incorporating mechanisms for spatial feature extraction and temporal memory, respectively. 

Nonetheless, FNNs remain a foundational architecture in neural network research and continue to 

be widely used, particularly in structured data modeling and function approximation tasks. 

 

1.3.5. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a class of deep learning models specifically 

designed to process data with a grid-like topology, such as images or time series. Inspired by the 

structure and functionality of the animal visual cortex, CNNs are particularly effective for image 

classification, object detection, and feature extraction tasks. Unlike traditional feed-forward 

neural networks, which treat all inputs with equal connectivity, CNNs take advantage of spatial 

locality by enforcing a sparse connectivity pattern between neurons [1]. 

 

The different layers in the CNN architecture are described below:  

1) Convolutional Layers 

The core building block of a CNN is the convolutional layer, which applies a set of learnable filters 

(or kernels) that slide across the input data to extract spatial features. Each filter is convolved with 

a portion of the input data (receptive field) to produce a feature map, which captures local patterns 

such as edges, corners, or textures in images. 
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Mathematically, for a 2D input 𝐼 and a kernel 𝐾 of size 𝑚 𝑥 𝑛,  the convolution operation 

producing an output 𝑂 at position (𝑖, 𝑗) is given by: 

𝑂(𝑖, 𝑗) =  ∑ ∑ 𝐾(𝑢, 𝑣).𝑛−1
𝑣=0 𝐼(𝑖 + 𝑢, 𝑗 + 𝑣)𝑚−1

𝑢=0                                 (1.15) 

This operation is repeated for each kernel across the spatial dimensions of the input. In deep CNNs, 

multiple filters are stacked, allowing the model to learn hierarchical features—from low-level 

textures in early layers to high-level objects in deeper layers [7]. 

 

2) Activation layers 

After the convolutional operation, the output is passed through a nonlinear activation function to 

introduce non-linearity into the model, enabling it to learn complex mappings. Some of the most 

used activation functions are listed in section 1.3.1.  

 

3) Pooling layers 

To reduce the spatial dimensions of the feature maps and improve computational efficiency, CNNs 

incorporate pooling layers between successive convolutional layers. Pooling helps in making the 

representations approximately invariant to small translations and distortions in the input. 

The most common pooling operation is max pooling, which selects the maximum value from a 

region of the feature map. For example, in a 2 × 2 max pooling operation, the output value for 

each sub-region is: 

𝑃(𝑖, 𝑗) = max {𝑂(2𝑖, 2𝑗), 𝑂(2𝑖, 2𝑗 + 1), 𝑂(2𝑖 + 1,2𝑗), 𝑂(2𝑖 + 1,2𝑗 + 1)}                (1.16) 

 

Other variants include average pooling and global pooling, which take the average or overall 

maximum, respectively, across spatial dimensions. 
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A typical CNN architecture consists of multiple blocks of convolutional, activation, and 

pooling layers, followed by one or more fully connected layers at the end. These final layers 

integrate high-level features extracted from the previous layers to perform classification or 

regression tasks. The network ends with an output layer, often using a softmax function for 

classification to convert the final outputs into probabilities over the target classes. 

CNNs offer several key advantages. They drastically reduce the number of parameters 

compared to fully connected networks by sharing weights across spatial locations. This allows 

them to scale better with input size and makes them more efficient. CNNs also learn spatial 

hierarchies, making them highly effective at capturing both low-level and high-level features in 

data. These capabilities of the CNN make it highly advantageous for signal integrity modeling as 

spatial and frequency patterns are present in the data.  
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CHAPTER 2 

MACHINE LEARNING FRAMEWORK 

 

ML has proven to be very useful for the semiconductor industry, especially in packaging. 

A major limit in modern electronic design automation (EDA) is design respins due to hardware 

complexity. Many of the failures causing respins can be attributed to insufficient modeling 

capability where using simulations in the design loop is oftentimes too slow and frustrating. With 

design complexity and performance increasing, any approximations or assumptions made during 

the design process can only lead to errors. In such scenarios, using Machine Learning can be very 

beneficial. Therefore, a model-based design paradigm can be developed where fast to evaluate 

“learned” model replaces the conventional “slow” model in design and design optimization. This 

is shown in Figure 2.1 where the data from the “slow” but detailed simulator are used to develop 

a machine learned “fast” model. The fast model is quick to compute, is expected to have the same 

accuracy as the detailed simulator and can therefore be used in the design loop for simulation-

based design and optimization. Moreover, since the fast model is expected to capture the entire 

design space including process variations, the probability of introducing errors can be minimized.  

  

Figure 2.1:   Machine Learning based Design Flow 
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2.1  Process for developing a fast ML model  

The analysis of high-speed complex systems is usually performed using simulation tools 

that model the real-time physical parameters to provide an accurate measure of the system 

behavior. These simulators—such as full-wave electromagnetic (EM) solvers, finite element 

methods, or circuit-level SPICE simulators—provide precise results but are computationally 

expensive and time-consuming, especially when multiple parameter sweeps or optimization runs 

are required. To overcome these limitations, a fast surrogate model based on machine learning 

(ML) can be developed by learning from the data generated by the slow simulator. 

The process begins with data generation using the traditional simulator. In this stage, 

simulation experiments are performed by varying key input parameters across their feasible ranges. 

These parameters may include geometric features, material properties, frequencies, or source/load 

conditions. For example, in signal integrity analysis, simulations might output S-parameters or eye 

diagrams for varying trace widths, spacings, and dielectric constants. The result is a high-quality 

dataset that pairs input parameters with accurate simulation outputs. 

Once the dataset is prepared, data preprocessing is carried out. This involves normalizing 

or standardizing the input features, removing redundant or noisy data, and splitting the dataset into 

training, validation, and testing subsets. Careful preprocessing ensures that the learning model 

receives clean, well-scaled data, which is crucial for stable and accurate training.  

The next step is model selection and training. A suitable learning algorithm is chosen based 

on the nature of the data and the problem. Common choices include feed-forward neural networks 

(FNNs) for structured input-output mappings, convolutional neural networks (CNNs) for spatial 

data, and Gaussian processes or support vector machines for smaller datasets. The model is trained 

using simulation data, typically by minimizing a loss function such as mean squared error (MSE) 
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or normalized mean squared error (NMSE). During training, the model learns the underlying 

functional relationship between the input parameters and the simulation outputs. 

An essential aspect of the development process is model validation and hyperparameter tuning. 

The model is evaluated on the validation set to monitor its generalization ability and avoid 

overfitting. Techniques such as cross-validation, dropout, and early stopping are often used. 

Hyperparameters, such as the number of hidden layers, learning rate, batch size, and activation 

functions, are optimized to improve performance. 

Once trained and validated, the ML model enters the inference phase, where it can quickly 

predict outputs for new, unseen input parameters in a fraction of the time required by the original 

simulator. This surrogate model thus acts as a real-time approximation engine, making it highly 

suitable for tasks like design space exploration, sensitivity analysis, and optimization [5] [7]. 

This surrogate modeling approach offers significant advantages: orders-of-magnitude 

reduction in computation time, faster prototyping, and the ability to perform large-scale 

optimization and what-if analysis. However, it also requires careful handling to ensure that the 

surrogate model does not extrapolate beyond the range of its training data, as this can lead to 

inaccurate predictions.  
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Figure 2.2:   Flowchart for developing a Fast NN Model 
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2.2   Neural Network Architecture 

NN architecture was first proposed in [5]. Spectral Transposed Convolutional Neural Network 

(STCNN) architecture is used as our ML model. The STCNN is a specialized neural network 

architecture that extends traditional convolutional models to operate in the frequency domain, 

particularly for tasks involving the prediction and reconstruction of frequency-dependent 

characteristics such as S-parameters in high-speed interconnects. This architecture combines feed-

forward neural network layers for learning high-level representations with transposed 

convolutional layers to enable frequency-domain feature expansion and resolution enhancement. 

The STCNN architecture generally consists of three main stages: the input embedding or 

encoding layers (i.e., feed-forward layers), the transposed convolutional layers and the output 

reconstruction or mapping layers. This design is particularly suited for spectral regression 

problems, where the goal is to model or generate frequency-dependent responses such as the real 

and imaginary parts of S-parameters over a frequency sweep. 

 

2.2.1 Feed-Forward Layers (Encoders) 

The feed-forward layers in an STCNN serve as the initial feature extractors. These layers 

are typically fully connected (dense) and are responsible for mapping input features—such as 

geometrical parameters, material properties, and other design variables—to a high-dimensional 

latent space. 

h(𝑙) = ϕ(W(𝑙). 𝐡(𝑙−𝟏) + b(𝑙))                                             (2.1) 

Where 𝐡(𝑙) is the output of layer 𝑙, 𝐖(𝑙)is the weight matrix, 𝐛(𝑙) is the bias vector, 𝜙 is the 

activation function, 𝐡(0) = 𝑥   
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This stage allows the network to extract and encode interactions between various input 

parameters, essentially learning a compact representation that is more meaningful for the spectral 

reconstruction task. These layers reduce the complexity of raw inputs and transform them into a 

latent code that encodes meaningful representations required for the spectral reconstruction. The 

final dense layer outputs a latent code 𝒙 which is a vector with abstract high-level features. This 

space serves as the input to the decoder portion of the network. 

The latent vector 𝒙 is reshaped into a 2D feature map to serve as input to the transposed 

convolutional layers. For instance:  

Zreshaped ∈ RC×W                                                        (2.2) 

where C is the number of feature maps and W is the width (or sequence length in 1D convolutions) 

This transformation allows the network to treat the frequency-domain data generation as a 

sequence modeling task, where each output location corresponds to a specific frequency bin. 

 

2.2.2 Transposed Convolutional layers (Decoders) 

The transposed convolutional layers form the core of the STCNN architecture. Unlike 

standard convolutional layers that reduce spatial resolution, transposed convolutions are used to 

upsample or expand the feature maps to reconstruct output data of higher resolution—in this case, 

frequency responses. These layers are crucial for generating a smooth and continuous spectrum 

from a compact latent vector. Each layer learns to generate higher-resolution features from lower-

resolution ones. 

A 1D transposed convolution is defined as: 

y[n] = ∑ x[k]K−1
k=0 ⋅ w[n − k ⋅ s]                                             (2.3) 

where 𝑦[𝑛] is the output signal, 𝑥[𝑘] is the input signal, 𝑤 is the filter (kernel) and 𝑠 is the stride.  
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Unlike standard convolutions that aggregate local features, transposed convolutions 

distribute information across a larger output space. The stride controls how much the input is 

"spread out." If padding and stride are carefully chosen, the final output length matches the target 

frequency resolution. 

These layers reconstruct the frequency-dependent S-parameter response across the 

spectrum, ensuring continuity and smoothness between neighboring frequency points. 

After each transposed convolution, activation functions (typically ReLU or ELU) are 

applied to introduce non-linearity and help the model learn complex patterns. These activations 

are crucial to ensure the model does not reduce to a linear mapping, especially for intricate 

behaviors like resonance or high-frequency losses in S-parameter curves. 

 

2.2.3 Output Mapping layer 

The final layer of an STCNN is often a linear layer (without nonlinearity), which maps the 

expanded feature representation to the target spectral output, such as the magnitude and phase, or 

real and imaginary parts of S-parameters across a frequency range. Figure 2.3 shows the entire 

STCNN architecture framework.  

 

 

Figure 2.3:   STCNN architecture 
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2.3   Causality and Passivity Enforcement 

In high-speed interconnect modeling, ensuring physical consistency of predicted responses 

is crucial. Two important physical properties of S-parameters are causality and passivity. When 

using machine learning models (like STCNNs or other neural networks) to predict S-parameters, 

there is a risk that these predictions may violate basic physical laws, leading to non-realizable or 

unstable systems. To address this, Causality Enforcement layer (CEL) and Passivity Enforcement 

Layer (PEL) are incorporated into the neural network architecture or post-processing pipeline. 

Implementation of CEL and PEL are discussed in [6][8].  

Causality ensures that the output of a system depends only on present and past inputs, not 

future ones. In the frequency domain, this is reflected by the Kramers-Kronig relations between 

the real and imaginary parts of the S-parameters. 

Passivity implies that the system does not generate energy. This requires that the magnitude 

of the S-parameter matrix does not exceed unity for passive devices (i.e., no gain), and the real 

part of impedance or admittance matrices remains positive. 

Machine learning models, especially deep neural networks, are data-driven and not 

inherently bound by these physical laws. Without explicit constraints, the models can produce non-

causal or non-passive S-parameters, leading to simulation failures, instabilities, or non-physical 

interpretations when these are used in system-level EDA tools. 
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2.3.1 Causality Enforcement 

2.3.1.1 Frequency domain interpretation of causality 

Causality in the time domain translates into analytic constraints in the frequency domain. 

If 𝐻(𝑓) is the frequency response (such as an S-parameter), then for it to be causal, the real and 

imaginary parts must be Hilbert transform pairs. 

Mathematically, the Kramers-Kronig relations describe this: 

Re[H(f)] =
1

π
𝒫 ∫

Im[H(f′)]

f′−f

∞

−∞
df ′                                               (2.4) 

Im[H(f)] = −
1

π
𝒫 ∫

Re[H(f′)]

f′−f

∞

−∞
df ′                                           (2.5) 

where 𝒫 indicates the Cauchy principal value of the integral 

 

2.3.1.2 Implementation in neural networks 

A Causality Layer can be implemented as a penalty term added to the loss function during 

training that measures the deviation from the Hilbert pair relationship. Alternatively, enforce the 

frequency response to be the Fourier Transform of a time-domain response that is strictly zero for 

𝑡 < 0. This can be done by constraining the network to output a time-domain impulse response 

ℎ(𝑡) and applying a zero-mask for negative 𝑡, then transforming to frequency domain using FFT. 

Causality loss example is given below: 

ℒ𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦 = |Re[H(f)] − ℋ(Im[H(f)])|2
2 + |Im[H(f)] + ℋ(Re[H(f)])|2

2               (2.6) 

Where ℋ represents the Hilbert transform operator 
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2.3.2 Passivity Enforcement 

2.3.2.1 Passivity conditions 

A multi-port S-parameter matrix 𝑆(𝑓) is passive if: 

i. ||𝑆(𝑓)||2 ≤ 1 for all 𝑓 

ii. For all input vectors 𝑣, the output power 𝑃out ≤ 𝑃in 

Alternatively, the scattering matrix must satisfy: 

𝑆(𝑓)𝑇𝑆(𝑓) ⪯ 𝐼                                                          (2.7) 

That is, the Hermitian part of 𝑺(𝑓)𝑇𝑺(𝑓) must not exceed the identity matrix 

 

2.3.2.2 Implementation in Neural Networks 

To ensure passivity, various methods can be used. The first method is by adding a 

projection layer: After each prediction, the output S-parameter matrix is projected onto the space 

of passive matrices. This can be done via eigenvalue decomposition of the Hermitian matrix and 

clamping eigenvalues to the allowable range. The second method is by constrained training: Train 

the network using spectral normalization or Lipschitz constraints to bound the network's output 

response. The third method is using loss function penalty: This penalizes S-matrix outputs whose 

gain exceeds 1. The loss term can be given as follows: 

ℒ𝑝𝑎𝑠𝑠𝑖𝑣𝑖𝑡𝑦 = ∑ max(0, |𝑺(𝑓)|2
2 − 1)2

𝑓                                       (2.8) 

 

2.3.3 Integration in Network Architecture 

These enforcement mechanisms can be embedded as dedicated enforcement layers or post-

processing filters applied to the network output or differentiable constraints included during 

training via augmented loss functions. The total loss becomes: 
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ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑀𝑆𝐸 + λ1ℒ𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦 + λ2ℒ𝑝𝑎𝑠𝑠𝑖𝑣𝑖𝑡𝑦                                   (2.9) 

where 𝜆1 and 𝜆2 are weights that control the influence of each constant 

Causality and passivity are essential physical constraints for S-parameter models to be 

valid and usable in real-world simulations. Neural networks trained without these constraints can 

produce responses that violate basic physical principles, making them unsuitable for design or 

verification. Incorporating Causality and Passivity Enforcement Layers ensures that the network 

outputs can be directly used in EDA tools and SPICE-like simulators, frequency responses exhibit 

correct phase and energy behavior, and the surrogate models are robust, stable, and physically 

realizable. Therefore, our entire Neural Network architecture consists of the S-TCNN along with 

the CEL and the PEL layers as shown in Figure. 2.4. 

 

Figure 2.4:   Neural Network architecture with CEL and PEL 
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CHAPTER 3 

HIGH-SPEED SIGNAL INTEGRITY ANALYSIS OF A 

CHANNEL IN FREQUENCY DOMAIN USING NN 

 

3.1 Introduction 

With the increasing demand for high performance products, the complexity of electronic 

systems has been growing steadily. Complex high-performance systems scale with device 

technology which makes the design of packages and boards more tedious. Hence, there is a need 

for fast and accurate methods for adaptation that can reduce the number of iterations during the 

design process. At present, engineers are restricted by the large computational time of the 

traditional electromagnetic (EM) solvers while making design choices. Design closure can only be 

attained after multiple iterations through time-consuming EM extractors. This reduces the ability 

to explore entire design spaces for optimizing geometry, materials and other parameters that 

comprise the board layout. This traditional process of board design has been summarized in Figure 

3.1. 

Using ML to develop a fast NN model to replace the traditional EM solvers allows the 

designer to explore the entire design space and come up with the most optimal design without 

having to go through multiple iterations. This ML model can be incorporated in the early design 

stages to narrow down the design space for a particular set of design rules. The new design flow 

using ML model is shown in Figure 3.2. The ML model can provide the S-parameters data for any 

set of parameters within a few milliseconds, thereby making optimization more efficient.  
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Figure 3.1:   Flowchart of the traditional approach to board design 

 

 

 

Figure 3.2:   Flowchart of design process using ML model 
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3.2 Training dataset preparation for SI analysis 

A simple differential PTH layout was created in Ansys HFSS 3D layout to perform the EM 

simulation to generate the necessary S-parameter files as the input dataset for training the ML 

model.  Figure 3.3 shows the top and cross session physical view of the PTH layout.  The PTH 

layout included the conductor layers above and below the core substrate as well as with the on top 

build up conductor layer at the top and bottom side. All four of these conductor layers were 

assigned as ground planes surrounding the PTH and µvia pads. Ground PTH was inserted next to 

the differential pair PTHs as the return path. All the supported parameters were set as variables in 

the tool so that it can be easily varied without re-drawing the layout for each dataset generation.  

Some examples of the generated data set with different physical configurations are captured in 

Figure 3.4. 

 

(a) 



30 

 

 

(b) 

Figure 3.3: Physical view of the PTH modelling with the HFSS 3D layout. a) PTH Top and 3D view, b) PTH cross 

section view 

 

 

 

 

 
Figure 3.4: Examples of the generated dataset with different physical configurations 
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With the number of supported parameters and their wide range of value coverage, total 

combination of the use cases can be significant.  With consideration of the EM tool runtime and 

computing resources, it is time consuming to generate a large dataset. Hence only a limited number 

of samples will be generated, which ensures good coverage of use case combinations to obtain a 

robust dataset for the training. Biasing and underfit issues during training are common problems 

if the generated dataset was limited and not well distributed across the supported parameters space. 

In this application, Quasi-random generator was used to generate a quasi-random dataset with 

highly uniform samples across all parameters space.  Sobol sequences were chosen as the quasi-

random sequence for the generator. Sobol sequences are a particularly common example of quasi-

random sequences. They are deterministic sequences of numbers that converge quickly to a 

uniform distribution. The computational cost of Sobol sampling is relatively low, only marginally 

more expensive than random sampling and significantly cheaper than Latin Hypercube Sampling. 

Sobol sequences often show superior performance in comparison with random and LHS sampling.  

 
Figure 3.5: 3 out of 9 parameters Quasi-random scatter plot for the PTH modelling 
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9 parameters were varied within a certain range of minimum and maximum values as 

shown in Table 3.1. Figure 3.5 illustrates the quasi-random plot for the 3 out of the 9 supported 

parameters.  It minimized the discrepancy among the distribution of the generated data points.  A 

total of 393 samples were generated for this application based on the quasi-random data points. 

EM simulation time for each model took on average around 40 minutes to complete. 

TABLE 3.1  VARIABLE  PARAMETERS OF THE PTH FOR SI ANALYSIS 

 
 Parameter Unit Min Max 

1 µVia Diameter µm 30 70 

2 µVia Pad Diameter µm 31 140 

3 µVia  Antipad Radius µm 100 500 

4 PTH Pitch µm 300 1200 

5 Core Thickness µm 100 1200 

6 PTH Diameter µm 100 250 

7 PTH Pad Diameter µm 110 500 

8 PTH Antipad Radius µm 50 500 

9 Signal-Ground Via Pitch µm 300 1200 

 

3.3 Simulation Setup  

Generating a machine learning model using STCNN architecture consists mainly of two 

parts, namely training and validation. During the training process, the ML model learns the best 

function that maps the relationship from the input parameters to the output parameters. Once the 

training process is complete, we validate the model for minimal error between the mapping of the 

input parameters to the output parameters. Once the training and validation is complete, we have 

our learned machine learning model that can replace the EM solvers. We then use this learned ML 
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model to generate the output parameters for any set of input parameters within the trained design 

space. This process is called inference as shown in Figure 3.6.    

 

 

Figure 3.6: Inference model 

 

The dataset for the PTH, which consists of 393 samples, was used to run HFSS simulation 

to generate their corresponding 4-port S-parameters. The simulation was run between 0.1GHz to 

100GHz with a 100MHz step. The input data consisted of 9 variable geometric parameters along 

with 11 parameters that were set to be a constant value. These additional parameters were included 

with the intent of extending the usage of this ML model to a larger design space with other 

parameters depending on the user’s preference. Hence a total of 20 input parameters are mapped 

to 4-port S-parameters. To reduce the output dimensionality, as the PTH structure used is partially 

symmetric and reciprocal, only the real and imaginary parts of the frequency responses of S11, S12, 

S13, S14, S33 and S34 are used. As we have 1000 frequency points and 12 responses, the output 

dimensionality is 12000. The S-TCNN model is used to generate a learned ML model that maps 

the 20-D input space to a 12000-D output space. Out of the 393 samples in the dataset, 390 samples 

were used for the training process and 3 samples were used for validation. Figure 3.7 shows the 9 

variable input parameters with 390 training samples shown as black dots and 3 validation samples 

shown as colored dots. 
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Figure 3.7: 9 variable input parameters with 390 training samples (black dots) and 3 validation samples (colored 

dots) 
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S-TCNN architecture has been tested for a several layers for various number of neurons in 

each layer. The architecture which was able to determine a good learnable model is used. The S-

TCNN had four fully-connected layers with 50 neurons (20-50-50-50-50) followed by five 1-D 

transposed convolutional neural networks each having 50 channels. The kernel size was 39,8,6,4 

and 2 for the layers respectively. The stride was 1,2,2,4 and 2 respectively. ELU activation function 

was used for all the models. 

 

3.4 SI analysis of Plated-Through Hole (PTH) with fast ML model  

The S-parameters predicted by the S-TCNN model are compared with the S-parameters 

generated by HFSS and their normalized mean squared error (NMSE) over each frequency 

response is calculated for the validation samples. The real-imaginary and magnitude-phase plots 

of the insertion loss of one of the validation samples are shown in Figure 3.8. The NMSE error is 

8%. Each HFSS simulation took about 40 minutes to generate the S-parameters. The training of 

the S-TCNN model took about 250 seconds. 

Once the learned model is generated after the training and validation, it took the inference 

model about 0.2 seconds to generate the S-parameters for a set of 20 input parameters that were 

not included in the dataset. Figure 3.9 shows the S-parameters generated by the inference model 

for the input parameter values (45, 120, 120, 600, 600, 120, 150, 300, 600, 35, 30, 3.5660, 4.4950, 

10, 10, 10, 10, 10, 10, 10) 
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(a) 

 
(b) 

Figure 3.8: S-parameters comparison between HFSS and S-TCNN Model a) Real-Imaginary plots, b) Magnitude-

Phase-Unwrapped phase plots. 
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(a) 

 
(b) 

Figure 3.9: S-parameters generated from the Inference Model a) Real-Imaginary plots, b) Magnitude-Phase-

Unwrapped phase plots. 
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3.5 Summary 

The design process of packages has been following the same methods for quite some time 

now. With the need for higher performance packages, it is essential to optimize the design flow of 

these packages to help with the fast-growing industry needs. Machine Learning techniques have 

proven to be a good tool to help revamp the conventional methods. By adapting these ML 

techniques, we can save a considerable amount of time during the design process. In this work, we 

discussed one such usage of ML techniques in the form of S-TCNN architecture. For a given input 

design space, the ML model can predict accurate S-parameters in much less time when compared 

to HFSS. This means that the designer does not have to run hour-long simulations every time a 

certain parameter is changed.  

The method discussed in the work can be used to predict the S-parameters if the set of input 

parameters were part of the design space during the training process. If a new parameter is 

introduced, the ML model needs to be re-trained to get a new learned model. The accuracy of the 

generated learned ML model depends largely on the quality of the dataset used. The dataset 

generation is limited to the complexity and large simulation times of the EM solvers. This makes 

it very challenging to develop a learned ML model that can cover a large design space. For this 

reason, in the future, the dataset can be selected by determining the most significant samples within 

the design space. This way, the training set will have enough information to accurately describe 

the entire design space with the selectively chosen dataset samples.  

The method used here shows a 200x improvement over HFSS while simulating a single 

model using the Inference model of the Neural Network. This shows that this ML tool can be a 

great asset to any SI/PI engineer to design the most optimal package. More adaptations of this 

technique can help with the optimization of other processes as well.  
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CHAPTER 4 

ELECTRO-THERMAL CO-DESIGN FOR PACKAGES  

USING NN 

 

4.1 Introduction 

The increasing complexity of semiconductor devices necessitates accurate electro-thermal 

analysis to ensure reliable and efficient system performance. As power densities rise, and 

interconnect structures become more intricate, thermal and electrical interactions play a crucial role 

in determining the overall functionality of integrated circuits (ICs). Traditional analysis techniques 

have primarily focused on single-physics models, analyzing electrical, thermal, or mechanical 

aspects independently. However, high-performance systems introduce complex interactions that 

require multi-physics and multi-scale modeling approaches [9]. Hence, there is a need to create co-

designing methods and tools that can help design complex systems. 

To ensure effective thermal management, co-simulation approaches are necessary, integrating 

electrical and thermal models. Although modeling tools are available for predicting electrothermal 

phenomena at a component level (e.g. hot-spots), there is currently no capability to predict these 

interactions within a co-design optimization environment where different design teams (chip, 

package, board) collaborate with design/model data that can be shared to support effective trade-

off analysis and optimization for a whole system. New modeling and simulation tools must 

accurately predict the electro-thermal coupling between multiple semiconductor components and 

the package/system that contains them. Modern electronic systems require tools capable of 

accurately predicting temperature distributions at various hierarchical levels (chip, package, and 
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system), simulating transient and steady-state electro-thermal behavior to detect hotspots and 

optimize power delivery networks (PDNs) and enabling design-space exploration through machine 

learning and deep-data analytics [9][10][11]. Such tools allow engineers to balance power 

consumption, thermal performance, and electrical reliability, ensuring optimal design trade-offs. 

Excessive heating in semiconductor devices leads to increased resistance, voltage drops, and 

performance degradation. Electro-thermal analysis helps in preventing performance degradation 

and failures caused by these effects. Electro-thermal co-design integrates these analyses into a 

unified workflow. This enables simultaneous optimization of power integrity (PI) and thermal 

dissipation, helps detect thermal bottlenecks at an early stage and minimizes electrical variations 

due to temperature effects, thereby making the systems more reliable. 

Several methodologies have been proposed for integrated electro-thermal co-design in the 

literature, including Physics-Based Reduced Order Models where simplified, computationally 

efficient models enable rapid co-analysis of electro-thermal interactions in complex systems [12] 

and Two-Way Coupling Simulations, where Electrical and thermal models exchange real-time data 

iteratively to update material properties dynamically (e.g., resistivity change due to heating) [13]. 

Though these methods are advantageous for performing electro-thermal analysis, at present, 

engineers are restricted by the large computational time of the traditional Multiphysics solvers and 

Electromagnetic (EM) solvers to understand the coupling between the electrothermal behavior 

while making design choices. Design closure can only be attained after multiple iterations through 

time-consuming simulation models. This reduces the ability to explore entire design spaces for 

optimizing geometry, materials and other parameters that comprise the board layout.   

Machine learning (ML) has been proposed as a method (compact model) to co-design electro-

thermal behavior in a system. To characterize the electrical behavior in a system, the frequency 
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response of the components within the system is analyzed. This frequency response is best 

described using S-parameters, which are generally obtained using EM solvers like HFSS, which, as 

discussed, can be time-consuming. In addition, to characterize the thermal behavior in a system, the 

temperature map is obtained using multi-physics simulators like Icepak for solving the energy 

equation. To obtain electro-thermal behavior, a two-way coupling is set up to analyze both the 

frequency response and the temperature effects simultaneously. This process can be very tedious 

and can limit the designer from developing an optimal design for both electrical and thermal effects. 

Recent literature has shown that the traditional solvers can be replaced by a machine learning-based 

compact model that is fast and accurate. [5][14] The machine learning (ML) model can predict the 

S-parameters as well as the temperature distribution for a particular design space once it is trained 

with the data in the design space. This trained ML model generates the predicted S-parameters and 

temperature accurately within the specified range and much faster than the traditional solvers and, 

therefore can replace the solvers during the design process. 

In this chapter, we first discuss the two-way electro thermal coupling process. This process is 

used to generate datasets for training the ML model. A Plated-Through Hole (PTH) model created 

in Ansys for a two-way coupling analysis is shown. The ML architecture used to create a co-design 

model is discussed. The ML model results are compared with the generated data to test the accuracy 

of the model.  

4.2 Two-Way Electro-Thermal Coupling 

  Two-way coupling electro-thermal simulations provide an integrated approach for 

analyzing the interdependent electrical and thermal behaviors in semiconductor devices. This 

method captures the dynamic interactions between electrical and thermal properties, allowing for 
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real-time updates to material parameters such as temperature-dependent resistivity, thereby 

improving the predictability and reliability of system performance [9].  

 Two-way coupling between Ansys HFSS and Ansys Icepak helps perform electro-thermal 

co-simulation by iterating between electrical and thermal analyses. The process involves 

transferring power loss data from HFSS to Icepak and updating temperature-dependent electrical 

properties back to HFSS. Figure 4.1 shows the steps involved in the two-way coupling process. 

Using this process, a Plated-Though Hole (PTH) structure is built for Electro-Thermal analysis.   

 

Figure 4.1: Flowchart of two-way coupling process using Ansys HFSS and Icepak 
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4.2.1 Electrical Analysis using HFSS 

First, the PTH model is created in HFSS as shown in Figure 4.2. While building the model, 

all the geometric parameters such as the core thickness, via radius, dielectric thickness, etc., are 

defined as variables. This helps in setting up a parametric sweep through these geometric 

parameters. While assigning the materials, the material properties are entered as desired.  

As the model is a 4-port structure, excitations are defined at each of the 4 ports and the excitation 

voltage of 1 Volt is set at ports 1 and 3. After the boundary conditions are defined, a solution setup 

for a frequency sweep from 0.1GHz-100GHz with 1000 steps is defined.  

To perform thermal analysis, the power losses from Electromagnetic (EM) simulation that 

contribute to heating need to be determined. HFSS computes the EM losses within the model by 

computing the Surface Loss Density and Volume Loss Density. Surface loss density indicates the 

losses due to surface currents in conductive materials and volume loss density indicated the losses 

within the dielectric materials. Upon completing the EM simulation, HFSS generated a loss 

distribution dataset which is exported to Icepak for thermal analysis. 
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Figure 4.2: Plated Through-Hole model designed in HFSS 
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4.2.2 Thermal Analysis using Icepak 

After obtaining the EM loss data, thermal analysis is performed in Icepak to compute 

temperature distributions. To understand the thermal effects of the materials, before setting up the 

Icepak model, thermal modifiers are defined for each of the materials in the HFSS model. For the 

dielectric, FR4_epoxy is used. The material properties for FR4_epoxy are set according to [15]. 

Copper is used in the model and its bulk conductivity is set according to its temperature coefficient, 

which is 0.00393. Thermal properties of the metal like the Specific Heat, Mass Density and 

Thermal Conductivity are varied within a range of values shown in Table.1, while performing 

parametric sweep simulation.  Once the material properties are assigned, the HFSS design is 

imported into Icepak. 

Ansys ACT extension EMtoIcepak is used to transfer the HFSS EM loss data into Icepak. Two-

way coupling is enabled to iterate the thermal data into HFSS until convergence is achieved. 

Thermal boundary conditions, including convection, radiation and fixed temperature constraints 

are applied. Once the model is ready, the temperature distributions are computed based on the 

imported EM losses [13].  

The iterative nature of the two-way coupling ensures that temperature-dependent material 

properties are updated for accurate analysis. Once the thermal simulation is completed, the 

temperature distribution is fed back into HFSS. Temperature-dependent properties such as 

permittivity and conductivity are updated. HFSS is re-simulated with the updated material 

properties. The process is repeated until convergence is reached, i.e., the temperature and EM field 

variations stabilize. Figure 4.3 shows the temperature distribution of the PTH model.  

Though the two-way coupling process facilitates Electro-thermal co-simulation, there is high 

computational complexity due to iterative feedback loops between electrical and thermal solvers, 
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leading to increased simulation time and memory usage. Additionally, mesh resolution 

mismatched between electrical and thermal models can cause interpolation errors, reducing 

accuracy. Due to these challenges, there is a need to develop more effective ways to perform 

electro-thermal co-simulation. ML based models can help solve these problems. 

 

Figure 4.3: Temperature distribution of the PTH using Icepak 

 

 

4.3 Training dataset preparation for Electro-Thermal Analysis 

To model the Electro-thermal behavior of a structure using Machine Learning 

architectures, we need to generate a dataset to train the Neural Networks within the model.  

Developing a robust ML model requires data including a large design space with various material 
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and geometry parameters. This is achieved by performing a parametric sweep simulation on the 

two-way coupling setup in Ansys.  

 

  As discussed earlier, one of the challenges of the two-way coupling using Ansys, is the 

large computational time to perform the analysis. This makes it difficult to generate huge sets of 

data for the training process. As the accuracy of the ML model depends largely on the quality of 

the dataset, we need to ensure good coverage of the entire design space without underfit issues. 

Recent literature [14] has shown that generating a uniform distribution of data across the design 

space using a Quasi-random generator, can ensure good coverage across the entire design space. 

Sobol sequences, a type of quasi-random sequence, are often used for high dimensional sampling. 

These sequences are designed to cover a space more uniformly than random sampling, reducing 

variance and improving convergence rates in simulations.   

 

For the PTH model, three thermal parameters and four geometry parameters are varied between a 

certain range of values shown in Table 4.1. These parameters make the design space of the ML 

model. Within this design space, 256 Sobol sequences are generated to ensure uniform coverage 

as shown in Figure 4.4.    Parametric sweep simulation is performed with these samples, first in 

HFSS to extract the electrical analysis data. As we use S-parameters to analyze the electrical 

performance of the PTH, they are extracted after the HFSS analysis is completed. Then, parametric 

sweep with the same samples is performed in Icepak to extract the temperature. Figure 4.4 also 

shows the variation of temperature across different sets of input parameters. With these two-way 

coupling Ansys simulations, a complete dataset has been generated, which is used to build the ML 

model. 
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TABLE 4.1. VARIABLE  PARAMETERS OF THE PTH FOR ELECTRO-THERMAL ANALYSIS 

 Parameter Unit Min Max 

Thermal 

Specific Heat J/Kg K 
100 1000 

Mass Density 𝐾𝑔/𝑚3 
1000 8900 

Thermal Conductivity W/m K 
10 400 

Geometry 

Build up Dielectric Thickness µm 
10 90 

Build up Conductor Thickness µm 
10 80 

Core Dielectric Thickness µm 
50 200 

Core Conductor Thickness µm 
10 40 
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(a) 

 

(b) 

Figure 4.4: Temperature of the PTH for various sets of design parameters (a) Thermal parameters (b) Geometry 

parameters 
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4.4 Electro-Thermal analysis of PTH using fast ML model 

Machine learning can significantly enhance electro-thermal co-simulation by addressing 

computational inefficiencies, improving predictive accuracy, and enabling real-time modeling of 

complex thermal-electrical interactions. Traditional simulation methods often require solving 

complex differential equations, which can be computationally expensive and time-consuming. ML 

can help by learning from precomputed simulation data and experimental results, allowing for fast 

approximations of thermal and electrical behaviors without repeatedly solving physics-based 

models [10]. 

4.4.1 Neural Network Architecture for Electro-Thermal Analysis 

The ML model being developed for Electro-thermal analysis, takes material and geometry 

parameters and predicts the S-parameters and the temperature of the system. Spectral Transposed 

Convolutional Neural Networks (STCNN), which has been discussed in Chapter 2, have shown to 

effectively predict the S-parameters from the geometry information. Utilizing the correlation 

information along the frequency axis of the frequency data, Convolutional Neural Networks 

(CNN) can find the patterns within the data, thereby able to predict the S-parameters accurately. 

As the electrical characteristics also have a dependency on the temperature, this NN architecture 

can also predict the thermal characteristics like the temperature, when provided with the accurate 

training information.  

The architecture used for developing an ML model for Electro-thermal co-simulation is 

shown in Figure 4.5. The geometry and materials parameters are given as the input to a series of 

fully connected layers. The fully connected layers convert the input parameters into a latent space 

representation where the most correlated data is placed closer. The latent space is then flattened 

before being passed through a set of 1-D transposed convolutional neural networks. S-parameters 
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along with the temperature are generated at the output of the convolutional layers. The NN is 

trained to reduce the error between the training  and the predicted S-parameters and temperature. 

After the training process, the predicted temperature data is extracted from the architecture.  

At this stage, the NN is able to predict both the S-parameter and temperature data. 

However, we must ensure that the predicted S-parameters are physically consistent before the final 

prediction. This is done by passing the frequency response output from the convolutional layers to 

CEL and PEL as discussed in Chapter 2. The entire NN is now trained to minimize the error 

between the S-parameters training and prediction data. At the end of the training process, 

physically consistent S-parameters are predicted by the NN. The resulting trained NN is the ML 

model that can be used for Electro-Thermal analysis. 

 

Figure 4.5: Neural Network Architecture for Electro-Thermal Analysis 

 

4.4.2 Electro-Thermal Analysis results 

The dataset generated from the two-way coupling process consists of 256 samples. Each 

sample contains 7 input geometry and material parameters along with 4-port S-parameter and 

temperature data at the output. Out of the 256 samples, 253 were used to train the NN and 3 samples 

were used to validate the ML model. The validation is done by calculating the normalized root-
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mean square error (NMSE) for the S-parameters and the root-mean square error for the 

temperature. 

The real-imaginary and magnitude-phase plots of the insertion loss predicted from the ML 

model are shown in Figure 4.6. The comparison of the predicted temperatures verses the 

temperature from the simulation data are shown in Table 4.2 along with the corresponding RMSE 

error. Though the accuracy for two of the samples is good, there is scope for more accuracy in the 

temperature predictions.  The overall NMSE error for both the S-parameter and temperature 

prediction is 11%. 

 

 

TABLE 4.2 TEMPERATURE COMPARISON BETWEEN ANSYS AND ML MODEL 

S. No Simulated Temperature 

(°C) 

Predicted Temperature 

(°C) 
RMSE 

1 20.8723 20.6627 0.2096 

2 20.8628 20.8157 0.0471 

3 20.8648 20.838 0.0268 

 

TABLE 4.3 RUN TIME COMPARISON BETWEEN ANSYS AND ML MODEL 

 Time for 256 simulations 

(seconds) 
Time for 1 simulation (seconds) 

HFSS 313*60 73 

Icepak 445*60 104 

ML model 1700 0.804 

Speedup → 220X 
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One of the significant advantages of creating an ML model for electro-thermal co-

simulation over the two-way coupling simulations in Ansys, is the significant reduction in the 

computational time. For any set of design parameters within the design space used for training, the 

ML model can predict the S-parameter and temperature data within a fraction of seconds. The run 

times of Ansys simulations and ML model predictions are summarized in Table 4.3. The ML 

model showed a speedup of 220X in terms of run-time when compared to Ansys simulations. 

 

(a) 
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(b) 

Figure 4.6: S-parameters comparison between Ansys HFSS and ML model a) Real-Imaginary plots, b) Magnitude-

Phase plots 

4.5 Summary 

The demand for advanced electro-thermal modeling tools is growing in response to the increasing 

complexity of semiconductor devices. Multi-physics co-simulation techniques, coupled with 

machine learning-driven optimization, provide a promising path for ensuring high-performance, 

reliable, and efficient systems. 
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 The ML model built in this paper shows that electro-thermal co-simulation of integrated 

systems can be significantly faster by using a machine learning framework. The co-simulation 

scope can be increased to analyze more thermal parameters. Multi-objective optimization can be 

performed, that can help resolve conflicts between thermal properties like the temperature verses 

signal integrity effects while designing a system. The accuracy of the temperature prediction can 

be improved by developing a more comprehensive ML framework. AI-based predictive models 

like the one discussed in this paper are crucial for addressing the modern-day design challenges. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

As high-speed digital systems continue to scale in performance and complexity, accurate 

and efficient signal integrity (SI) analysis has become critical in modern electronic design. 

Traditional full-wave electromagnetic (EM) solvers and circuit-level simulators, while accurate, 

are computationally expensive and slow for iterative design tasks. In this context, Spectral 

Transposed Convolutional Neural Networks (STCNNs) offer a powerful alternative by leveraging 

deep learning to learn frequency-domain behaviors such as S-parameters directly from data. Below 

are the key advantages of using STCNNs in SI analysis. 

1. High-speed inference 

One of the most significant advantages of STCNNs is their ability to produce instantaneous 

predictions once trained. Traditional EM solvers may take several minutes to hours to compute S-

parameters for complex interconnect structures, especially over a wide frequency range. In 

contrast, STCNNs can generate the full spectral response in milliseconds using a single forward 

pass through the network. This computational speed makes STCNNs ideal for design space 

exploration, optimization loops, what-if analysis and real-time signal integrity checks during PCB 

layout. 

2. Learning non-linear relationships 

S-parameter behavior is inherently nonlinear with respect to interconnect geometry, material 

properties, and signal frequency. STCNNs, built on deep neural networks, are well-suited to learn 

such complex, nonlinear mappings. The nonlinearity enables STCNNs to capture subtle effects 

like skin effects and dielectric losses at high frequencies, discontinuity-induced reflections. 
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3. Data-driven surrogate modeling 

STCNNs act as surrogate models trained on data generated by high-fidelity simulators (e.g., HFSS, 

CST, ADS). Once trained, they eliminate the need to rerun expensive simulations for new 

geometries that fall within the training distribution. This makes STCNNs highly valuable in 

parametric sweeps, sensitivity analysis and yield optimization in manufacturing tolerances. By 

replacing slow simulations with fast inference, design cycles can be accelerated significantly 

without sacrificing much accuracy 

 

4. Integration with optimization and co-simulation 

Once trained, STCNNs can be easily embedded into circuit-level co-simulation flows, automatic 

PCB layout verification and topology optimization algorithms. This allows for closed-loop 

optimization where the STCNN model serves as a surrogate solver, significantly reducing 

computation time in tasks such as trace width tuning for impedance control, stub length 

optimization for via transitions and crosstalk minimization in dense routing scenarios 

 

5. Adaptability to complex design spaces 

STCNNs can be trained to model a wide variety of interconnect structures, including microstrip 

and stripline transmission lines, vias, coupled differential pairs and multi-layer PCB structures. 

This adaptability makes them a flexible modeling tool that can generalize across multiple use cases 

with the right data and architectural tuning. Their modular design allows for easy integration with 

other ML models or EDA workflows. 
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5.2 Limitations and Future work 

While Spectral Transposed Convolutional Neural Networks (STCNNs) offer significant 

advantages in accelerating S-parameter prediction for high-speed interconnects, they are not 

without limitations. These limitations arise from both the neural network architecture itself and the 

complexity of the physical domain in which they are applied. Understanding these challenges is 

critical for deploying STCNNs responsibly and for motivating further improvements in model 

architecture and training methodology. 

 

1. Generalization of unseen designs 

One of the primary limitations of STCNNs is their limited generalization capability outside the 

distribution of training data. These models are inherently data-driven, and their accuracy depends 

heavily on the diversity and quality of the training dataset. If the model is exposed to interconnect 

designs or frequency ranges not well represented during training, it may produce inaccurate or 

non-physical predictions. Unlike physics-based simulators that can extrapolate based on 

Maxwell’s equations, neural networks operate based on pattern recognition and interpolation. 

This issue is further exacerbated by high-dimensional input spaces, such as parametric 

variations in trace length, width, dielectric constants, and layer stack-ups. Covering the entire 

design space with simulated training data is computationally expensive, which limits the 

practicality of using STCNNs as general-purpose solvers 

 

2. Training complexity and computational cost 

Although inference using STCNNs is extremely fast, training the model can be computationally 

expensive. The need for large, high-fidelity simulation datasets and iterative training processes—
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sometimes involving hundreds of thousands of parameters—requires significant GPU/TPU 

resources and tuning expertise. 

Moreover, the design of the network architecture (e.g., number of layers, kernel sizes, 

upsampling strategies) significantly affects performance, and there is no universally optimal 

configuration. Thus, model development may involve trial-and-error, cross-validation, and 

hyperparameter tuning, which can delay deployment. 

 

3. Interpretability and physical insight 

STCNNs operate as black-box models and lack interpretability compared to traditional analytical 

or simulation-based approaches. Designers and SI engineers often need not just predictions but 

insights into the physical causes of signal degradation, such as reflections, coupling, or dielectric 

losses. STCNNs do not provide any interpretable internal representation of physical phenomena 

like wave propagation or impedance mismatch, making them less useful in root-cause analysis or 

debugging 

 

Despite their speed and learning capacity, STCNNs have important limitations that must be 

addressed before they can fully replace traditional electromagnetic solvers in SI workflows. As 

discussed above, these include generalization limitations, potential physical law violations, 

training complexity, and lack of interpretability. Addressing these challenges involves augmenting 

STCNNs with physics-aware constraints, hybrid modeling approaches, and domain-specific 

architecture tuning. 
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5.3 Future work 

5.3.1 Time -domain analysis using ML model 

The aim is to develop an efficient way for design and analysis of a channel. We have seen 

that machine learning can be used to predict the S-parameters for any given geometry or material 

information. The next most natural step is to use the S-parameters obtained for time-domain 

analysis using simulators like SPICE, LIM, etc. Feed-forward neural networks, recurrent neural 

networks, Long Short-term memory (LSTMs), CNNs, can be used to learn the sequential data in 

the time domain, where temporal relationships are key. With good datasets and proper tuning, an 

ML model can be obtained to perform time-domain analysis.  

 

5.3.2 Multi-objective optimization and material property analysis 

As it has been demonstrated that Electro-thermal analysis can be performed using ML methods, 

this can enable holistic optimization that traditional methods struggle to achieve.  Multi-objective 

optimization can be performed, that can help resolve conflicts between thermal properties like the 

temperature verses signal integrity effects while designing a system. This can also provide insights 

into the materials that should be used to reduce SI effects. The accuracy of the temperature 

prediction can be improved by developing a more comprehensive ML framework. 
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