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Professor José E. Schutt-Ainé



ABSTRACT

In this thesis, a tool is presented for extracting frequency domain scattering

parameters that utilizes a time domain circuit simulation algorithm called

the latency insertion method (LIM). LIM is a finite difference formulation

comparable with current industry standard circuit simulators, with several

advantages, namely linear numerical complexity.

In this work, the theoretical underpinnings of LIM and the tool are estab-

lished. The tool is comprehensively explained and validated, and its limita-

tions are discussed. Finally, an example problem is analyzed using this new

tool, and the results are presented.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Statement

The simulation and computation of frequency domain macromodels for pas-

sive structures is a considerably computationally complex process. Mod-

ern integrated circuits are becoming very small and operating at higher and

higher clock rates, necessitating accurate simulation to preserve signal in-

tegrity. These driving factors cause the models to become increasingly com-

plex and difficult to simulate. Traditional circuit simulators such as Simula-

tion Program with Integrated Circuit Emphasis (SPICE) have a superlinear

run time due to required matrix inversions, and they become increasingly

inefficient as the circuit size becomes extremely large. The latency insertion

method (LIM) [1, 2, 3, 4, 5, 6], is a circuit simulation algorithm that has

been shown to be an efficient and accurate tool for the fast simulation of

very large circuits. LIM’s most important advantage over SPICE is its linear

numerical complexity, which leads to a much faster simulation time relative

to SPICE for very large circuits.

This work sets out to extend the capabilities of LIM by introducing the

capacity for frequency domain simulation. Characterizing circuit networks in

the frequency domain is incredibly important and a critical function of any

circuit simulator. The tool presented in this thesis leverages the simplicity

and speed of LIM to generate frequency domain S-parameters. With two

time domain simulations, the complete set of S-parameters can be calculated

using the fast Fourier transform (FFT).
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1.2 Outline

Chapter 2 details the various LIM formulations that may be used. In ad-

dition to this, implementation considerations are provided to improve the

performance of LIM. In Chapter 3, the theory, implementation, and valida-

tion of the tool are discussed. Chapter 4 shows an application of the tool

to a specific problem, where a power plane with material and geometric un-

certainties is modeled and simulated. Much of the information in Chapters

3 and 4 has been previously published in Kummerer et al. [4, 5], and is

adapted here with permission. Finally, in Chapter 5, conclusions and future

work are discussed.
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CHAPTER 2

LATENCY INSERTION METHOD

LIM is a finite difference algorithm developed for the time domain simula-

tion of circuits [1, 2, 3, 4, 5, 6]. Similar to Yee’s finite difference time domain

(FDTD) algorithm [7], LIM alternately calculates the current through each

branch and the voltage at each node, separated by half time steps, in a

leapfrogging manner. The major advantage of LIM over the industry stan-

dard circuit simulation algorithm SPICE is LIM’s linear numerical complex-

ity. The run time of LIM is directly proportional to the number of nodes and

branches in a given circuit, whereas the run time of SPICE has a superlinear

dependence on the number of nodes in the circuit. In the following sections,

various LIM formulations and their implementations are discussed.

2.1 Formulation

A circuit, when being simulated using the LIM algorithm, must be broken up

into nodes and branches. Voltages are defined at each node, and currents are

defined through each branch. A node has a capacitance, conductance, and

current source in parallel to ground, as shown in Figure 2.1(a). Nodes are

connected to other nodes by branches. Branches contain a series combination

of an inductance, resistance, and voltage, shown in Figure 2.1(b). If all nodes

do not have capacitors to ground or all branches do not have inductors, very

small fictitious ones must be inserted.

Evaluating Kirchhoff’s current law (KCL) at a given node i, Equation 2.1

can be derived. Similarly, evaluating Kirchhoff’s voltage law (KVL) across a

branch ij yields Equation 2.2. As seen in Equations 2.1 and 2.2, the branch

currents are indexed at exact time steps, while the voltages are indexed at

half time steps. From these two equations, various formulations may be

derived.
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(a) Node topology (b) Branch topology

Figure 2.1: LIM topologies
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The explicit formulation is given by directly solving for future voltage and

currents from Equations 2.1 and 2.2. Solving Equation 2.1 for the future

voltage at node i, V
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i , yields Equation 2.3.
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Similarly, solving Equation 2.2 for the future branch current, In+1
ij , pro-

duces Equation 2.4.
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For the implicit formulation, Gi and Rij in Equations 2.1 and 2.2 are

replaced by GiV
n+ 1

2
i and RijI

n+1
ij , respectively. Again, solving for V

n+ 1
2

i and

In+1
ij yields the following two equations.

V
n+ 1

2
i =

(
Ci
∆t

+Gi

)−1

·

(
Ci
∆t
V
n− 1

2
i −

Mi∑
k=1

Inik +Hn
i

)
(2.5)

4



In+1
ij =

(
Lij
∆t

+Rij

)−1

·
(
Lij
∆t

Inij + V
n+ 1

2
i − V n+ 1

2
j + E

n+ 1
2

ij

)
(2.6)

Finally, the semi-implicit form is found by substituting
Gi

(
V
n+1

2
i +V

n− 1
2

i

)
2

and
Rij(In+1

ij +Inij)
2

for the conductance and resistance terms, Gi and Rij.

V
n+ 1

2
i =

(
Ci
∆t

+
Gi

2

)−1

·

((
Ci
∆t
− Gi

2

)
V
n− 1

2
i −

Mi∑
k=1

Inik +Hn
i

)
(2.7)

In+1
ij =

(
Lij
∆t

+
Rij

2

)−1

·
((

Lij
∆t
− Rij

2

)
Inij + V

n+ 1
2

i − V n+ 1
2

j + E
n+ 1

2
ij

)
(2.8)

All of the LIM formulations mentioned above are conditionally stable,

meaning that there exists a maximum time step for which this algorithm

is numerically stable. Yee’s FDTD has a very similar stability criterion. The

worst case maximum stable time step is given by ∆tmax =
√
LminCmin, where

Lmin and Cmin are the minimum inductor and capacitor values in the whole

circuit. These values generally come from the fictitious elements, if they exist

[2].

2.2 Implementation

The implementation of LIM is relatively straightforward, especially when

only using the basic formulations shown above. More sophisticated imple-

mentations such as Block LIM [3] exist, but I did not use them because

simpler methods may be used without loss of generality. In this section,

the specifics of the implementation of LIM and the improvements made to

increase performance are presented.

The core of LIM is simply the two updating equations, Equations 2.3 and

2.4, Equations 2.5 and 2.6, or Equations 2.7 and 2.8. The current updating

equation is repeated for every branch and the voltage updating equation is

repeated for every node. This is done at each time step of the simulation.
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The algorithm is shown below.

Algorithm 1 LIM Algorithm

for t = 0 to Num Time Steps do
for node = 0 to Num Nodes do

Update Voltage Equation
end for
for branch = 0 to Num Branches do

Update Current Equation
end for

end for

Other than the two updating equations, there is no common framework of

organizing a LIM simulation. For this thesis a relatively simple interface to

get the LIM simulations running was created. Initially, an adjacency matrix

was used to describe the connections between circuit nodes. The matrix is of

size Nnodes×Nnodes, where Nnodes is the number of nodes in the circuit. The

matrix has entries of zero when the nodes are not connected and one when

the two nodes are connected. Similarly, the branch current, resistance, and

inductance are also stored in an Nnodes ×Nnodes matrix. The node voltages,

conductances, and capacitances are stored in a Nnodes × 1 vector.

As the size of the circuit increases, this method becomes inefficient because

the two-dimensional matrices containing branch currents, resistances, and

inductances become massive and very sparse. At each time step and at each

node, an entire row of these matrices would be looped through. This bogged

down the simulation and was unnecessarily memory intensive, considering

most of the values are zero. In order to improve this, a new data storage

method for the branch information was realized by compressing the sparse

square matrix into a list of lists in Python or a vector of vectors in C++ from

the standard library. The adjacency list serves as a form of a branch list. The

algorithm for compressing the large adjacency, resistance, and inductance

matrices is given below.

This process is very simple. The algorithm simply iterates through the

adjacency matrix and finds non-zero elements. The index of that non-zero

element is appended onto a list with all the other indices of nodes adjacent to

node i. When an item is appended to the adjacency list, the branch resistance

and inductance between the two nodes are also added into their own list to be

stored similarly. Now, when updating the voltage at each node, it becomes

6



Algorithm 2 Compress Matrices

adjacentNodesList = [ ]
adjacentRList = [ ]
adjacentLList = [ ]
for i = 0 to Num Nodes do

nodeList = [ ]
rList = [ ]
lList = [ ]
for j = 0 to Num Nodes do
if A[i, j] == 1 then

nodeList.append(j)
rList.append(R [i, j])
lList.append(L [i, j])

end if
end for
adjacentNodesList.append(nodeList)
adjacentRList.append(rList)
adjacentLList.append(lList)

end for

less computationally difficult to calculate the current flowing into the node(∑Mi

k=1 I
n
ik

)
.
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CHAPTER 3

SCATTERING PARAMETER
CALCULATION USING LIM

3.1 Theory

In this section, the theoretical underpinnings of the tool are discussed. The

most important concept is that of S-parameters, as the main goal of this thesis

is to present a tool that extracts them. Secondly, understanding the FFT is

required, because the fundamental operation of the tool requires conversion

of time domain simulation data into frequency domain S-parameters.

3.1.1 Scattering Parameters

S-parameters are a frequency domain representation of an N-port network. S-

parameters completely describe a linear network by giving ratios of reflected

and transmitted voltage waves, as referenced from an incident voltage wave

on a given port. In order to measure any N-port network parameter, the

outputs must be terminated by a certain load while the input is excited.

While Z and Y parameters also offer a complete description of a network, they

can be cumbersome to measure. They require open and short terminations

for measurement, which are difficult to realize in situations involving active

devices and high frequencies. S-parameters simply require a termination

equal to the reference impedance Z0. Z0 is generally taken to be 50 Ω, and

it will be throughout this thesis. This property makes S-parameters very

attractive for characterizing networks at high frequencies.

In this work, only two-port S-parameters are discussed. The generalized

root power waves of a two-port S-parameter system are given by Equations

3.1, 3.2, 3.3, and 3.4 [8]. These are called root power waves because when they

are squared, the resulting value is the power of the given wave. The incident

root power wave, a1, is the excitation of the network. This incident root

8



power wave will give rise to a reflected root power wave, b1, and a transmitted

root power wave, b2. In a realistic measurement scenario, a1 would be a single-

frequency sinusoid with a given power, supplied by a network analyzer. The

reflected and transmitted waves, b1 and b2, would be measured with the aid of

directional couplers, splitting the backward traveling wave from the forward

traveling wave. The termination on port 2 of the network must be matched

to Z0 to ensure that no power from b2 is reflected back into the system. A

graphical representation of this setup is given in Figure 3.1.

a1 =
V1 + Z0I1

2
√
Z0

(3.1)

a2 =
V2 − Z0I2

2
√
Z0

(3.2)

b1 =
V1 − Z0I1

2
√
Z0

(3.3)

b2 =
V2 + ZI2

2
√
Z0

(3.4)

Knowledge of a1, b1, and b2 allows us compute S11 and S21 of the network.

Taking the ratios of the reflected or transmitted waves with the incident

wave yields these values, as shown in Equations 3.5 and 3.6. Repeating this

process by matching port 1 to Z0, exciting port 2 with the incident wave a2,

and measuring the reflected (b2) and transmitted (b1) waves the remainder

of the S matrix can be computed. Equations 3.1, 3.2, 3.3, and 3.4 detail

how the forward and backward traveling waves are calculated from voltage

and current measurements at the ports of the device under test (DUT). The

voltage and current measurement locations are shown in Figure 3.2.

S11 =
b1
a1

∣∣∣∣
ZL=Z0

(3.5)

S21 =
b2
a1

∣∣∣∣
ZL=Z0

(3.6)

9



Figure 3.1: S-parameter port 1 measurement setup showing root power
waves

Figure 3.2: S-parameter measurement setup showing voltage and current

3.1.2 Fast Fourier Transform

The FFT forms the backbone of this tool, because it is able to take the time

domain data and convert it into frequency domain data. For information

about the FFT, we have relied on Manolakis and Ingle [9]. The FFT is an

algorithm to exactly calculate the discrete Fourier transform (DFT), which

is a mapping of discrete time domain samples to discrete frequency domain

samples. It is called the fast Fourier transform because it has a numerical

complexity of O(N log N) compared to O(N2) for the DFT, where N is the

number of samples in the signal. While the DFT has many uses, it is used

specifically for spectral analysis in this thesis.

The exact expression for the DFT is given in Equation 3.7. Xk is the

frequency domain representation of xn, which is a time domain signal of

length N. The output sequence, Xk, is also of length N. Generally, the time

domain data, xn, must be equally spaced in order to be processed correctly

by the FFT. This is convenient for LIM because the time step is fixed, while

SPICE has a variable time step.

10



Xk =
N−1∑
n=0

xn · e
−j2π
N

kn (3.7)

When the input to the FFT is purely real, which is the case in this thesis,

XN−k = X∗
k . Therefore, the second half of the output of the FFT is redundant

and may be discarded. Xk is indexed with integers, but it is only useful when

frequency data corresponds with an actual frequency. The frequency spacing

∆f of each FFT bin k is given in Equation 3.8. The frequency of a given bin

is then given by k∆f .

∆f =
1

N∆t
(3.8)

The frequency resolution of the output of the FFT is governed by the

number of time domain samples (N) and the time step of the simulation

(∆t). Increasing either will increase the frequency resolution of the output.

Zero padding commonly is used to increase the effective number of samples

in the time domain by appending many zeros to the end of the time domain

sequence. This has the effect of increasing frequency resolution. However,

this does not actually improve the ability to distinguish two signals of similar

frequencies. However, increasing the length of the true, non-zero-padded time

domain sequence will result in an FFT output containing more information,

allowing nearby signals to be more easily distinguished.

An effect of the inherent finite nature of the FFT is called spectral leakage.

For example, when sampling a pure sinusoid, the effect of truncating the

time domain sequence results in spreading of the signal’s power across the

frequency spectrum. This problem can be mitigated by using longer time

domain sequences or various windows, but it cannot be perfectly removed.

The problem of spectral leakage is not the focus of the thesis, but in the

future, it should be taken into account for sensitivity analysis.

3.1.3 Excitation

The goal of the tool is to generate the whole spectrum of S-parameters using

only two time domain simulations. In order to accomplish this, the chosen

excitation must be very broadband. The most broadband signal possible is

a single Dirac delta, but that is not advisable from a numerical standpoint.
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(a) Time domain (b) Frequency domain

Figure 3.3: Gaussian excitation

The very sharp increase in time of the delta function has implications for the

accuracy and stability of simulation being run.

A good compromise between being broadband and being numerically favor-

able is a Gaussian pulse. The Gaussian pulse takes the form of the commonly

known Gaussian function, shown in Equation 3.9 [10]. The spectral compo-

sition of a Gaussian is another Gaussian, and it is very flat with a highly

controllable roll-off point. The frequency domain representation of Equation

3.9 is given by Equation 3.10. Clearly, the choice of τ , affects the pulse width

of f (t) and therefore the frequency composition f (ω). By compressing the

pulse width, the spectrum will necessarily broaden. An example of a Gaus-

sian pulse and the resulting spectrum generated from an FFT are given in

Figure 3.3.

f (t) = e−
t2

2τ2 (3.9)

f (ω) =
√

2πτe−
(τω)2

2 (3.10)

There are several other types of excitations that can be used, depending

on the simulation needs. A differentiated Gaussian can be used if your sim-

ulation cannot contain a DC component in the stimulus. The general form

of the differentiated Gaussian is given in Equation 3.11, and its frequency

domain expression is given in Equation 3.12.
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f (t) = − t
τ
e−

t2

2τ2 (3.11)

f (ω) = jω
√

2πτ 2e−
(τω)2

2 (3.12)

Additionally, a modulated Gaussian can be used to achieve a bandpass

Gaussian spectrum centered around a certain frequency ω0. The time and

frequency domain functions are shown in Equations 3.13 and 3.14 [10].

f (t) = e−
t2

2τ2 sin (ω0t) (3.13)

f (ω) = −j
√
π

2
τ

[
e−

(τ(ω−ω0))
2

2 − e−
(τ(ω+ω0))

2

2

]
(3.14)

In the experiments shown in this work, only the Gaussian pulse is used.

This excitation was chosen over the alternative excitations listed above due

to its wideband nature. The entire spectrum of S-parameters is required,

and none of the circuits demonstrated here had any problems operating at

DC.

3.2 Implementation

Now that the theory is established, the implementation of the tool itself

can be discussed. The basic steps are as follows: define input and output

ports, append 50 Ω resistors to ground at those nodes, run a LIM simulation

with the excitation at the input port, record the input and output port

voltages and currents, compute time domain root power waves, convert root

power waves to the frequency domain, and finally take appropriate ratios to

determine S-parameters.

In LIM, there are two types of sources, voltage sources in branches between

nodes and current sources from ground to a node. Using a current source for

the excitation is simpler, even though theoretically the excitation is generally

considered to come from a voltage source. A Norton equivalent resistance

and a current source can achieve the same effect as a voltage source.

In a laboratory measurement of S-parameters, the ports of the DUT must

be matched to the reference impedance of the system. The same is true for

13



Figure 3.4: Example circuit diagram with V1, V2, I1, and I2 shown

the time domain simulation being run here. Before beginning the simula-

tion, 50 Ω resistances are added between the input port and ground and the

output port node and ground. It is worth noting that in the LIM circuit

format, the resistances between a node and ground are actually considered

as conductances. Care must be taken when modifying the circuit so as to

incorporate a conductance of (50 Ω)−1, or 0.02 Ω−1 and not 50 Ω−1.

Following the small amount of setup that must be done, the LIM simulation

is run. The voltages and currents at the two ports of the network are saved

at each time step during the simulation. V1 and V2 are simply the node

voltages at the input and output ports, respectively. Finding I1 and I2 is

slightly more involved. These currents the currents flowing into the network

from both ports. For I1, the excitation current is used, but with the current

through the 50 Ω resistor to ground subtracted, because that current is not

going into the circuit. I2 is the current going into the load resistor, and can

be calculated simply by dividing the output node voltage by 50 Ω. These

four values are shown clearly in Figure 3.4.

The input and output voltages and currents are used in Equations 3.1, 3.3,

and 3.4 to find time domain root power waves. It makes no sense to solve

for a2 in this case, because the excitation is at port 1, and only S11 and S21

are calculated from this simulation. Another simulation must be run with

the excitation on port 2 to find S12 and S22.

An FFT is run on each of the root power waves, yielding a complex fre-

quency domain representation of those signals. Zero padding can be used

to increase the frequency resolution of the FFT by decreasing frequency bin

size. In practice, it was found zero padding the time domain data up to

216 points or higher yielded good results. Additionally, the exact amount

of zero padding can be specified to yield a specific number of points in the

frequency range of interest. This, however, creates a large number of extra

14



Figure 3.5: Transmission line lumped element model

points beyond the maximum frequency of interest. These values should be

discarded, because they waste memory and are often inaccurate. Dividing

the appropriate frequency domain root power waves yields the S-parameters,

shown in Equations 3.5 and 3.6.

It is important to note that this method, in its current form, works only

for linear circuits. There is no way to track conversions of input frequencies

to different output frequencies, since there is only a single input excitation

containing every frequency.

3.3 Validation

Validating the tool was one of the most critical steps in the whole process.

Ensuring accuracy in the tool is of paramount importance, because otherwise

there is no use for it. To prove accuracy, both the time domain and frequency

domain results from LIM and the tool are compared to results generated using

a well-known commercial circuit simulator, ADS. In this section, two passive

lumped element circuits, including a transmission line and a power deliv-

ery network, are simulated, and the results are carefully compared against

solutions derived analytically or generated from a commercial simulator. Ad-

ditionally, the variations in results obtained from different LIM formulations

and the effects of different simulation run times are studied.

3.3.1 Comparison with Analytical Solution

A good way of testing is to simulate a circuit that has a known, analytical

solution. In this case, a lumped element transmission line was simulated,

whose model is shown in Figure 3.5. Although this model is only an ap-

proximation for a transmission line, the circuit that was simulated had 500

elements, making the agreement quite close. The characteristic impedance
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of the transmission line, Zc, is 50 Ω, the propagation velocity, vp, is 3 ∗ 108

m
s

, and the length, d, is 1 m.

From Equations 3.15 and 3.16, the per unit length inductance L and ca-

pacitance C can be found [11]. Multiplying these by transmission line length

and dividing by the number of elements yields the elemental inductance L

and C, which are included in Figure 3.5.

vp =
1√
LC

(3.15)

Zc =

√
L

C
(3.16)

The S-parameters of a transmission line are given by the Equations 3.17

and 3.18 [12].

S11 =
(1−X2) Γ

1− Γ2X2
(3.17)

S21 =
(1− Γ2)X

1− Γ2X2
(3.18)

Expressions for Γ and X are given by Equations 3.19 and 3.20.

Γ =
Zc − Z0

Zc + Z0

(3.19)

X = e−γd (3.20)

The propagation constant, γ, is expressed in Equation 3.21.

γ =
√

(R + jωL) (G+ jωC) (3.21)

To simplify things, the transmission line was considered to be very low

loss, so the propagation constant becomes γ = jω
√
LC = jω

vp
. Additionally,

by setting Zc = Z0 = 50 Ω, the expressions for S11 and S21 simplify into

S11 = 0 and S21 = e
− jωd

vp . Figure 3.6 compares the theoretical S21 phase

with that given by the tool. Agreement between the two is extremely good,

inspiring confidence in the tool’s accuracy. Only the phase of S21 is shown

because none of the other S-parameters are interesting, as S11 is 0, and the

magnitude of S21 is 1.
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Figure 3.6: Transmission line S21 phase comparison
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Figure 3.7: Diagram of M×N PDN circuit with excitation at port 1

3.3.2 Comparison with ADS

In this section, comparisons between the tool and commercial simulators are

made. Here a lumped element model of a PDN is being simulated. More

information about PDNs and this particular model is provided in Chapter

4, but for this section, the origins of the circuit are of little relevance. The

chosen circuit is a 40x40 node box spring circuit, shown in Figure 3.7. The

input port (port 1) is located at the top left of the circuit (node one), while the

output port (port 2) is located at the bottom right of the circuit (node 1600).

The resistance and inductance between nodes are R = 130.0 mΩ and L =

1.885 nH, respectively. The conductance and capacitance to ground at each

node are G = 51.00 µS and C = 162.3 fF, respectively. It is a rather large and

complex circuit, so it is a good case for verification against a commercial tool.

Advanced Design System (ADS) from Keysight Technologies is the chosen

simulation tool, because it is capable of both time domain and S-parameter

simulations, and it is common and trusted throughout the industry.

Figure 3.8 compares the time domain voltage measured at port 2, as gener-

ated by ADS and LIM. This figure shows excellent correlation between the re-

sults from LIM and ADS. Confirming accurate LIM results was a crucial step
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Figure 3.8: Output voltage comparison with ADS

in the process, because the accurate calculation of the circuits S-parameters

is contingent upon an accurate time domain simulation. Following the time

domain simulation, the S-parameters are calculated using the input and out-

put voltages and currents. The S-parameters generated using the tool and

those generated by ADS are given in Figures 3.9 and 3.10. It is clear that

these agree quite closely. In this case, only S11 and S21 are given because the

network is reciprocal and therefore S22 and S12 are redundant.

3.3.3 Variations Between LIM Formulations

LIM, being a finite difference algorithm, suffers from the same problems as

any other finite difference equation. In this section, variations between results

of explicit, implicit, and semi-implicit LIM formulations are compared, and

the effects of these differences on the S-parameter calculations are analyzed.

Figure 3.11 shows the output voltages calculated by LIM’s three basic

formulations with two different time steps. The main spike is emphasized to

show the minute differences between the results from the separate schemes. It

is evident that the smaller time step yields more consistent results among the
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(a) Magnitude

(b) Phase

Figure 3.9: S11 comparison with ADS

20



(a) Magnitude

(b) Phase

Figure 3.10: S21 comparison with ADS
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three formulations. This makes sense because as the time step approaches

zero, the three finite difference schemes will converge to the same result.

From Figure 3.12, it is clear that these minor variations in the time domain

simulation results have serious consequences in the frequency domain. While

the time step is certainly small enough in either case to ensure stability, it

may not be small enough to ensure a desired level of accuracy in the resulting

S-parameters. This is something the user must be aware of.

3.3.4 Simulation Run Time Considerations

The duration of the simulation is of critical importance when S-parameters

are calculated by means of an FFT. The findings indicate that the effects of

the excitation must be completely extinguished before the completion of the

time domain simulation. Early termination of the LIM simulation results in

a loss of data and considerable effects on the resulting S-parameters.

To investigate this, three simulations were run using the same time step

and explicit LIM formulation, but with three different run times: 5, 10, and

20 ns. Figure 3.13 highlights the truncation and subsequent loss of data from

the three trials. Only the output voltage is shown, but the same effect is seen

in the output current and input voltage and current. The three datasets are

overlayed and are identical except for the simulation end time.

Shown in Figures 3.14(a) and 3.14(b) are comparisons between the S-

parameters calculated using the data generated from simulations using the

three different run times. From the previous section, it is shown that the

20 ns simulation yields accurate S-parameter results. Comparing the other

two simulations to this one, we can see that the results become corrupted.

Moving from 20 ns to 10 ns simulation time only results in a small loss in

accuracy, largely due to the fact that the signal has been mostly damped

out by that point in time. However, going from 10 ns to 5 ns simulation

time yields very bad results. At some points, the supposedly passive circuit

becomes active and has an S11 > 1. It is expected to lose accuracy here,

because a lot of information is lost, which can be seen in red in Figure 3.13.

These effects will vary based on the circuit in question, and the user must be

vigilant to ensure the proper simulation time is set.
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(a) ∆t = 10 ps

(b) ∆t = 1 ps

Figure 3.11: Output voltage comparison between LIM formulations
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(a) ∆t = 10 ps

(b) ∆t = 1 ps

Figure 3.12: S11 magnitude comparison between LIM formulations
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Figure 3.13: Output voltage

25



(a) S11 magnitude comparison

(b) S11 phase comparison

Figure 3.14: S11 comparison between simulation run times
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CHAPTER 4

APPLICATIONS

Once validation of this tool was complete, it was applied to the problem of

simulating a structure with some randomness in its material properties and

physical dimensions. In this particular case, the structure of interest was a

power delivery network (PDN). A basic PDN consists of a conducting power

plane separated from a conducting ground plane by a dielectric. Creating a

lumped element model for this circuit is necessary for simulation using LIM,

due to LIM’s circuit based nature. Following the modeling of the structure,

the effects of the inherent uncertainties in the DUT are characterized first

using Monte Carlo simulations and then using stochastic collocation [13].

This chapter discusses PDN modeling, stochastic characterization, the spe-

cific scenario that is simulated, and the results generated using the tool. This

problem is also discussed in [4, 5].

4.1 Power Plane Modeling

A PDN can be thought of as a two-dimensional transmission line, and it is

modeled as such [14]. When modeled as a lumped element circuit, the PDN

is broken up into a number of unit cells. Figure 4.1 shows a diagram of our

example PDN with important dimensions indicated. The variablesw, h, and

t are unit cell side length, plate separation, and plate thickness, respectively,

and εr is the relative permittivity of the dielectric substrate.

The circuit model of a single unit cell is given in Figure 4.2. Each unit cell

has a conductance and capacitance to ground and a resistance and inductance

to each adjacent unit cell. The unit cells are arranged in a grid, with each

non-edge cell having four neighbors above, below, left, and right of it. This

forms a “box spring” type circuit, and is shown in Figure 3.7. This format

makes it ideal for usage with LIM, because the circuit does not need to be
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modified by the addition of fictitious elements.

Given in 4.1 and 4.2 are the expressions for the unit cell capacitance and

conductance, respectively. The equation for capacitance is intuitive, as it is

the same as the capacitance of a parallel plate capacitor. The conductance is

a frequency-dependent term and is related to the loss tangent of the dielectric.

C = ε0εr
w2

h
(4.1)

G = ωC tan δ (4.2)

Internodal inductances and resistances are calculated by Equations 4.3 and

4.4, respectively.

L = µ0h (4.3)

R =
1

σt
(4.4)

Depending on the granularity required for the simulation, the PDN can

be broken up using various sized unit cells. In general, when using finite

difference formulations such as the FDTD, it is recommended that the gran-

ularity of the structure be equal to or greater than 20 cells per wavelength.

Increasing the number of cells per wavelength serves to reduce the numerical

dispersion error [7].

4.2 Stochastic Collocation

Stochastic collocation is a method of characterizing the effects of uncertainty

[13]. Compared to the Monte Carlo method, stochastic collocation is a much

more sophisticated approach. A Monte Carlo simulation relies on brute force

and a massive number of trials. Stochastic collocation, on the other hand,

requires fewer trials and approximates the statistical moments of our output.

A major benefit of stochastic collocation is that it is non-intrusive, meaning

that the underlying LIM and S-parameter equations may be preserved [15].

The core principle in stochastic collocation is the creation of a sparse grid.

The sparse grid is a set of points with the same number of dimensions as the
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Figure 4.1: Power plane with parameters

Figure 4.2: PDN unit cell
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Table 4.1: Parameter values

Parameter Mean Value Standard Deviation

w 2.5 mm -
l 10 cm -
h 1.50 mm 150µm
t 150µm 15µm
εr 4.4 0.44
σ 58 MS·m−1 -

number of random variables in the problem. Each grid point consists of a

tuple of values of the random variables at that given point. Depending on

the level of accuracy that is required, sparse grids of different densities are

sampled.

The simulation results at each of the sparse grid points is then used to

generate an interpolating function that maps the random variables to the

simulation output. This interpolant will approximate the results of the LIM

and subsequent S-parameter simulation. An external tool called TASMA-

NIAN [16] is used to generate the sparse grid and calculate the interpolant.

4.3 Example Problem

The PDN that is being simulated has three random variables: the power

plane thickness (t), dielectric thickness (h), and dielectric constant (εr). As

a reminder, the PDN is shown in Figure 4.1. Each of these random variables

is normally distributed with a standard deviation (σ) of 10% of their mean

values and with a cutoff after 3σ. A change in any of these parameters will

result in a change in the overall S-parameters of the circuit. Table 4.1 gives

the mean values of all of the parameters and the standard deviations of the

random parameters.

First, a basic Monte Carlo simulation is run, using 10,000 trials. At each

trial, a random sample of t, h, and εr is taken. These values are then con-

verted into the unit cell R, L, G, and C. Due to the limitations of the tool,

the frequency dependence of the dielectric conductance cannot be accounted

for. For this simulation, the value of the conductance at the center frequency

of the simulation was used. From there, the LIM circuit is constructed and

the time domain signal is run. Using the tool, the S-parameters are extracted
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from the time domain data and saved. This Monte Carlo simulation will be

used as a baseline for experimenting with the stochastic collocation method.

Using the Clenshaw-Curtis rule, the sparse grid is made for levels 3, 4,

and 5. Each of these three levels has a different number of points, resulting

in different degrees of accuracy in their ultimate results. A benefit of the

Clenshaw-Curtis sparse grid is that higher level sparse grids contain points

from lower level sparse grids, eliminating the need to resimulate those points

if multiple levels are used.

4.4 Results

The Monte Carlo simulation yielded results shown in Figure 4.3. Each of the

four plots shows the mean value of the S-parameter with a black line and

the 1 standard deviation range with the blue shaded area. As the frequency

increases, the uncertainty in the S-parameters increases, which is understand-

able. The effects of the reactive elements become more pronounced as the

frequency is increased, and therefore their impact on the S-parameters be-

come more pronounced.

Taking the Monte Carlo simulation to be the baseline, the results generated

from the three levels of sparse grid are compared. Figure 4.4 overlays the

plot of the standard deviation of the magnitudes and phases of S11 and S21.

Similarly, Figure 4.5 shows the plots of the mean values of the magnitudes

and phases of S11 and S21. It is apparent that as the level increases, the

approximation of the moments becomes more accurate.

The number of trials run and simulation time is given in Table 4.2. The

advantages of using stochastic collocation over the a simple Monte Carlo are

clear in Table 4.3. Level 5, the most accurate and most computationally

expensive of the three levels used, shows a 95% reduction in run time to

achieve results with acceptable error. The level can be increased to reduce

error as desired.

This much improved computation time does come with a price. Table 4.4

shows the mean square error between the means of the S-parameter distribu-

tions obtained through the Monte Carlo method and those obtained through

the stochastic collocation method. Likewise, Table 4.5 gives the mean square

error between the standard deviations of the respective distributions [4, 5].
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(a) S11 Magnitude (b) S11 Phase

(c) S21 Magnitude (d) S21 Phase

Figure 4.3: S-Parameters mean value ±σ

Table 4.2: Times for simulating sparse grid points

Level Trials Time (s)

5 441 198.45
4 117 52.65
3 69 31.05

Monte Carlo 10000 4502

Table 4.3: Times for running Monte Carlo on interpolant

Level Interpolant Time (s) Total Time (s) Time Reduction (%)

5 39 237.45 95
4 31 83.65 98
3 26 57.05 99
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(a) S11 magnitude standard deviation com-
parison

(b) S11 phase standard deviation comparison

(c) S21 magnitude standard deviation com-
parison

(d) S21 phase standard deviation comparison

Figure 4.4: S-parameter distribution standard deviations
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(a) S11 magnitude mean comparison (b) S11 phase mean comparison

(c) S21 magnitude mean comparison (d) S21 phase mean comparison

Figure 4.5: S-parameter distribution means
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Table 4.4: Mean squared error of means

Level S11 Mag S11 Phase S21 Mag S21 Phase

5 1.07E-04 4.66E+00 1.62E-04 3.63E+00

4 6.88E-04 4.26E+01 1.15E-03 4.29E+01

3 1.95E-03 8.26E+01 6.38E-03 2.04E+02

Table 4.5: Mean squared error of standard deviations

Level S11 Mag S11 Phase S21 Mag S21 Phase

5 2.53E-05 6.25E+00 3.27E-05 8.49E-01

4 1.27E-04 1.15E+02 6.17E-05 2.04E+00

3 9.04E-04 3.02E+02 2.29E-04 5.56E+01
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis has presented an approach to calculate the S-parameters of a

lumped element circuit. The background and importance of the problem was

given, followed by an explanation of the circuit simulator upon which this tool

is built. Following a theoretical explanation of S-parameters and the FFT,

an explanation of the S-parameter extraction procedure was given. Finally,

this tool was applied to a problem involving the simulation of a random

structure. It was shown that this tool is capable of accurately computing the

S-parameters of a LIM circuit.

In the future, this approach can be applied to simulations of more com-

plicated structures. An extremely simple addition to this is the extension to

N-port networks, requiring only the addition of extra matched terminations,

two additional LIM simulations per added port, and a total of N(1+N) FFT

computations. Additionally, a major improvement could be made by intro-

ducing a capability of handling non-linear circuits. The current method of

utilizing a broadband stimulus and the FFT would likely have to be rethought

and reworked in order to accommodate non-linear circuits, due to the linear

nature of S-parameters and the FFT.
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