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ABSTRACT

With the rapid developments in integrated circuit technology, the data rates

of chip-to-chip communication are fast approaching several tens of Gb/s.

While the desire for massive data-exchange is satisfied as a result of transceiver

links operating at high frequency, signal integrity (SI) issues emerge due

to short switching times. To identify and resolve these problems early in

the production cycle, SI simulations such as time-domain transient analysis

are incorporated in pre- and post-layout design stages. For efficiency con-

cern, it is often desired to use accurate and efficient black-box macromodels

of components on board instead of their SPICE-like representations. The

motivation rests in the nonlinear nature of the transceivers, which often-

times requires multiple Newton-Raphson iterations before convergence can

be achieved. This thesis is meant to contribute a small part to the enor-

mous amount of effort of the behavior modeling community in the quest for

computationally efficient methods capable of handling high speed link (HSL)

simulation of nonlinear devices and systems using machine learning methods.

Specifically, this work reports a feed forward-neural network (FNN) approach

with finite memory neurons to model nonlinear transistor level buffers. Af-

ter proper training, the FNN models can be cascaded with various channels

characterized by either their geometrical or scattering parameters. At each

cascading node, a FNN model is applied to predict the corresponding voltage

waveform and forward that prediction along the link as input for the next

available model. Compared to the industrial standard models like SPICE

and IBIS, HSL simulation done through FNN models does not involve com-

plicated converging iterations nor does it requires substantial domain knowl-

edge. Furthermore, we demonstrated that by overlaying the high-correlation

output responses from the FNN models, eye digram analysis can now be

performed in a much faster manner as opposed to the conventional SPICE

circuit solvers.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Due to the ever increasing demand of parallel processing and multi-level cache

memory, integrated circuit (IC) designers nowdays are fitting billions of 7 nm

technology transistors on a fingernail-size chip [1]. While the transistor count

keeps growing at the rate of Moore’s law, on-chip signal integrity (SI) anal-

ysis has never been more challenging given the accumulating IC complexity.

The burden not only lies in the number of the gates, but also the shrank

timing and noise margin that are outcomes of the faster transition times [2].

Conventionally, SI engineers use Simulation Program with Integrated Circuit

Emphasis (SPICE) for time domain simulation by solving for node voltage

and branch current at each time step. Nevertheless, this process becomes

extremely computationally expensive when it comes to transient simulation,

where nonlinearities are taken into account. As shown in Fig. 1.1, multiple

Newton-Raphson iterations are required before convergence is achieved at

every time step for a nonlinear system. Given the super-linearity of the com-

putation size, it is impractical to apply SPICE for large scale SI validation if

structural models of transistors are used.

To improve the analysis efficiency, behavioral models are introduced as

black-box alternatives to their equivalent SPICE-like circuits. Instead of ac-

cessing the transistor level design, the model yields the output in response to

the excitation based on either previously simulated data or bench measure-

ments. One of the most well-known standards is the I/O Buffer Information

Specification (IBIS) model, where the I/O’s voltage and current data are

saved as tables categorized by various usage scenarios [4]. With a slight de-

crease in accuracy, much faster simulation speed is attained in the absence
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Figure 1.1: Flowchart of a transient SPICE simulation [3].

of nonlinear solving iterations. While IBIS models are supported by the vast

majority of IC vendors because of their intellectual property (IP) protection

nature, end users are assumed to have substantial domain knowledge in order

to use the models properly in addition to producing them. As the IBIS stan-

dard evolves over time to include more complicated features like interconnect

and algorithmic calculation [5], the learning curve faced by a novice user is

becoming excessively steep.

In the effort of simplifying the modeling process, attempts were made de-

riving behavior models with machine learning (ML) methods. Rather than

physically mimicking the SPICE circuit with current sources and passive

components [6], the ML approach approximates the nonlinear function rep-

resented by the I/O data through training and stores the vector of kernels as

the model. In recent years, many remarkable results are reported on model-

ing highly nonlinear electronic devices and systems with supervised learning

algorithm, to be specific, the neural network (NN) framework. For instance,

several research efforts successfully model broadband power amplifiers with

variants of NN, including convolutional neural network (CNN) [7], deep neu-

ral network (DNN) [8] and memory polynomial neural network (MPNN) [9].

There are also articles that focus on modeling sequential circuits for digital

designs simulation with recurrent neural network (RNN) [10, 11, 12].
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Nevertheless, very few NN based behavior models were developed that are

suitable for the high speed link (HSL) simulation (see Chapter 1.2.2). To

perform such analysis, a passive channel is placed in-between the nonlinear

transceiver models and millions of bits of data is collected at the cascading

nodes to construct eye diagrams which are used to assess the link perfor-

mance. The major issue with the reported NN frameworks is the ambiguous

statement on the cascade-ability of the transmitter(TX) and the receiver

(RX) blocks. In other words, the existing modeling techniques treated a

particular configuration of HSL as an entity with an underlaying assumption

that the transceiver model needs to be re-trained every time when a new

channel is presented. Since the required training time of the NN models is

as much, if not more, than performing the SPICE nonlinear iterations, the

purpose of adopting behavior models in HSL simulation is defeated unless

the cascade-ability of the transceiver models is properly addressed.

To resolve the aforementioned issue, this dissertation proposed a feed-

forward neural network (FNN) based modeling technique for generating cascade-

able transceiver blocks that are dedicated for HSL analysis. Different pro-

tocols are assigned to the TX and RX models to ensure the trained blocks

could function independently regardless of changes in channel. In terms of

cascading, the FNN RX model always takes the voltage predictions from the

previous block as input and then pass on the calculated responses to the next

available block along the link. It is also worth noting that when applying the

FNN models, computation efficiency and convergence are guaranteed because

the HSL simulation is now merely done by matrix multiplication between the

voltage excitations and the kernels stored within the TX/RX models. The

performance of this new method is examined by comparing the runtime and

waveforms between the FNN model and the SPICE circuit for many distinct

test cases, namely the NRZ excitation, PAM-4 excitation, DFE equalization

and differential signaling.

This dissertation is structured as follows: In Chapter 1, the motivation

of this project and a review on the related previous works are presented.

Chapter 2 explained the TX/RX modeling protocols and the structure of

FNN. Then in Chapter 3, training procedure of the two transistor-level gate

3



examples, NAND and CMOS, are demonstrated and the trained blocks are

cascaded with testing channels. The accuracy of the modeling results are

evaluated against their references from a commercial circuit solver as well in

this chapter. The proposed method’s limitation and alternative implemen-

tation are discussed in Chapter 4. Chapter 5 summarizes the contribution

of the proposed approach and provides an outlook on future developments.

At last, there are two appendixes that explain the training data preparation

and hardware acceleration with CUDA in detail.

1.2 Review of Previous Works

This section discusses the currently available behavioral modeling techniques

for HSL simulation. The first subsection focus on the traditional IBIS ap-

proach, which is the golden standard adopted by many EDA tool. The

second subsection focus on the more recent NN based methods, of which the

modeling accuracy is justified but are greatly limited by their incapability of

functioning in a cascade-able manner.

1.2.1 IBIS and IBIS-AMI Models

As a global industry standard, IBIS and IBIS-AMI models offer good accu-

racy in nonlinear system simulation as well as protecting vendors intellectual

property. Begin from early 1990s, semiconductor companies started supply-

ing IBIS models to their end users to simulate SI at chip and board level.

This modeling technique is particularly well suited for large scale analysis

because the device’s I/O relation is pre-solved on the vendor side under typ-

ical, maximum and minimum operation conditions. The enhanced version of

IBIS, called the IBIS-AMI with BIRD flow, was first released in 2012 aiming

to specify the interface between the TX/RX and the channel simulator. In

this subsection, a brief introduction of both models is given so the readers

understand how IBIS functions as a cascade-able unit in HSL simulation.

The IBIS model is a human-readable text file (*.ibis) that records the

buffer’s I-V (current versus voltage) and switching characteristics V-T (out-

put voltage versus time) in a tabular format [14]. In addition, it also allows

4



Table 1.1: Simulated or measured elements required by the IBIS model

Keyword Type I/O buffer Input buffer Output buffer

[GND Clamp] I-V Yes Yes No

[POWER clamp] I-V Yes Yes No

[Pullup] I-V Yes No Yes

[Pulldown] I-V Yes No Yes

[Rising Waveform] V-T Yes No Yes

[Falling Waveform] V-T Yes No Yes

the simulator to take in account the information of the packaging around the

buffer such as the parasitic RLC, which are stored as optional lines in electri-

cal parameter keywords. In its simplest format, IBIS model characterize the

buffers with six sets of I-V and V-T data as shown in Table 1.1. Each of the

keywords is a look-up table simulated or measured with the steps described

in Table 1.2. Generally, the min-corner case is generated with the weakest

driver strength and/or slowest bit rate while the max-corner case takes the

reverse. The exact values of VSS and VDD are determined by the realistic

use cases of the buffer. For example, a CMOS can be modeled with VSS

equals to ground and VDD equals to its biasing voltage. For more compli-

cate designs like differential buffer, additional keywords such as differential

capacitance are required to fully characterize the device. After generating

an IBIS model, one must manually validate that the extracted I-V and V-T

tables are in accordance with the SPICE simulation result as well as their

compliance with the IBIS syntax. In the context of a transient simulation,

the solver first calculates the dependent multipliers Ku(t) and Kd(t) from

the V-T tables and then perform a summation of the currents gathered at

the output node as

−Iout(t) = Ku(t) · Ipu(V ) +Kd(t) · Ipd(V ) + Ipc(V ) + Igc(V ), (1.1)

where the Ix(V ) values are determined according to the IV tables at each

time point using piecewise linear interpolation [15]. Overall, as long as the

range of IV/VT tables covers the voltage excitation used in the transient

simulation, IBIS model is theoretically capable of a yielding accurate results

for a cascading chain of any length.
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Table 1.2: Simulation or measurement environment of IBIS keywords [13]

Keywords Data extraction flow (typical and min/max-corners)

[GND Clamp]

Disable the output pin and connect it to a ground ref-
erence or pull down reference −VSS . Insert a dc volt-
age source Vpin in-between the connection and perform a
sweep from −(2×VSS+VDD) to (2×VDD+VSS). Measure
the current Ipin at the output. Gather values of Ipin and
Vpin to make the I-V table.

[POWER clamp]

Disable the output pin and connect it to a power/pull-up
reference VDD. Insert a dc voltage source Vpin in-between
the connection and perform a sweep from −(2 × VSS +
VDD) to (2×VDD+VSS). Measure the current Ipin at the
output. Gather values of Ipin and Vpin to make the I-V
table.

[Pullup]

Enable the output pin and set it to logic high. Connect
it to a power/pull-up reference VDD. Insert a dc volt-
age source Vpin in-between the connection and perform a
sweep from −(2×VSS+VDD) to (2×VDD+VSS). Measure
the current Ipin at the output. Gather values of Ipin and
Vpin to make the I-V table.

[Pulldown]

Enable the output pin and set it to logic low. Connect it
to a ground reference or pull down reference −VSS . Insert
a dc voltage source Vpin in-between the connection and
perform a sweep from −(2×VSS+VDD) to (2×VDD+VSS).
Measure the current Ipin at the output. Gather values of
Ipin and Vpin to make the I-V table.

[Rising Waveform]

Enable the output pin and apply appropriate input volt-
age pulse so its logic state switches from low to high. In-
sert a fixture of r Ω between the pin and the power/pull-
up reference VDD. Measure the rising slew rate dV/dt and
record it as the V-T table.

[Falling Waveform]

Enable the output pin and apply appropriate input volt-
age pulse so its logic state switches from high to low. In-
sert a fixture of r Ω between the pin and the pull down
reference −VSS . Measure the falling slew rate dV/dt and
record it as the V-T table.
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Figure 1.2: Flowchart of a HSL simulation with IBIS-AMI models [16].

The IBIS-AMI model is invented to standardize the HSL simulation with

IBIS specifications. The model is divided into two files: the analog IBIS

part (*.ibis) and the executable algorithmic AMI part (*.dll). As shown in

Figure 1.2, the equalization settings such as FFE in TX and DFE in RX

are included in the AMI extension file. The HSL transient simulation with

IBIS-AMI models begins with the calculation of impulse response, which is

a combined force of Equation (1.1) along with applying the inverse Fourier

transform on the S-parameter characterized channel. Then, the AMI por-

tion acts as a DSP block which takes the calculated impulse response and

produces a modified output based on the equalization presets. It is worth

mentioning that if the TX/RX IBIS-AMI models in the HSL support the

same link training protocol, the new versions of AMI could perform dynamic

equalization, meaning that the tap values in DFE are adaptive to the sig-

nature of the channel. Note that if IBIS-AMI models are used, the HSL is

strictly defined as one TX cascading with one channel and one RX, which is

not as robust as the previously mentioned IBIS model.

1.2.2 Neural Network Models

To facilitate the process of generating and utilizing customizable behavior

models in HSL simulation, NN based modeling techniques are being explored

recently, taking advantage of the hardware acceleration for faster conver-

gence during the training phase. For instance, Chu et al. [17] introduced a

back propagation based NN (BNN) model that predicts the output after the

receiver (RX) given the excitation before the transmitter (TX). This work

7



Figure 1.3: Modeling diagram of BNN, DNN and LVFNN on a HSL.

proofs that the NN could handle nonlinear behaviors (e.g. mismatch between

the rising and falling time in the excitation) well with only three hidden lay-

ers. Similarly, Lu et al. [18] adopted a DNN model that accurately predicts

the eye height at RX with variations in the channel geometry and TX/RX jit-

ters. Another example is the Laguerre–Volterra feed-forward neural network

(LVFNN) suggested by Wang et al. [19]. This work focus on reducing the

required size of NN when modeling a nonlinear RX component with PAM-4

excitation. While all the above papers suggested a good correlation between

the modeling results and SPICE references, the modeling techniques they

demonstrated is performed on the entire HSL instead of a single TX or RX

component as shown in Figure 1.3. Since the reported techniques use a sin-

gle, large NN to model the entire link, they are oftentimes not robust enough

for a real design scenario: A new transceiver model is required every time

when HSL composition changes.
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CHAPTER 2

MODELING TRANSCEIVER WITH
FEED-FORWARD NEURAL NETWORK

(FNN)

2.1 Introduction

In this Chapter, the methodology of developing cascade-able transceiver

models with feed-forward neural network (FNN) is presented. As shown

in Figure 2.1, the FNN transceiver models will be cascaded to perform HSL

simulation with a slightly different work-flow compared to the traditional

IBIS/SPICE models. This modification is mandatory because the TX/RX

FNN models are expected to be resilient to certain variations in the cascading

chain and hence, requiring the parameterized channel and termination infor-

mation as inputs. In addition, it is worth noting that modeling with FNN

creates a self-sustain system, where its HSL analysis no longer demands any

commercial EDA tool: The simulation is now done through a chain of ma-

trix multiplication based on the stored kernels in the TX/RX FNN models.

Thanks to the model’s cascade-bility, one could also use a single block of

FNN model independently to test the buffer’s performance.

Figure 2.1: Comparison of workflow between SPICE/IBIS and FNN.
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2.2 Memory Effect in Nonlinear System

Given that the transceivers nowadays are generally nonlinear devices, the

HSL system they form is considered to possess memory of which the dis-

crete output y(n) depends on both the current and the past states of the

input x(n). This nonlinear, causal, stable, time-invariant system is typically

described by the truncated Volterra series [20]

y(n) = h0 +
M∑
τ1=0

M∑
τ2=τ1

. . .
M∑

τp=τp−1

hp (τ1, . . . , τp)

p∏
j=1

x (n− τj) , (2.1)

where M is the memory length and p is the pth-order of the Volterra kernel

(VK). Although mathematically all the VKs can be estimated by solving a

least-mean-square (LMS) equation, the problem soon becomes intractable

because the number of VKs to be solved is a exponential function in respect

to p and M .

To lift the curse of dimensionality, many tend to apply the discrete La-

guerre function as the projecting basis for VKs expansion [21]. Such function

can be expressed as

φr(τ) = α
τ−r
2 (1− α)

1
2

r∑
k=0

(−1)k

(
τ

k

)(
r

k

)
αr−k(1− α)k (2.2)

with φr(t) being the r-th orthonormal basis function. From there, the VKs

can now be expanded as

h0 = θ0

h1(τ) =
r=R∑
r=1

θrφr(τ)

h2 (τ1, τ2) =

r1=R∑
r1=1

r2=R∑
r2=1

θr1,r2φr1 (τ1)φr2 (τ2)

hp (τ1, . . . , τp) =

r1=R∑
r1=1

. . .

rn=R∑
rn=1

θr1,...,rn

p∏
l=1

φl (τl) ,

(2.3)

where R is the max order of the Laguerre function. After denoting a function

` of all known parameters as
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`r =
M∑
τ=0

φr(τ)x(n− τ), (2.4)

Equation (2.1) can be transformed to

y(n) = θ0 +
R∑
r=1

θr`r +

r1=R∑
r1=1

r2=R∑
r2=1

θr1,r2`r1`r2

+ · · ·+
r1=R∑
r1=1

· · ·
rn=R∑
rn=1

θr1,...,rn

p∏
i=1

`ri .

(2.5)

with [θ0, θr1, · · · , θrn] being the new kernels. Given that R is usually a much

smaller number than T , the identification of the kernels is thereby greatly

simplified [19, Tab. I, II].

However, this approach is problematic when x(n) is a long sequence sam-

pled at tiny time steps. Even with a relatively small R , at a certain point,

convolution between matrices φr, θr, and x(n) may exceed the available com-

putation capability. In other words, to completely avoid the convolutions in

Equation (2.1), the nonlinearity of the system should be addressed not as a

summation but a nonlinear function f such that for a input memory matrix

X of size (n−M)×M , the I/O relation between X and the output Y can

be written in the form:

X =


x(1) x(2) · · · x(M)

x(2) x(3) · · · x(M + 1)
...

...
...

...

x(n−M) x(n−M + 1) · · · x(n)

 (2.6)

Y =
[
y(M) y(M + 1) · · · y(n)

]T
= f(X). (2.7)

As demonstrated in the later sections, the exact implementation of f is

determined by the structure of the hidden layers in the FNN. The bottom

line is f does not necessarily take the same form for all buffers, meaning that

it is up to the designers to decide if more nonlinearity should be added into

f by adjusting the FNN framework.

11



2.3 Modeling Protocols

Besides the memory sequences, the FNN model demands information of the

channel as well as the load condition in order to execute a comprehensive

HSL simulation. These extra data are referred to protocol in this section.

Protocols are appended to every row of the input memory matrix such that

the FNN recognizes different configurations of HSL. Conceptually speaking,

there is no fixed protocol because as long as the modeling and application

use the same terms, FNN models could yield accurate prediction correspond-

ingly. The TX/RX protocols described below are merely a proof of concept

and are subject to future expansion for more advanced HSL usage.

Since the TX model is expected to make voltage predictions for both before

and after the channel, two protocols are proposed on how the channel is

parameterized and incorporated into the framework of the model:

1. For channels that are uniform and homogeneous (e.g., a section of mi-

crostrip line (MLIN)), use their geometric features such as width w,

length l, dielectric constant εr, etc.

2. For more complexly structured channel, use the terminal frequency

response such as the S-parameter.

The geometric approach is straightforward and already proofed to be NN-

compatible for eye height and width prediction [22]. Meanwhile, the S-

parameter approach permits a wider application given that most of the chan-

nels in HSL simulations are inhomogeneous. Both protocols are demonstrated

in Chapter 3 to show that accuracy-wise, there is essentially no difference in

using either of them.

Meanwhile, the load condition is specified in the RX protocol. As a proof

of concept attempt, a resistor of rt Ω is used to terminate the HSL. This

assumption can be easily expanded to include more components such as

capacitors and inductors by adjusting the RX protocol. Overall, the concept

of protocol is very similar to the VDD and VSS sweep in the IBIS model: The

range of the sweeping values adopted by the protocol determines the model’s

operation limitation.

12



2.4 Vector Fitting for Channel Parametrization

Vector fitting (VF) is a black-box modeling technique that extracts reduced-

order passive macromodel from measured or computed frequency domain

data with rational function approximations [23]. Compared to the traditional

approximation function in Equation (2.8) where the unknown coefficients an

and bn are binded with different powers of s, VF scales the function with

respect to a single column of s and reduce the approximation to a linear

problem that allows higher order terms for fitting over a wide frequency

range.

F (s) ≈ a0 + a1s+ a2s
2 + . . .+ aNs

N

b0 + b1s+ b2s2 + . . .+ bNsN
(2.8)

Given a symmetric n-port S-parameter matrix S sampled as a function of

frequency s = jω, the rational approximation function used by VF can be

represented by

S(s) =
N∑
m=1

rm
s− am

+ d, (2.9)

where a ∈ CN denotes the complex pole, r ∈ Cn×n×N is the complex residue,

d ∈ Rn×n is the real constant andN is the number of poles required for a good

fit of S(s) which depends on the shape of the responses. The approximation

begins with pole identification by solving a least square (LS) linear problem

in Equation (2.10), where a set of starting poles {qm} are used to launch the

re-location process in Equations (2.11) and (2.12).

σ(s)S(s) = p(s) (2.10)

σ(s) =
N∑
m=1

r̃m
s− qm

+ 1 (2.11)

p(s) =
N∑
m=1

rm
s− qm

+ d (2.12)

As explained in [24], the poles of S(s) are identical to the zeros of σ(s),
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which can be obtained as

{am} = eig
(
Q− b · cT

)
, (2.13)

where Q is a diagonal matrix consists of qm, b is a column vector filled with

ones, and cT is a row vector made of residues r̃m. The initial choices of {qm}
are generally complex conjugate pairs because the purely real poles might

cause Equation (2.13) to be ill-conditioned. Note that Equations (2.10)-

(2.13) can be carried out iteratively with the new poles {am} substituting

the previous ones {qm} for more precise fitting. When unstable poles are

encountered, VF inverts the sign of their real part to ensure overall stability.

Moreover, Gustavsen [25] improved the LS convergence by replacing Equa-

tion (2.11) with Equation (2.14) and Equation (2.13) with Equation (2.15).

This allows a more relaxed fitting because the previous method is normalized

by a unity term that forces σ(s) = 1 at high frequency. An additional nor-

malization function is introduced as shown in Equation (2.16) where Ns is

the number of frequency points in S(s). After the elimination of the asymp-

totic requirement in Equation (2.10), σ(s) can now theoretically approach

a much smaller value at infinite frequency. With the poles being identified,

Equation (2.10) can be transformed to another LS equation where r and d

are solved [23, eq. (A.1)-(A.8)].

σ(s) =
N∑
m=1

r̃m
s− qm

+ d̃ (2.14)

{am} = eig
(
Q− b · d̃ −1 · cT

)
(2.15)

Re

{
Ns∑
k=1

(
N∑
m=1

r̃m
sk − am

+ d̃

)}
= Ns (2.16)

Although VF always yields guaranteed stable poles, the passivity of the

pole-residue model is not yet examined in the previous procedures. Thus, a

further tuning step with Hamiltonian matrix [26] is performed on the state-

space representation of the model. Since S-parameter is only suppose to

characterize a passive system, S(s) is analytic on the open right half plane
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[27] and should be bounded by unity:

(
I − S(s)HS(s)

)
> 0, (2.17)

where H denotes the conjugate transpose (Hermitian) operation and I is

the unity matrix. Then, the pole-residue model is transformed to its state-

space form in Equation (2.18) by seeking similar terms in Equation (2.10).

With the extraction steps explained in [28], the state variables are listed in

Equation (2.19) where AM is constructed by concatenating the scalar am

diagonally. The dimensions of the matrices A, B, C and D are nN × nN ,

nN × n, n× nN and n× n respectively. Figure 2.2 illustrates an example of

the transformation from pole-residue model to its state-space representation

where number of ports n = 2 and max order of poles N = 3.

S(ω) = C(jωI −A)−1B +D (2.18)

A = diag[A1,A2, . . . ,AM ]

B = [I, I, . . . , I]

C = [r1, r2, . . . , rm]T

D = d

(2.19)

Figure 2.2: Conversion between pole-residue model and its state-space form.
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From there, passivity assessment can be completed by evaluating the eigen-

values λ of the Hamiltonian matrix as

H =

[
A−BR̂

−1
DTC −BR̂

−1
BT

CT Ŝ
−1
C −AT +CTDR̂

−1
BT

]
, (2.20)

where Ŝ = (DDT − I) and R̂ = (DTD − I). Violations are checked

at any imaginary part of λ that defines a crossover frequency js where a

singular value touches the unity threshold [29]. Faster singularity analysis,

as indicated in [30] and [31], can be achieved by reducing the size of H based

on the symmetries in the S-parameter. A symmetric state-space model is

define by S = ST with C = BT and D = DT , which simplifies Equation

(2.20) to

Ĥ =

[
E F

−F −E

]
(2.21)

where E = A − B
(
D2 − I

)−1
DTC and F = −B

(
D2 − I

)−1
C. After

denoting each pair of eigenvalue as λ and eigenvector as x̃ for Ĥ , one could

obtain [
(E + F )(E − F )− λ2I

]
x̃ = 0, (2.22)

of which the λ is exactly the square-roots of the eigenvalues of the matrix

P = (E + F )(E − F ) (2.23)

or

P =
(
A−B(D − I)−1C

) (
A−B(D + I)−1C

)
. (2.24)

Note that test matrix P is only half-sized compared to the original singu-

larity matrix H . This change accelerates the passivity assessment roughly

eight times faster, which better suits the large cases like fitting for wide fre-

quency band. Within the band where passivity violation occurs, the eigen-

values are tuned by bringing up the minimas to the zero line. After a few

checking iterations, the VF model is assured to be globally passive.
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2.5 Construction of FNN Framework

FNN is an artificial NN wherein the connections between the nodes mimics

the design of human brain neurons by processing information unidirectionally

along the layers. A typical architecture of FNN is shown in Figure 2.3,

defining the mapping between the input features’ vector x and the output

labels’ vector y through an approximation function y ≈ f ∗(x). In this

particular case of FNN having three hidden layers, f ∗ can be decomposed to

f ∗(x) = f (3)(f (2)(f (1)(x))), (2.25)

where f (L) denotes the Lth hidden layer of the network. While the optimized

value of L remains debatable [32, 33, 34, 35], a general rule of thumb is to

gradually increase it until a satisfactory accuracy is achieved.

Figure 2.3: An example of FNN structure consisting of one input layer,
three hidden layers and one output layer.

For a linear network, the hidden layer is oftentimes described by

f (L)(x;θ) = f (L)(x;W , b) = x>W + b, (2.26)

with W being the mapping weight vector and b is the scalar bias. The exact

values of θ are determined by locating global minimum of a cost function

L(y, ŷ) through steepest gradient-based (SGD) optimization. A popular

choice of L is the mean square error (MSE) function

17



L(y, ŷ) = L(y, f ∗(x;θ)) =

{
1

|X|
∑
x∈X

(y − f ∗(x;θ))2
}
, (2.27)

where the Euclidean norm between the true value y and its approximation

ŷ measures how well the model explains the observed data. The optimizer

seeks to solve the problem

argmin
θ
L(y, ŷ) (2.28)

such that first derivative of the cost function dL
dx

approaches or lands on zero.

This technique is essentially an iterative process because θ is updated each

time in small steps with opposite sign of the derivative. Figure 2.4 demon-

strates a simple example of SGD with L = 1
2
x2. In the case where multiple

inputs are presented (e.g. x is a vector), the gradient is taken with respect

to a directional vector that contains all the partial derivatives. The SGD

algorithm moves in the direction of the negative gradient vector and halts

when every element in the vector is equal or very close to zero.

For a non-linear network, a scalar-to-scalar activation function g is intro-

duced to compensate for the nonlinearity in the hidden layer model. As

illustrated in Figure 2.5, g is applied element-wise on every node in the Lth

layer as hj = x>W :,j + bj, j ∈ [1..k]

f (L)(x;θ) = g(h), x ∈ X
, (2.29)

where k is the total number of the nodes in the Lth layer. Depending on

the application, implementations for g may be vary. Some popular choices

are listed below including the hyperbolic tangent in Equation (2.30), the

sigmoid function in Equation (2.31) and the rectified linear unit (ReLU) [36]

in Equation (2.32).

g(h) =
eh − e−h

eh + e−h
(2.30)

g(h) =
1

1 + e−h
(2.31)

g(h) = max{0,h} (2.32)
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Figure 2.4: An illustration of how SGD searches the minimum in the cost
function L = 1

2
x2 using the derivatives.

Figure 2.5: Application of activation function g in the hidden layers.
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The solving process for θ is not much different from the one for the linear

system, expect the optimizer is now facing a non-convex problem. Specif-

ically, SGD is more likely to hit a saddle point where the derivative of L
equals to zero and thus loss the information about which direction to move.

Such a point can either be a local maximum or minimum, which blocks the

SGD to arrive at the desired global minimum (see Figure 2.6). Since global

convergence is no longer guaranteed, the optimization now becomes very sen-

sitive to the initial values of the unknown parameters. Hence, it is critical

to initialize W to small random values and b to zero or small positive values

before the samples are sent for training [37]. Another hyper-parameter that

might help escaping the suboptimal solution is the learning rate η, which

defines the size of the updating step. The general idea is to have η as an

adaptive variable that is large when steeping down the gradient hill and small

when it is close to a potential minimum. Modern SGD like Adam [38] from

Pytorch has a built-in decaying algorithm for η, which maintains a fair bal-

ance between training time and model accuracy.

Figure 2.6: Non-convex condition with multiple local minima.

Even with Adam, there are times, however, that the solutions are still

highly unreliable due to the complex hypothesis fitting. One example is

overfitting as illustrated in Figure 2.7, where model B is clearly a better

match for the true function but has a higher MSE compared to model A.

Nevertheless, from the SGD perspective, it will always prefer model B be-

cause its fitting error is zero. To prevent overfitting in the FNN model, it is

a common practice to divide the collected data into training, validation and
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testing sets with a ratio of 70% - 10% - 20%. The sets have to be randomly

selected and shuffled to ensure unbiased evaluation. In an ideal scenario, the

data within each sets should be evenly distributed with some points dedi-

cated for corner cases. During the training phase, cost function is evaluate

for both the training and the validation sets as training loss and validation

loss. While the training loss is used by SGD to update θ at each epoch,

the validation loss is only calculated at the end of epoch to provide insights

on the overfitting condition. Upon completion of all the epochs, one could

inspect the loss plots as shown in Figure 2.8 to determine if the model over-

fits the function. If the model demonstrates good convergence, the reserved

testing sets can be used to further verify its correctness; If overfitting occurs,

one must halt the process here and deliberately calibrate how the data sets

are distributed. In the end, successfully FNN training relays heavily on the

given data: Sampled points in highly nonlinear and linear regions should be

assigned evenly to the training, validation and testing sets.

Figure 2.7: Model A overfits the true function with low MSE.

Figure 2.8: Use validation data to prevent overfitting condition.
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Figure 2.9: FNN modeling workflow for the HSL transceivers.

Figure 2.10: FNN structure for training TX with VF protocol.

22



2.6 Summary

In Figure 2.9, the FNN modeling workflow for the HSL transceivers is con-

cluded using the protocol parameters indicated in the previous sections.

First, the ground truth data is obtained from SPICE transient simulation

in ADS and then transfered to python to construct memory matrices. An

automation script is developed to facilitate this step as described in Appendix

A. Then, based on the type of the buffer (TX/RX), different protocols are

appended to the memory sequences. At the end, the matrices are fed to

FNN for training as illustrated in Figure 2.10. The realization of VF and

FNN training are done through python packages skrf and pytorch, respec-

tively. More details on the python programming environment can be found

in Appendix B.
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CHAPTER 3

APPLICATION OF FNN MODELS IN HIGH
SPEED LINK (HSL) SIMULATION

3.1 Introduction

In this chapter, two transistor level gates, CMOS in Figure 3.1 and NAND in

Figure 3.2, are designed in Keysight ADS and then modeled with FNN. The

CMOS inverter was constructed by a PMOS and a NMOS of width/length

(W/L) ratio equals to 2.5. The NAND gate was built with the same struc-

ture, except the W/L was kept at a ratio of 1 for maximum power delivery.

Both gates are built upon the BSIM4 MOSFET models [39] and biased with

a constant DC voltage source of 2 V. The ground truth data is obtained by

running transient simulation for a 100 ns period with 10 ps time step. To

ensure fairness in evaluation, only the first 50 ns of the waveform is used for

training and validation while the rest is reserved for testing. The FNN em-

ployed in the following sections has three hidden layers, which all use ReLU

as activation function due to its sparsity and a reduced likelihood of vanish-

ing gradient. Adam and MSE are chosen as the optimizer and cost function,

respectively. After training, the FNN models were tested with various HSL

configurations, including the ones that are not available in the training set-

ting. The correlation between the reference waveform and the FNN outputs

is quantified by the coefficient of determination, R2 score, defined as

R2 = 1−
∑N

i=1

∥∥y(i) − ŷ(i)∥∥2∑N
i=1 ‖ŷ(i) − ȳ‖

2 (3.1)

where ȳ = (1/N)
∑N

i=1 ŷ
(i). A R2 score closer to 1.0 implies a strong correla-

tion, meaning the model is producing valid predictions for the test dataset.

This metric is essentially a standardizes version of MSE with respect to the

variance presented in the reference dataset as R2 = 1− (MSE/ŷ).
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Figure 3.1: Transistor level circuit of CMOS inverter.

Figure 3.2: Transistor level circuit of NAND gate.

25



3.2 Trainig Environment

3.2.1 TX

The FNN TX models are generated using the schematic in Figure 3.3 for

CMOSs and in Figure 3.4 for NAND. The labeled inputs VIN , VA and VB are

pseudo-random bit sequence (PRBS) and the labeled nets VTX and VRX are

the expected outputs of the TX models. For demonstration purpose, each

gate is trained with two protocols: Geometric and S-parameter (VF).

Figure 3.3: HSL configuration of cascading two CMOSs, channel and
termination.

Figure 3.4: HSL configuration of cascading NAND, channel and CMOS.

In the geometric approach, the channel is a microstrip line of width w

and length l. To ensure the robustness of the models, w, l and settings of

PRBS are linearly swept with values shown in Table 3.1, where Vh/Vl denotes

the highest/lowest voltage of PRBS dynamic range and Br is the PRBS data

rate. After collecting the voltage readings at the desired nets from ADS batch

simulation, the data is sent to FNN for training. With a memory length of

M = 300, the number of columns in the input matrix X for CMOS and

NAND are 302 and 602, respectively. The extra columns in the NAND are

the result of dual-input. For a multi-inputs gate, memory sequence of each

excitation is concatenated horizontally to ensure all information is recorded

by the FNN. The number of neurons in each layer of FNN is designed to

strictly follow the width of X. For example, under the geometric protocol,

the neurons adopted in the CMOS model are (M + 2), M+2
2

, 50 , 25 and 2

from input layer to output layer accordingly.
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Table 3.1: Range of sweeping values in ADS batch simulation

Parameter w (mm) l (mm) Vh (V) Vl (V) Br (Gbps)

Value [0.25, 6] [0, 45] [1, 5] −Vh & 0 [1, 10]

Step 0.25 15 1 N.A. 1

In the VF approach, the channel is characterized by S-parameters extracted

from both microstrip lines and discontinued transmission lines. The geometry

of the channel is varied so that the selected S-parameter samples can cover

a wide range of poles as shown in Figure 3.5. During the VF, the max

number of poles are set to be 4 and the fitted results are padded with zero

if fewer poles are used. Since the sequential order of poles is critical for

FNN but not for VF, the poles coming from VF are re-organized to have a

descending order, followed by their corresponding residues. To speed up the

training, it is generally recommended to have the input features normalized

to a set with a mean close to zero. Given that the flattened poles, residues

and constants [a, r, d] are usually multiple orders of magnitude off from this

standard, normalization with log10 is performed before appending the set to

the memory sequences. Furthermore, one might notice the channel-absent

case is not available in the pre-sampled poles. This is because VF cannot fit

this special case under the constrain of passivity enforcement. To add it into

the training set, an extra flagging feature is applied: A padding of zeros and

a flag of zero represents the without channel case; [a, r, d] followed by a flag

of one resembles the with channel case.

Figure 3.5: Poles used for FNN TX training with VF.

27



3.2.2 RX

The FNN CMOS RX model is generated using the schematic in Figure 3.3

by taking voltages of VRX and VOUT as references. The channels designed

for VF protocols are re-used here to ensure that the RX model is capable

of interpreting noisy VRX . During the ADS batch simulation, the PRBS

settings are varied in the same manner as above and the resistive termination

rt = [5, 100000] Ω is swept logarithmically at a step of 3 Ω/decade. Since

the RX model only oversees a resistor, M is chosen to be 50, which greatly

reduces the size of layers in FNN. Normalization with log10 is applied on the

termination feature before concatenating it to the memory matrix.

3.3 HSL Configuration with NRZ Excitation

Before showing the cascade-ability of the FNN models, the accuracy of a sin-

gle building block is verified. Figure 3.6 illustrates the test case of a stand-

alone CMOS connected to an open termination with a PRBS excitation of

Vl = 0 V, Vh = 4 V and Br = 5 Gbps. In this case, the CMOS RX model is

employed with the termination condition set to near open (rt = 100000 Ω).

The VOUT prediction has a R2 score of 0.989, which confirms the validity of

the FNN model.

Figure 3.6: FNN prediction for a stand-alone CMOS with open termination.

Next, a comparison is drawn between the two TX protocols. For the HSL

configuration shown in Figure 3.7, either of the FNN NAND TX models

could be used to predict the voltage waveform at node VC :
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� Geometric: Set l = 0 mm and 0.25 mm ≤ w ≤ 6 mm.

� VF: Set the padding and the flag features to zeros.

Since this example is a special case of directly cascading TX with RX, the

two outputs yield by the TX models essentially describe the same node:

VTX = VRX = VC . Given a PRBS excitation of Vl = 0 V, Vh = 3 V,

Br(A) = 3 Gbps and Br(B) = 4 Gbps, the modeling results from the two

protocols are plotted and compared as shown in Figure 3.8. Although tiny

variations exist between the two models, both protocol yield prediction of

R2 = 0.998 in respect to the reference voltage. Hence we can safely assume

that either of the predicted VC is valid as input to the CMOS RX model.

After feeding VC from the VF TX model to the RX model, a cascading chain

of FNN models is established where good agreement is found between the

predicted and true value of VOUT (see Figure 3.9). In this case, the R2 score

is 0.996.

Figure 3.7: HSL configuration of cascading NAND, CMOS and termination.

Figure 3.8: Comparison of NAND TX model predictions on VC .

Moreover, a test configuration consisting of multiple CMOS gates is eval-

uated to further demonstrate the cascade-ability of the FNN models. As

shown in Figure 3.10, a PRBS sequence of Vl = 0 V, Vh = 5 V and Br = 1
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Figure 3.9: FNN prediction of VOUT in Figure 3.7 with termination
rt = 50 Ω.

Gbps is fed through a HSL followed by an extra CMOS and a 2000 Ω termi-

nation. The channel within the HSL is a microstrip line of w = 6 mm and

l = 45 mm. First, the CMOS TX model with geometric protocol is used to

make predictions on VTX and VRX . Then, the predicted VRX is delivered to

the CMOS RX model for VOUT prediction. Although there is no termination

directly connected with VOUT , RX sees the extra CMOS almost as an open

load. Due to this, the termination feature is set to max so the prediction

matches with its reference. At the end, VOUT2 is obtained by forwarding the

predict VOUT through the RX model with rt = 2000 Ω . Predicted waveforms

at each node are presented in Figure 3.11. The R2 scores for VTX , VRX , VOUT

and VOUT2 are 0.999, 0.998, 0.989 and 0.986, respectively.

Figure 3.10: A cascading chain of multiple CMOSs, channel and
termination.

Lastly, the FNN CMOS models are cascaded to reproduce the eye digram

at node VOUT in the HSL schematic shown in Figure 3.3. Given a PRBS

excitation of Vl = −5 V, Vh = 5 V and Br = 10 Gbps along with a S-

parameter characterized channel, the voltage waveforms predicted by the

FNN models are shown in Figure 3.12. Fairly good correlation is achieved

with a R2 score of 0.983, 0.986 and 0.982 for VTX , VRX and VOUT .
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Figure 3.11: FNN predictions of VTX , VRX , VOUT , VOUT2 in a three CMOSs cascading chain.

Figure 3.12: FNN predictions of VTX , VRX and VOUT in a standard HSL configuration given a termination of rt = 50 Ω.
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A close look on the predicted and true values of VOUT is given in Fig-

ure 3.13. While there are some eccentric points starring away from the true

value, most of the predictions are clustered around the reference line. The

eye diagrams shown in Figure 3.14 are constructed by overlaying segments

of rising and falling edges within the 50 ns VOUT sequence. As seen in the

figure, the shape of the eye in both plots are very similar. After taking the

eye height and width measurement, the reference from ADS has a reading

of [0.94 V, 59.0 ps] and the FNN predicted eye yields [0.97 V, 58.2 ps]. Ta-

ble 3.2 summarized the quantitative comparisons between the eyes, where

the prediction perfectly matches with the reference. It is worth mentioning

that among the 2000 eye diagram simulations, the average speed up factor

is 15 if FNN models are used. This demonstrates that for single-end NRZ

transient simulation, application of FNN models are promising in terms of

both accuracy and time-efficiency.

Figure 3.13: FNN Prediction versus its reference for VOUT in Figure 3.3.

Figure 3.14: Eye diagrams constructed by the reference and the FNN
prediction.
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Table 3.2: Comparison of eye diagram measurements

Measurement Eye Width Eye Height Zero Level One Level

Reference 59.0 ps 0.940 V 0.020 V 1.487 V

FNN 58.2 ps 0.970 V 0.013 V 1.493 V

3.4 HSL Configuration with CTLE Equalization

3.4.1 CTLE Equalization Background

As demonstrated in the previous section, with non-ideal aspects of channel,

such as impedance mismatches and dielectric losses [40], the signal intercity

can be severely degraded and eventually impacts the timing budget. As the

eye closes at the end of the HSL, we are observing the “smearing” of the sig-

nals, a phenomenon known as inter-symbol interference or ISI. The increase

in the jitter causes more ISI to appear at the end of the transmission, mak-

ing it impossible to correctly convert the analog signal back to the digital

domain. Therefore, equalization is introduced to reduce the deterministic

jitters and to recover the noise margin. This is oftentimes accomplished by

compensating the fact that the higher frequency signals are naturally atten-

uated more than the lower ones. In other words, if the attenuation or loss is

consistent through out the designed bandwidth, the frequency dependency

of the ISI induced timing jitter is lifted and the eye will no longer collapse.

The equalization technique CTLE is an acronym for continuous-time linear

equalizer which adopts a one tap circuit that effectively flattens the channel

response by boosting the gain in the higher frequency region. In its simplest

form, a passive CTLE can be achieved by two sets of parallel RC as shown in

Figure 3.15. The resistor acts as an attenuators for the low-frequency signals

and the capacitor, at the same time, allows the high-frequency signals to fol-

low directly to VEQ. This combination of RC circuit results in a gain boosting

in the high-frequency signals and thereby preventing the eye from collaps-

ing. There are three key parameters that defines the amounts of equalization

provided by a passive CTLE, namely the zero frequency, the pole frequency

and the DC gain. Depending on the channel’s transfer function, appropriate

component values can be calculated by:
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ωz =
1

R1C1

(3.2)

ωp =
1

R1R2

R1+R2
(C1 + C2)

(3.3)

ADC =
R2

R1 +R2

(3.4)

where ωz and ωp are the zero and pole locations, and ADC marks the gain-

boost factor at DC. For instance, if the desired bit-rate is 5 Gbps, one should

expect a properly designed CTLE to have ωz = 5 Grad/s, ωp = 18 Grad/s

and ADC = 0.2. As a rule of thumb, the zero should be placed at a relative low

frequency, where the transfer function starts to decline; the pole should be

placed at the Nyquist frequency of the transmission rate; the DC gain should

be maximized without violating the passivity. In principle, after applying

passive CTLE, the one and zero levels of the eye will be reduced because the

gain factor could never exceed 1.0. However, this is a reasonable trade-off

given that both the eye height and widths are recovered. If needed, one could

also add more poles to achieve multi-band equalization or an amplifier for

active gain boosting [41], which are both beyond the scope of this work.

Figure 3.15: High-pass RC circuit for passive CTLE.

3.4.2 Extending FNN TX model with CTLE feature

A passive CTLE circuit of single zero and pole is placed right after channel

to improve the eye diagrams at all nodes in the HSL as shown in Figure 3.16.

Given a data rate of 10 Gbps, the CTLE is designed to locate the zero at

0.8 GHz, the pole at 6 GHz and a DC gain of 0.213. From Equations (3.2)-

(3.4), the corresponding RC values are finalized to R1 = 200 Ω, C1 = 1

34



pF, R2 = 27 Ω and C2 = 0.1 pF. One thing to notice is that there are four

variables but only three equations are given, which means that the aforemen-

tioned values are not the only solution set for the same level of equalization.

This particular topology of integrating the equalizer within the interconnect

is equivalent to replacing the lossy channel with a less noisy one. In this

sense, the only change with respect to the FNN models falls on the TX end

because the RX model is only related to the loading conditions. More specif-

ically, although CTLE will alter voltages at all nodes through out the HSL,

it is sufficient to embed CTLE settings only in the CMOS TX model, leaving

the trained CMOS RX model untouched.

(a)

(b)

Figure 3.16: Add CTLE to HSL: (a) Equalizer located in the interconnect
channel; (b) ADS scheamtic of a 10 Gbps HSL with CTLE.

To account for the changes brought by CTLE, another round of training
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is performed on the CMOS TX model. Besides the PRBS excitations and

S-parameter characterized channels, the extended TX model requires a new

input set that describes the CTLE setting: pole, zero and DC gain. Back-

wards compatibility is ensured by leaving these three keywords blank so the

FNN recognize that the CTLE is not activated in this case. Since CTLE is

not a non-linear transformation, the memory length and FNN structure were

kept the same as in Section 3.2. For training purposes, these settings are ap-

pend at the end of each row in the input matrix X and a training/testing

set of 80 ns/200 ns is generated in ADS.

3.4.3 Validation

Two sets of test are prepared for the newly trained CMOS TX model to

demonstrate the effectiveness of the equalization. First, the equalization is

turned off and a comparison between the ADS results and the cascaded FNN

models’ results is drawn; Then, the equalization is turned on and the same

comparison is performed to validate the accuracy of the predicted results.

In the following examples, the interconnect is a very noisy channel so the

benefit of using CTLE stands out. The loading used is a 50 Ω resistor to en-

sure pulse symmetry. The excitation is a -5∼5 V PRBS sequence of 10 Gbps.

With CTLE off, the CMOS TX model and CMOS RX model function the

same way as shown in Section 3.3 except a dummy equalization setting is

required at the TX. As expected, good correlation between ADS and FNN

prediction is found at nodes VTX , VRX and VOUT as shown in Figure 3.17.

Their R2 scores are 0.997, 0.997 and 0.996 respectively. Comparing to the

previous NRZ results, the improvement in R2 (>0.99) is due to the reduction

in training time step (see Chapter 4 for more details). By overlaying the 200

ns test data stream, the eye diagrams at each node are generated and plotted

as shown in Figure 3.18.

With CTLE on, the CMOS TX model is fed with the CTLE settings that

open up the eye at 10 Gbps. After the channel, the CMOS RX model takes

in the VRX prediction and yields VOUT correspondingly based on the loading

condition. As shown in Figure 3.19, the R2 scores at each nodes are 0.998,
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0.999 and 0.999 respectively. Given that CTLE makes the channel look more

“clear”, it is no surprise that the scores are higher in this test case. A com-

parison between ADS and FNN for the CTLE eye diagrams is illustrated in

Figure 3.20. The eyes are all opened up with much less jitters.

A quantitative analysis on the eye diagrams above are given in Table 3.3

and Table 3.4. From the measurement, a few conclusions can be made:

� Adding CTLE “cleans” the waveforms at all nodes (VTX , VRX , VOUT ).

Although the zero and one levels are reduced due to passivity, the eye

width and height are improved because of the filtering effect.

� While the CTLE provides considerable boost to the high-frequency

components, it is impossible to boost the signal and noise at a different

level. Therefore, even if we maximize the gain in the passive CTLE, the

signal-to-noise ratio (SNR) stays the same. To further improving the

jitter treatment, it is recommended to introduce digital equalization

strategies like decision feedback equalization (DFE) along with CTLE.

� The CMOS RX adds nonlinearity to the HSL by forcing the analog

bits to be either high (gate voltage) or low (ground voltage). This

effectively opens up the eye when signal passes the RX and thereby

giving more clearance in the time and amplitude margins.

� The cascade-ability of the FNN models is preserved in terms that the

RX model remains unchanged (no additional training needed) when the

TX/RX models are cascaded together in the CTLE ON case. Although

the CMOS RX model was trained only with the VRX and VOUT wave-

forms in the CTLE OFF case, it could still handle the CTLE-modified

VRX because the CTLE transformation is a purely linear process.

� The FNN predictions yields eye 25 times faster than the transient

solvers. The trade-off errors are all below 6% as shown in Table 3.5.

� The FNN models always underestimate the eye, which is indeed pre-

ferred by the HSL designers. An underestimation brings tighter time

budget, meaning that the links are subject to over-design. On the

other hand, if the predictions overestimate the eye, false-design might

be made and that leads to much more severe consequence.
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Figure 3.17: FNN predictions of VTX , VRX and VOUT without CTLE.

Figure 3.18: Eye diagrams without CTLE. Left: ADS references. Right:
FNN predictions. Top to Bottom: VTX , VRX , VOUT .
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Figure 3.19: FNN predictions of VTX , VRX and VOUT with CTLE.

Figure 3.20: Eye diagrams with CTLE. Left: ADS references. Right: FNN
predictions. Top to Bottom: VTX , VRX , VOUT .
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Table 3.3: Quantitative comparison of CTLE OFF eye diagrams in
Figure 3.18

Measurement Eye Width Eye Height Zero Level One Level

Reference

VTX N/A

VRX 15.0 ps 0.000 V -0.591 V 3.153 V

VOUT 48.4 ps 0.930 V -0.003 V 1.515 V

FNN

VTX N/A

VRX 15.8 ps 0.000 V -0.598 V 3.110 V

VOUT 50.2 ps 0.950 V -0.003 V 1.527 V

Table 3.4: Quantitative comparison of CTLE ON eye diagrams in
Figure 3.20

Measurement Eye Width Eye Height Zero Level One Level

Reference

VTX 87.8 ps 0.470 V 0.282 V 1.733 V

VRX 69.4 ps 0.750 V -0.185 V 2.244 V

VOUT 69.0 ps 1.020 V 0.005 V 1.412 V

FNN

VTX 87.4 ps 0.460 V 0.279 V 1.730 V

VRX 69.0 ps 0.760 V -0.190 V 2.251 V

VOUT 67.2 ps 1.020 V 0.005 V 1.413 V

Table 3.5: Precentage error between reference and FNN for eye diagrams in
Figure 3.18 and Figure 3.20

Percentage Error (%) Eye Width Eye Height Zero Level One Level

CTLE OFF

VTX N/A

VRX 5.33 0 1.18 1.36

VOUT 3.71 2.15 0 0.79

CTLE ON

VTX 0.40 2.12 1.06 0.17

VRX 0.57 1.33 2.70 0.31

VOUT 2.60 0 0 0.07

3.5 HSL Configuration with Differential Signaling

3.5.1 Differential Signaling Background

In contrast to the single-ended signaling in the previous writing, differential

signaling transmits information utilizing two complementary signals. Two
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drivers, when in odd-mode, send opposite-sign voltages down the differen-

tial pair and the eye measurement is taken as the voltage difference between

the two signal lines. When strong coupling occurs (e.g. trace separation

is small), the differential pair refers to each other as return path, reducing

the chance of seeing discontinuities in their common reference plane. This

technique is particularity useful when the transmission lines need to cross a

etched gap in the ground plane: If single-ended line is used, the signal would

face a huge impedance mismatch and also multiple voltage reflections. In a

standard differential pair design where the transmission lines are perfectly

symmetric, the voltage ripples everywhere along the lines would be canceled

due to the subtraction. In this sense, the differential pair is known for its

immunity to crosstalk and electromagnetic interference (EMI). Ideally, the

balanced pair picks up the same amount of crosstalk from nearby lines and

the crosstalk eventually vanishes when we calculate the pair’s potential dif-

ference. Similarly, although each line in the pair differential still creates EMI,

their fields are opposite in polarity and equal in magnitude, meaning that

they got canceled out when radiating together.

The only downside relating to this method is the routing complexity. As

the name suggests, more board space is required when one data stream is

divided and transmitted with two traces. The layout designers have to fine-

tune the differential traces to have the same length and width to ensure

a balanced transmission from the TX to RX. Especially with manufacture

imperfection, some of the common-mode voltages would sneak in and degrade

the performance of the differential signaling. Thus, it is critical for SIPI

engineers to evaluate the trade-off before converting the single-ended lines to

differential signaling.

3.5.2 FNN Modeling with Differential Signals

Since differential signaling requires a pair of positive/negative (P/N) pins to

represent one data stream, both FNN TX and RX models need to be mod-

ified accordingly to adapt the change. For the FNN TX model, the input

PRBS excitation is now splitted into VIN P and VIN N . The outputs asso-

ciated with the model, the VTX and VRX , are now expanded to be VTX P ,
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VTX N , VRX P and VRX N . For the FNN RX model, similar concept is ap-

plied by allowing separate P/N inputs and an expended output composed

of VOUT P and VOUT N . These modifications are performed on the input and

output layers of the FNN structures by adding additional neurons to accom-

modate the extended I/O information. A differential channel is designed and

placed in-between TX and RX as shown in Figure 3.21. Since the channel

now contains additional information like trace asymmetry and separation,

the TX protocol is extend accordingly to accept those features.

Figure 3.21: The HSL and FNN block diagrams of transforming
single-ended signal to differential signals.

As a proof of concept, a simple coupled microstrip line is used with a lose

coupling factor. The training is performed up to 20 Gbps with reference

voltages taken from a 20 ns transient simulation. Geometric protocol is

appended after the input memory sequences with variations on trace width,

length and separation. After several rounds of tuning, the memory lengths of

the TX and RX model are set to be 250 time steps (250 ps) and 50 time steps

(50 ps), respectively. A differential eye diagram test of 200 ns is prepared in

ADS to validate the accuracy of the cascaded FNN models.

3.5.3 Validation

Before stepping into the eye digram test, the predicted waveforms at each

cascading node is analyzed as shown in Figure 3.22. The R2 scores for each

reference/FNN comparison is shown in Table 3.6. While all the waveforms
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match well with their references (R2 >0.98), it is interesting to obverse that

on average, the subtracted differential voltage out-performed the P/N pairs.

The mismatch in the P/N pairs is due to the ringing ripples, where in gen-

eral, the FNN requires more memory length to precisely characterize the

small voltage fluctuations. However in the differential voltage calculation,

these ripples canceled out and with less common-mode noise, the predictions

match with the references better.

Figure 3.22: FNN predictions for differential signaling test configuration.

Table 3.6: R2 scores for FNN predicted differential waveforms

R2 TX RX OUT

Positive 0.994 0.995 0.987

Negative 0.994 0.995 0.987

Differential 0.995 0.996 0.992
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Moving on to the differential eye diagrams shown in Figure 3.23. Note

that the eye at TX is ignored in this test because no opening can be found

in the reference due to large channel distortion. The comparison of the

eye measurement is given in Table 3.7. Overall, the predictions have high

correlation with the references with a speed up factor of 20. Compared

to its reference, the prediction turns out to have slightly less eye opening

(underestimation), especially in the time margin. One reason for that might

be the information loss when the time domain waveform is transformed back

to ADS as a VTDataSource. More specifically, When the waveforms are

prepared by the FNN models, the smallest time step has to be equal to the

training time step. Nevertheless, to generate eye diagrams, ADS normally

processes this data source with a much smaller step and sometimes performs

an internal linear or cubic interpolation depending on the channel response,

thereby leading to the discrepancy we observe.

Figure 3.23: FNN predictions for differential eyes at VRX and VOUT . Left:
ADS references. Right: FNN predictions. Top: VRX . Bottom: VOUT .
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Table 3.7: Quantitative comparison of differential eye diagrams

Measurement Eye Width Eye Height Zero Level One Level

Reference
VRX 33.2 ps 2.000 V -2.383 V 2.534 V

VOUT 31.0 ps 1.010 V -1.047 V 1.024 V

FNN
VRX 36.2 ps 1.960 V -2.365 V 2.499 V

VOUT 32.5 ps 1.000 V -1.043 V 1.035 V

3.6 HSL Configuration with PAM-4 Excitation

3.6.1 PAM-4 Background

PAM (pulse amplitude modulation) -4 is a modulation scheme that doubles

the system’s data rate by encoding the bits with four distinct levels of am-

plitude. In other words, one symbol in PAM-4 contains information of two

bits, which effectively reduces the transmitting bandwidth by half compar-

ing to the NRZ scheme. An illustration of the signal levels in NRZ and

PAM-4 is given in Figure 3.24, where one can clearly see how double-bits

mapping in PAM-4 allows twice the information to be transmitted over the

same clock rate. Another crucial factor that motivates PAM-4 development

is the demand for cost reduction. Since PAM-4 requires only half as many

TX/RX lanes as NRZ, budget can be saved with less connectors, cables and

transceivers. The downside of this technology is the limited transmission

distance because PAM-4 signaling is more susceptible to noise. For instance,

if a symbol is misinterpreted due to delay and distortion from channel, it

will result in a false transition with two-bit errors. False triggers in PAM-

4 transmission can be quickly visualized by the 4-level eye diagram (three

eyes) as shown in Figure 3.25. Similar to the eye of NRZ signals, the jitters

in PAM-4 signals are also quantified by the eye levels, heights and widths,

except that the three eyes may be asymmetrical and each needs to be equal-

ized independently to mitigate any channel impairments. Overall, PAM-4 is

best suited when it comes to high-speed and short-range applications, such

as within data centers.
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Figure 3.24: Comparison of signal levels in NRZ and PAM-4 for the same
bits.

Figure 3.25: PAM-4 eye parameters definition [42].
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3.6.2 FNN Modeling with PAM-4 Excitation

The PAM-4 signaling is applied to the differential TX/RX schematic in Fig-

ure 3.21 by changing the PAM-level setting in the PRBS source. The exci-

tation now consists of four voltage levels at ±7 V and ±2.34 V as shown in

Figure 3.26. The gate biases for all CMOS are changed to 5 V to accommo-

date the higher amplitude inputs. This scenario reflects one of the drawbacks

of PAM-4: the high electricity/power consumption. Although in high-power

link design this is not a concern, the high gate level clears indicates that

PAM-4 may not be a good candidate for applications in the low-battery

regimes. After the reference data at each cascading node is generated with

PAM-4 excitation, the training procedure for FNN TX/RX models is ex-

actly the same as in the differential signaling case. The models are capable

of capturing waveforms up to 10 Gbps, which are equivalent to NRZ-trained

models of 20 Gbps . A HSL with geometric characterized channel is prepared

for the validation test.

(a)

(b)

Figure 3.26: Example of PAM-4 excitation: (a) A section of PAM-4 source
PRBS waveform; (b) Input’s eye diagram.
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3.6.3 Validation

After training with waveforms gathered from 80ns/1ps batch transient simu-

lations, the FNN CMOS TX/RX models are fed with a 200 ns PAM-4 PRBS

sequence to perform validation test between the ground truths (ADS) and

the predictions. This test configuration used a geometrically characterized

differential channel of W = 8 mm, L = 50 mm and separation S = 5 mm.

The load is a shunt 2000 Ω resistor between the positive and negative output

terminals. With input and channel information, the CMOS TX model yields

predictions on VTX P , VTX N , VRX P and VRX N . The last two waveforms are

fed to CMOS RX model along with the loading condition to complete the

waveforms shown in Figure 3.27. The R2 scores for all the nodes are greater

than 0.99. Once again, the calculated differential voltage exhibits slightly

better score than the single ended case due to the rejection of common noise.

Figure 3.27: FNN predictions for differential PAM-4 signaling test
configuration.
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Next, the PAM-4 differential eyes are extracted from the simulation and

FNN predictions. As shown in Figure 3.28, the predicted eyes match with

the reference ones just as well from visual inspection. Although we wish

to obtain quantitative measurement on each of the three eyes individually,

ADS does not offer this option for transient simulation. The PAM-4 mea-

surement is an exclusive function reserved for simulations with ChannelSim

block. Unfortunately, transferring this schematic to ChannelSim distorts

the nonlinearity in the transistor-level inverters and thereby resulting in un-

reasonable outputs. Therefore, a compromise is made by comparing the mean

of the eye widths and heights as shown in Table 3.8. With the percentage

errors lower than 6%, we conclude that the FNN PAM-4 models demonstrate

good trace-ability at before and after RX nodes. It is also worth mentioning

that the average acceleration factor in the PAM-4 tests is approximately 36.

For each channel and loading condition, ADS took around 1 min to resolve

the eye while FNN only needs 2 sec.

Figure 3.28: FNN predictions for PAM-4 differential eyes at VRX and VOUT .
Left: ADS references. Right: FNN predictions. Top: VRX . Bottom: VOUT .
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Table 3.8: Quantitative comparison of PAM-4 differential eye diagrams

Mean of Eyes Width Width Error Height Height Error

VRX
Reference 75.0 ps

4.67 %
0.85 V

5.88 %
FNN 71.5 ps 0.80 V

VOUT
Reference 75.5 ps

1.32 %
1.08 V

5.56 %
FNN 74.5 ps 1.02 V

3.7 Summary

In this Chapter, we walked through the FNN TX/RX training process for

two nonlinear transistor level gates: CMOS and NAND. The trained models

are demonstrated to be cascade-able in various HSL configurations, includ-

ing but not limited to NRZ, CTLE, differential signaling and PAM-4. Good

correlations are found between the ground truth and the FNN predicted

waveforms at each cascading node. By overlaying the predicted waveforms,

we observed that percentage error in eye diagram analysis is lower than 10%.

With the same level of accuracy, the average simulation time taken by the

FNN models is approximately 20 times faster compared to the traditional

SPICE approach. Last but not least, depending on the use case, the FNN

modeling algorithm can be easily expanded to include more features by ap-

pending the extra information to the model’s training input sequence.
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CHAPTER 4

DISCUSSIONS

4.1 Alternative Implementation

Besides the coding schema listed in Appendix B, the FNN models could also

be generated with the alternative python implementations described in this

section. Accuracy wise, there is no essential difference between the main

implementation and these alternations since both of them adopt the same

training methodology. Structure wise, this section servers as a hint for those

who wish to further improve the algorithm of the FNN models from the

computational efficiency perspective.

4.1.1 Cost Function

As mentioned in Chapter 2, it is up to the designers to decide a proper cost

function that classifies the best weights and bias approximation from the

other suboptimal solutions. Since the only hard requirement is to guide the

training to the correct direction, the choice of the cost function is definitely

more than just the MSE function. In fact, given that the test metric is mea-

sured with R2 score, one should expect a slightly better model if the cost

function is implemented based on the R2 equation.

To implement this change, we need to add a custom loss function to the

existing script because the R2 loss is not one of the default functions pro-

vided by the Pytorch package. More specifically, line 6 in Listing 12 and line

7 in Listing 17 need to be replaced by a new loss function definition shown

in Listing 1, of which is coded based on the R2 formula given in Equation

(3.1).
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1 def r2_loss(output, target):

2 target_mean = torch.mean(target)

3 ss_tot = torch.sum((target-target_mean)**2)

4 ss_res = torch.sum((target-output)**2)

5 r2 = 1 - (1 - ss_res / ss_tot)

6 return r2

Listing 1: Define R2 loss function

This R2 loss function is then called at each training and validation loop

as shown in Listing 2. For CPU only users, the lines relating to cuda must

be omitted. Different from using the Pytorch default loss functions, the

gradient of the tensors are not computed automatically. Line 7 forces the

NN to record the current loss gradient and line 9 uses this data to perform

backward propagation. Also note that in this case Pytorch might accidentally

accumulates the gradients on all subsequent backward passes. To avoid that,

line 8 is introduced so that the optimizer is initialized at each batch.

1 model.train()

2 for data, label in train_loader:

3 data = data.to('cuda', non_blocking=True)

4 label = label.to('cuda', non_blocking=True)

5 target = model(data)

6 train_step_loss = r2_loss(target, label)

7 train_step_loss.required_grad = True

8 optimizer.zero_grad()

9 train_step_loss.backward()

10 optimizer.step()

11 train_loss += train_step_loss.item()

12

13 model.eval()

14 for data, label in valid_loader:

15 data = data.to('cuda', non_blocking=True)

16 label = label.to('cuda', non_blocking=True)

17 target = model(data)

18 valid_step_loss = r2_loss(target, label)

19 valid_loss += valid_step_loss.item()

Listing 2: Apply R2 loss function in the training and validation loop

A test of implementing R2 loss function is carried out using the TX/RX

reference data extracted from the NRZ schematic in Figure. 3.3. First, con-

vergence of training with R2 is confirmed as shown in Figure. 4.1. The
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number of epochs needed is similar to the one in the MSE approach: Both

loss functions converged within 100 epochs. Second, the trained models are

put to the cascading test and the modeling accuracy is compared as shown

in Figure. 4.2. From visual inspection, the R2 trained models exhibit very

high correlation with the reference waveforms. From examining the cascaded

R2 scores, the R2 trained models have very similar yet slight better perfor-

mances than the ones trained with MSE loss. Overall, we conclude that the

MSE and the R2 loss functions can be used interchangeably as long as the

implementation syntax is correct.

Figure 4.1: Comparison of training convergences between the MSE and R2

loss functions.

4.1.2 Model Order Reduction

Generally, the complexity of a FNN is measured by the number of kernels in

the structure; that is, the total count of neurons in each layer. Here in this

work, we can simplify this concept to the column width of the input matrix

X, which is the sum of the memory length and the protocol parameters’

length. Since an overly lengthy input could significantly affects the training

efficiency as well as the model’s learning ability, sometimes it is necessary
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Figure 4.2: Comparison of predicted waveforms from MSE and R2 trained
models.

to reduce the dimensionally of the training data before a FNN structure is

applied. A preliminary trail of model order reduction (MOR) is implemented

and added into the existing script to relieve the heaving computing during

kernel approximations. The MOR training example of TX CMOS is de-

scribed below to illustrate this methodology.

After determining the shortest-possible memory length and protocols, the

idea of Laguerre polynomials in [19] is re-applied to numerically reduce the

column width of X. More specifically, after MOR, each row in X does not

hold any physical meanings but rather represents a Laguerre projection of the

original input sequence. Depending on the order of Laguerre functions used,

the number of neurons in the FNN can be greatly reduced and thereby leading

to a lot more compact model while maintaining the same level of accuracy.

In this example, where the FNN’s input layer used to possess 250 (memory

sequence) + 45 (S-parameter protocol) = 295 neurons, applying MOR of

Laguerre order R = 30 could shrink the original FNN model by roughly 10

times. The implementation begins with the calculation of the orthonormal

basis function φr as shown in Listing 3, of which a decaying factor of α = 0.83

is chosen by brute force method. Then, the input matrix is convolved with
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1 # memory = memory sequence length

2 # var = number of protocol parameters

3 # R = order of Laguerre function

4 # alpha = decaying factor

5

6 def ncr(n, r):

7 r = min(r, n-r)

8 numer = reduce(op.mul, range(n, n-r, -1), 1)

9 denom = reduce(op.mul, range(1, r+1), 1)

10 return numer // denom

11 def calculate_phi(alpha, R, memory):

12 elementM = np.arange(memory+1)

13 elementR = np.arange(R+1)

14 if memory < R:

15 array_size = memory

16 powera = np.power(alpha, R-elementM)

17 power1minusa = np.power((1-alpha), elementM)

18 else:

19 array_size = R

20 powera = np.power(alpha, elementR[::-1])

21 power1minusa = np.power((1-alpha), elementR)

22 combineMK = np.zeros(array_size+1)

23 combineRK = np.zeros(array_size+1)

24 for i in range(array_size+1):

25 combineMK[i] = ncr(memory,i)

26 combineRK[i] = ncr(R, i)

27 ceff = np.ones(array_size+1)*(-1.0)

28 ceff[::2] = 1.0

29 phi = np.sqrt(alpha**(memory-R)) *np.sqrt(1-alpha) \

30 *np.sum(ceff*combineMK*combineRK*powera*power1minusa)

31 return phi

32

33 phi = np.zeros((R,memory+var),np.float32)

34 for i in range(R):

35 for j in range(memory+var):

36 phi[i,j] = calculate_phi(alpha, i, j)

Listing 3: Python implementation of φr based on Equation (2.2).
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φr to perform dimensionally reduction. The rest of the algorithm shares

the same training code as shown in Appendix B. With FNN model being

much condensed, training speed is remarkably enhanced and a convergence

is achieved with less 30 epochs. As for the cascading test, the MOR FNN

TX demonstrates excellent correlation with the reference waveforms. The

R2 scores for VTX, VRX and VOUT are 0.994, 0.996 and 0.995 respectively

as shown in Figure. 4.3. In short, performing MOR is possible with FNN

models as long as appropriate Laguerre order (R) and α are deployed.

Figure 4.3: Comparison of predicted waveforms from MOR FNN and ADS.

4.2 Limitation

In the previous Chapter, we demonstrated that the FNN models could: 1)

learn and mimic the nonlinearity of transistor level gates; 2) perform well in a

HSL simulation. However, since modeling is a concept that can only resemble

approximate forms of the natural phenomena, the FNN models are bound to

always have limitations. In this section, we proceed to discuss the potential

restrictions in the trained FNN models by stretching the tests to cover the

corner cases. Not only can these examples guide the users to explore the

full potential of the models, but they also serve as good baselines before the

designers begin to transform a nonlinear device to a new FNN model.

4.2.1 Protocol Parameters

During the training phase, the protocols are swept and saved as a way for

the FNN TX/RX models to recognize the HSL configuration. This places

a constraint on the application of these models, more specifically on the
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channel and load they are allowed to cascade with while maintaining a high

level of accuracy. There are two major concerns that need to be addressed:

1. Interpolation: The test protocol falls within the training range but not

exactly at the sampled values.

2. Extrapolation: The test protocol is outside of the training range.

A validation schematic is setup using the HSL configuration shown in Fig-

ure. 3.7. The focus is placed on the NAND TX with geometric protocol.

A new set of training is performed with an extended range of protocol as

W = [0.25, 6.25] mm with a step of 1 mm and L = [0, 100] mm with a step

of 20 mm. The expectations are that the TX model should be able to handle

the interpolation test with R2 > 0.99 and will eventually fail the extrapo-

lation test when the channel’s width or length is getting further away from

the trained range. The only uncertainty remains is to quantify how far is

considered to be the limit of the model.

The interpolation test is performed with a test protocol of W = 3.75 mm

and L = 90 mm. As shown in Figure. 4.4, the FNN predictions match with

the ADS reference well except some redundant jitters, which is due to the

time sampling issue as we will discuss in the next subsection. Overall, the

R2 scores are 0.998 and 0.996 for VTX and VRX , meaning that as long as the

test protocol is within the training range, the FNN models would be able to

yield high accuracy result.

The extrapolation test is performed with a test protocol of W = 1.25 mm

and L = [100, 120] mm with a 1 mm step. The R2 scores of VTX and VRX are

calculated and plotted in Figure. 4.5. It can be observed that the accuracy

quickly decays when extrapolating on the L protocol, especially on the VRX

where even a 5% extrapolation could lead to R2 = 0.8. Since it is almost im-

possible for the FNN models to extrapolate an untrained protocol, we highly

suggest that during the model training phase, widening the range of sweep

as much as possible for the protocols.
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Figure 4.4: FNN prediction of VTX and VRX for the interpolation test on
NAND TX.

Figure 4.5: R2 scores of FNN prediction of VTX and VRX for the
extrapolation test on NAND TX.

4.2.2 Time Step Sampling

For various reasons, the users might want to simulate the FNN models at

a different time step other than the one used in the training reference. To
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fulfill this request, a time sampling test is created with the CTLE schematic

shown in Figure. 3.16 (a). In the original example, the training and testing

time steps are both 2 ps. While leaving the CMOS TX model untouched, the

CMOS RX model with CTLE feature is re-trained with reference voltages

taken at times steps = [1, 2, 3, 4, 5, 6] ps. The ADS reference VOUT waveform

and eye diagram of time step = 2 ps are plotted in Figure. 4.6. The newly

trained RX models are cascaded with the TX model to produce the eye pre-

dictions as shown in Figure. 4.7. For each eye, the measurement details are

listed in Table 4.1.

Figure 4.6: ADS reference VOUT of time step sampled at 2 ps

As expected, if the training uses exactly the same time sampling as in the

test, the FNN prediction yields the closest eye measurement compared to the

reference. The problem occurs at coarse sampling, where the FNN is trained

with a large time step and then test with a smaller one. In the case when

the model is trained with 3 times the testing time step, obvious differences

can be spotted at both the eye levels and the opening. A comparison of

the reference and predicted VOUT waveforms is given in Figure. 4.8. Starting

from training time step = 4 ps (2 times the testing step), the FNN constructs

the response with over- and under-shoots, which are indication of strong

underestimations. This test gives a baseline for time sampling strategy when

modeling with FNN: The training reference should set the time step as close

as possible to the real use case, if not, finer sampling is always preferred.
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Figure 4.7: FNN predicted VOUT eyes from different time step training.

Table 4.1: Eye diagram measurement of FNN CMOS RX model trained with time step (Tstep) = [1, 2, 3, 4, 5, 6] ps

Measurement
ADS Reference

(Tstep = 2 ps)

FNN VOUT
(Tstep = 1 ps)

FNN VOUT
(Tstep = 2 ps)

FNN VOUT
(Tstep = 3 ps)

FNN VOUT
(Tstep = 4 ps)

FNN VOUT
(Tstep = 5 ps)

FNN VOUT
(Tstep = 6 ps)

Eye Width 69.5 ps 68.5 ps 67.5 ps 68.5 ps 66.0 ps 67.5 ps 68.5 ps

Eye Height 1.02 V 0.88 V 1.01 V 1.00 V 0.76 V 0.81 V 0.76 V

Zero Level 5 mV 7 mV 4 mV 1 mV -7 mV -14 mV -22 mV

One Level 1.41 V 1.41 V 1.41 V 1.42 V 1.42 V 1.42 V 1.43 V
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Figure 4.8: FNN predicted VOUT waveforms from different time step
training.
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4.2.3 Memory Length

Defining proper memory lengths of the TX/RX models is critical because

this controls the trade-off between the training cost and the modeling ac-

curacy. With a longer memory length, more memory sequence columns are

created in the input matrix and passed into the FNN to perform weight and

bias fitting. This inevitably slows down the training and sometimes even

leads to faulty predictions due to irrelevant inputs. On the other hand, if

the memory length is too short, the trained model could be inadequate to

explain the nonlinearities in the HSL. Since the ultimate goal is to perform

accurate modeling with the least number of parameters, the methodology of

choosing appropriate memory lengths for the FNN models is discussed below.

As a general rule of thumb, the memory length should be determined by

the complexity of the buffers plus the protocols the buffers oversee. For

instance, even for the same CMOS gate, the optimized memory lengths of

the FNN TX/RX models are different due to fact that the protocols used

in the TX training contain much more information than the ones in RX.

The same concept applies when one wishes to add more features into the

existing protocols. For example, if reactive components are accounted in the

RX termination protocol, the memory length used in the previous examples

(M = 50) might now be insufficient to represent the behavior of the RX. That

being said, while it is possible to make intuitive guess on the required mem-

ory length based on the previously trained models, the better practice is to

examine the training loss and R2 test scores before a new model is put to use.

This work applies brute force method to search for the optimal memory

length. To demonstrate the method’s workflow, TX memory length for the

differential CMOS driver in Figure. 3.21 is swept and the training/validation

losses are recored as shown in Figure. 4.9. From the graphs, we can observe

that the MSE loss drops below 10−3 when M = 100 and reaches its minimum

value 10−5 when M = 250. Furthermore, when M > 250, the loss starts to

increase slightly because redundant memory sequences are given.

The trained models are then cascaded with a test channel and a FNN RX

model to examine how would the choice of memory length in training affect
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Figure 4.9: Training and validation loss of FNN TX model with different
memory length.
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the modeling accuracy. As shown in Figure. 4.10, the accuracy of the model

improves dramatically when M goes from 10 to 100 and then maintains at

R2 > 0.98 in the range of M equals to 100 to 350. More specifically, the

best VTX and VRX predictions (R2 > 0.995) occur at M = 250, which is in

accordance with the observations from the MSE loss plots. Overall, although

this method seems tedious, it is very effective in ensuring that a least order

FNN model is obtained.

Figure 4.10: Relation between modeling accuracy and memory length.

4.2.4 Excitation

Throughout the schematics we showed in the previous Chapter, one might

notices that the source excitation presented in both the training and the

evaluation is always the V/T sequence of PRBS. While this particular choice

of excitation makes sense in terms that almost all HSL simulations nowadays

are preformed with PRBS, a general question emerges of whether the trained

models are still accurate if a sinusoidal source is presented. To validate that,

a stand-alone CMOS gate with an open termination is introduced as the

testing schematic (see Figure. 3.6). After feeding the model with a 10 Gbps

PRBS and a 5 GHz sinusoidal wave both of -5∼5 V amplitude, the voltage

predictions after the CMOS gate are plotted in Figure. 4.11. Even though

the result on the sinusoidal plot is not a complete failure because the FNN

predicted waveform is still within the reference order of magnitude, it only

yields a R2 score of 0.613. Looking at the PRBS case where R2 = 0.999 is

achieved, a quick conclusion can be drawn that the existing PRBS trained

model are not fully compatible with simulations using sinusoidal inputs.
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Figure 4.11: FNN prediction of the inverter output when trained with
PRBS excitation.

For the sake of curiosity, a new CMOS model is trained based on the ref-

erence voltages extracted from the sinusoidal excitation. Reversely, the new

model could now process the sinusoidal input in a much better manner than

the PRBS one. Before jumping to the conclusion that one can only choose

to persevere a single kind of excitation, we must first investigate the nature

of this problem. The PRBS sequence is essentially square waves of differ-

ent periods, which can be theoretically decomposed into infinite numbers of

sine waves based on Fourier transformation. When the training is performed

with PRBS excitation, voltages at each time stamp is assigned with a fixed

multiplier (weight) as it goes through the FNN neurons. If the same scaling

factor is to be placed on the sinusoidal waves as in the test case, it is guar-

anteed that the output will look like a distorted form of PRBS. Vice versa

for the case of training the model with sinusoidal excitation. This observa-

tion provides a extremely valuable insight for where this project might go

next: Is there a generic excitation, for instance a certain super-composition

of sine waves, that could be trained in FNN such that the models are com-

patible with all kinds of voltages inputs? A preliminary plan could be first

doing mini-batches of training, each performed on a sinusoidal input, and

then place a Fourier wrapper at the end that draws the relation between the

sinusoidal responses and the expected PRBS response. With all these possi-

bilities, more details on how to further improve the FNN models are discuss

in the next Chapter.
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CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary

In this dissertation, machine learning methods are explored for generating the

behavioral models of the nonlinear transceivers. More specifically, we pur-

posed the methodology of developing cascade-able FNN models which are

fully compatible with the modern HSL simulation. Compared to the prior

works where the HSL is modeled as an entity, the FNN models are TX/RX

building blocks that are both channel- and load-independent. By eliminating

the dependency of the link, the FNN models are no longer bounded to a par-

ticular HSL and therefore not subject to regeneration if the link compositions

changes. Through the research, there are a number of challenges associate

with creating cascade-able models, namely:

1. Precisely characterize the nonlinearity of the transistor-level devices.

2. Separate the channel and load from the TX/RX modeling.

3. The TX/RX models are compatible with any configurations of HSL.

4. The TX/RX models are compatible with equalization settings.

5. The TX/RX models are compatible with PAM-4 differential signaling.

6. The TX/RX models are compact and easy to understand/obtain.

7. HSL simulation with TX/RX models yields accurate eye diagrams.

To tackle the first challenge, a nonlinear mapping between the input mem-

ory sequence and the output is established by constructing a FNN with three
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hidden layers. For all the neurons within the hidden layers, a nonlinear acti-

vation function is introduced and its weights and bias are adaptively adjusted

during the training to minimize the difference between the predicted and the

true output. It is preferred to have sufficient but not too long of a memory

length, so the FNN could correctly draw the relation between the current

output and the past states of the inputs in a timely manner.

For the second and third challenges, the purposed solution presented in

this work is novel in terms that all the existing NN-related modeling failed

to address them. To fulfill the quest of channel- and load-independent, we

introduce the idea of protocol, which is a parameterized HSL information that

is appended after the input memory sequence. By training with a certain

range of protocols, the TX/RX FNN models are able to response correctly to

various configurations of HSL and thereby claiming to be cascade-able. For

the examples we demonstrated, good correlations were discovered between

the predictions and the references regardless of channel or load conditions.

In addition, the choice of protocols is extremely robust, meaning that the

IC designers can invent their own protocols without deteriorating the per-

formance of the FNN models. To proof that, we described the channel from

both the geometric perspective and its frequency-domain representation, the

VF parsed S-parameters. From the cascading-test, we conclude that either of

the approaches is compatible with FNN modeling and more importantly, as

long as reference waveforms are extracted, the protocols could theoretically

be any useful information about a HSL.

The fourth and fifthschallenges, CTLE equalization and PAM-4 differen-

tial signaling, are resolved fairly straightforwardly given that the protocols

are expandable by design. We chose to include these two features because as

the data rate gets higher in the modern HSL designs, they are now essential

components of a HSL simulation. The CTLE feature is implemented in the

FNN RX model by appending the equalization settings as protocols: the

CTLE pole, zero and gain. The PAM-4 differential signaling is implemented

in both the FNN TX and RX models by expanding the memory sequences to

record both the positive and negative terminals’ responses. After verifying

the accuracy of the cascaded outputs, we conclude that the expanded models

are fully compatible with high data rate HSL simulations.
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The sixth challenge is to make the FNN models more accessible for both

the IC designers and the model users. From the designers perspective, gener-

ating FNN models is simple in terms that this process is fully automated as

shown in Appendix A. After a raw FNN model is extracted, designer could

choose to further reduce the size of the model by applying MOR for better IP

protection. From the users perspective, applying FNN models in HSL sim-

ulation only requires minimum circuit design background. Since the model

itself is a black-box, the users are not exposed to any complicate pin mapping

that they used to see in the IBIS models. To run a HSL simulation with the

FNN models, they only need to feed the excitation and channel information

to the TX model and the load information to the RX model.

Last but not least, the FNN models are expected yield accurate voltage

waveforms as well as the eye diagrams at each cascading nodes. From the

tests we conducted in Chapter 4, we conclude that the eye diagrams given

by the FNN models will be within 5% error range if the predicted waveforms

maintain a R2 score larger than 0.99. This score servers as an important

metric for the designers when they are evaluating the performance of the FNN

models. Any tuning of the FNN parameters should follow this guideline so

that the trained models are in compliance with HSL eye diagram simulation.

Overall, after the FNN models are properly trained, eye diagrams can be

generated 25 time faster compared to a traditional SPICE simulation.

5.2 Future Work

Based on the limitations of the existing FNN models, the following works are

proposed for the future work.

5.2.1 Generic Excitation Pattern

As indicated in the previous chapters, the FNN is nothing but a nonlinear

mapping between the inputs and outputs. Therefore, the FNN models are

expected to yield the best results when the training patterns are generic

enough to cover a wide range of excitations. However, since it is practically
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infeasible to exhaust all kinds of excitations as training samples, we must

shift our focus to how to properly decompose a random excitation to a finite

number of signature excitations. For instance, if we decided that the signa-

ture excitations are sinusoidal waveforms, we could do a generic training of

FNN using finite samples of sine waves each of different amplitude and peri-

ods. Next, after confirming the modeling accuracy, we could decompose any

unknown excitations into the known sinusoidal inputs and then feed those to

FNN to obtain partial response, which eventually will be summed together

to restore the true outputs.

So far from all the experiments we conducted, we are almost certain that

the signature excitations are indeed sinusoidal waveforms because theoreti-

cally speaking, they are capable of constructing any random excitation. Nev-

ertheless, problems occur at the decomposition and restoring stages for the

unknown excitation. Taking PBRS excitation as example, the harmonics re-

quired to construct PRBS with sine waves are almost infinite due to Gibb’s

effect. In order words, we could easily feed over 30 harmonics into the FNN

but still not quite resembling the true PRBS inputs. Even if we disregard

this difference at the input side, more severe issue emerges at the output side.

Say that the partial responses we obtain are correct, re-combining them to

a true PRBS response is not trivial at all. Due to the nonlinear nature of

the transistors, poly-harmonics distortion (PHD) is expected at the output

terminal. When PHD happens, the input and output of the harmonics are

no longer guaranteed to have a one-to-one mapping, but rather a complicate

mixing mapping composed of the odd- and even-modes. That being said,

there are two potential remedies to untangle this mix-signal mapping:

1. Mathematically resolves the mapping by referencing X-parameter [43],

which is proven to accurately characterize PHD but the concept itself

is established in the frequency domain.

2. Adopts a machine-learning based structure to describe the mapping,

which is straightforward to produce but may subject to other constrains

such as training-sample insufficiency.

Either of the methods could potentially work if given more thoughts. Again,

it is crucial for the ongoing work to tackle this problem because once the
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generic waveform is proven to succeed, the FNN model could completely

replace IBIS or IBIS-AMI models for its superior computational efficiency.

5.2.2 Protocol and Feature Extensions

Up to this point, we have implemented many features in the protocols of

FNN, but certainly this list is not even close to be comprehensive. Compared

to the IBIS-AMI models, there are numbers of commonly used features that

are not yet covered in the existing protocols. On the TX side, pre-emphasis

and jitter settings can be added if the transistors to be modeled possess these

capabilities. Furthermore, with respect to the channel protocols, it is also

desirable to make the FNN models to be compatible with SPICE models for

faster simulation speed. On the RX side, the assumption with load being

a pure resistor must be lifted, as in most of the modern designs the load is

oftentimes described by multiple SPICE or IBIS models. The post-cursor

equalizations such as DFE can be added to RX protocols, too.

With all these new features, the FNN TX/RX models are then available

for a much wider range of HSL applications. Luckily, as shown in Chapter 3,

the expansion of the features are nothing challenging. It is just a matter of

time to implement all these features and to claim FNN models as the better

alternative of the IBIS-AMI models.

5.2.3 Compact FNN Models

To date, brute force method was used to determine the optimal memory

length and the MOR parameters used for the Laguerre projections. Al-

though this approach is simple and consistent, the time complexity relating

to it oftentimes scales proportionally with respect to the guess range. Strictly

speaking, this method requires the engineers to have a good sense of the op-

timized results even before the experiment is conducted.

Given the uncertainty, a more systemic approach is needed to achieve the

most compact FNN models. One potential method could be Monte Carlo

(MC) simulation [44], of which the optimizer takes random walk in a large
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solution space and evaluates the probability of a single solution set being

the best result. The benefit of this method is the elimination of the guess

range, which ensures that even an unexperienced person could run MC to

obtain a reasonably compact FNN model. Another possible solution is to

use Bayesian optimization [45], which is a global optimization strategy that

is usually employed to observe I/O relation in a black-box manner. Since the

objective function is unknown between the aforementioned parameters and

the optimized-size FNN model, this problem is best resolved with Bayesian

because if a SGD method is used, the derivatives evaluation could be ex-

tremely expensive. Overall, more research is needed to work out the best

optimization method to obtain the most compact FNN models.
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APPENDIX A

AUTOMATION SCRIPT OF DATA
TRANSFERRING BETWEEN ADS AND

PYTHON

Since massive data needs to be transfered between ADS and Python, au-

tomation scripts were developed in this project to ease the process. Generally

speaking, ADS accepts command files that are in ∗.cvs format with certain

syntax. Rather than writing these files line by line, a python package csv is

used to quickly looping through the required information and compiling it to

ADS-compatible commands. On the other hand, data from ADS is extracted

to FNN training script by utilizing the python package numpy, which grabs

data from the ∗.cvs file and organizes it to a matrix form.

A.1 Batch Simulation

After setting up the transient simulation schematic of the buffer in ADS,

a batch list is needed to sweep through the protocol parameters and obtain

ground truth data within the designed limitation of the model. The batch, or

the sweeping simulation, is controlled by the component shown in Figure A.1,

where the path to the batch list is detonated as SweepArgument. The first

line in the batch list specifies the variable names and each line below that

provides a set of swept data these variable should take.

Figure A.1: Batch simulation component in ADS.
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1 freq = np.arange(1, 5.1, 1)

2 amp = np.arange(3, 5.1, 1)

3 res = np.array([50, 2000, 100000])

4 w = np.array([0.25, 1.4, 2.55, 3.7, 4.85, 6])

5 l = np.linspace(0, 45, num=4)

6

7 total = len(freq)*len(amp)*len(res)*len(w)*len(l)

8 setting = np.zeros((total, 5))

9

10 with open(f'{file}.csv', mode='w') as f:

11 data = csv.writer(f, delimiter=',')

12 data.writerow(['FREQ','AMP', 'RES', 'MLINW', 'MLINL'])

13 n = 0

14

15 for f in freq:

16 for i in amp:

17 for j in res:

18 for k in w:

19 for m in l:

20 data.writerow([f, i, j, k, m])

21 setting[n] = [f, i, j, k, m]

22 n+=1

Listing 4: Creating batch list with geometric protocol in python.

Geometric Protocol

The script that creates parameter sweeping with geometric protocol is shown

in Listing 4. The variable names are separated by commas in the first line and

their values are listed in the following lines. In this example, five variables

(frequency, PRBS amplitude, termination resistance, MLIN width and MLIN

length) are swept with a total batch number of 1080. Since the batches are

fed to ADS sequentially, one needs to be extra careful with the size of the

batch so the simulator won’t crash due to RAM shortage.

Vector Fit Protocol

The script that creates parameter sweeping with vector fit protocol is shown

in Listing 5. Besides the frequency and resistance sweeping, an additional

variable that contains the path to the s-parameter files is included as SP .

Different from the previous example of which the values are constants, the

path is a string so it must be wrapped between the quotation marks to
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1 freqa = np.arange(1, 5.1, 1)

2 freqb = np.arange(1, 5.1, 1)

3 res = np.array([50, 2000, 100000])

4 sp = []

5

6 for n in range(10):

7 sp.append('\"/data/sp/'+ str(n) +'.s2p\"')

8

9 n = 0

10 with open(f'{file}.csv', mode='w') as f:

11 data = csv.writer(

12 f,

13 delimiter=',',

14 quotechar="\'",

15 quoting=csv.QUOTE_NONE

16 )

17 data.writerow(['FREQA', 'FREQB', 'RES', 'SP'])

18 for f in freqa:

19 for i in freqb:

20 for r in res:

21 for s in sp:

22 if i >=f:

23 data.writerow([f, i, r, s])

24 n+=1

Listing 5: Creating batch list with vector fit protocol in python.

match the syntax. Moreover, ADS does not allow duplicate variable names,

including the built-in reserved ones such as frequncy. More details on the

ADS input syntax requirement can be found in [46].

A.2 Reference Data Extraction

After running the batch simulation, voltages at the cascading nodes are col-

lected by exporting the measurement as a ∗.cvs file with time-dependency.

The first column is the batch number, the second column is time and the

following columns are voltage readings at each node. In the example shown

in Listing 6, four nodes (Vin, Vtx, Vrx and Vout) were measured and the raw

data has a total of six columns. The conv function is applied when scientific

units like ps or V are presented in the ∗.cvs file. The batches are divided

based on the time stamp (t = 0 s) rather than the batch number because

there is a known glitch in ADS that generates non-integer batch value. To
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1 def conv(fld):

2 return float(fld[:-1]) if fld.endswith(b'V') else

float(fld[:-3])↪→

3

4 with open(file+'.csv') as f:

5 data = np.genfromtxt(

6 fname=f,

7 delimiter=',',

8 skip_header=31,

9 converters={1:conv, 2:conv, 3:conv, 4:conv, 5:conv}

10 # names = ['batch','time','vin', 'vtx', 'vrx', 'vout'],

11 # max_rows=10

12 )

13 data = data[:,1:]

14 parse = np.where(data[:,0] == 0)[0]

15 new_data = []

16

17 for i, num in enumerate(parse):

18 if i != 0:

19 tmp = data[parse[i-1]:num]

20 new_data.append(tmp[6:])

21 new_data.append(data[num+6:])

Listing 6: Creating batch list with vector fit protocol in python.

keep uniformity in time step, the first six rows in the batch are discarded:

These are V/T values ADS came up for DC simulation, where the voltages

are sampled at tiny time steps. In the end, each batch is transformed to a

numpy 2-D array of size equals to number of samples times number of mea-

sured nodes. The very last line in the example code collects all these arrays

and organizes them into an ordered-list.

A.3 Eye Diagram

The eye diagram is a figure of merit for the SI engineer to quickly evaluate

the HSL performance in the time domain. It is constructed by aligning and

overlaying segments of bits from the long data stream acquired by a transient

simulator. Since the reference data is in ADS and the FNN prediction is

in python, one needs to re-locate at least one of them so the eye digram

comparison can be done under the same environment. The subsections below

provide three options for comparing the reference and the predicted eye.
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1 # create pads for time (x) and voltage (y) at VOUT node

2 pad_x = np.arange(0, data[:,0][memory_tx+memory_rx], 6.25e-12)

3 pad_y = np.zeros(len(pad_x))

4

5 # add padding to the predicted V/T

6 x = np.hstack([pad_x, data[:,0][memory_tx+memory_rx:]])

7 y = np.hstack([pad_y, VOUT.reshape(1,-1)[0]])

8

9 # linear interpolating V/T with reference time step = 6.25 ps

10 ref_x = np.arange(0, 100e-9, 6.25e-12)

11 ref_y = np.interp(ref_x, x, y)

12

13 # save the organized V/T in a text file for transfer

14 f = open(file +str(batch) +'.txt','w+')

15 f.write('BEGIN TIMEDATA\n# T ( SEC V R 0 )\n% time voltage\n')

16 for i in range(len(ref_x)):

17 f.write(f'{ref_x[i]} {ref_y[i]}\n')

18 f.write('END')

19 f.close()

Listing 7: Creating batch list with vector fit protocol in python.

Construct Eye Diagram with ADS

This method transfers the predicted V/T waveforms back to ADS for eye di-

agram comparison. Given that the prediction normally does not start from

t = 0 s, a padding of zeros is inserted at the beginning of the predicted volt-

ages to fill up the gap caused by the memory setting. Then the padded V/T

data is linearly interpolated using python package numpy.interp to match

the time step in the ADS reference. The organized V/T set is transfered

to ADS as a text file with syntax shown in Listing 7. To load this file into

ADS, select Tools → Data F ile Tool → Read data file into dataset. The

file format to read is MDIF and the sub type is TIM MDIF . This option

allows user to perform transient simulation with customized time-domain

waveform data using the component V tDataset. Finally, one can place eye

probes at the nodes of the reference schematic and the user-defined source

as shown in Figure A.2. The eye diagrams can be plotted side by side in

the data display window. Although this method seems lengthy, the greatest

advantage of transferring everything to ADS is that the eye height/width

measurements are built-in function within the software. The quantified eye

readings presented in Chapter 3 are obtained through this approach.
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Figure A.2: Schematic for eye diagram comparison in ADS.

Construct Eye Diagram with Python

Since both the predicted and the true data are numpy arrays, it is natural to

plot the eyes in python for a visual inspection. The biggest challenge for this

method is to divided the long data stream into segments with proper size. In

other words, the built-in eye diagram functions in ADS need to be correctly

re-write as a script in python. Code in Listing 8 plots the eye diagram at the

V OUT node for a 100 ns transient simulation of 10 ps time step. The idea is

to first linear interpolating the voltage wavform with respect to the sampling

time and then separate the time sequence into bins of rising and falling edge.

In this example, the source frequency is 1 GHz so the eye diagram spans for

2 ns or 200 time steps/bins. The eye diagram is constructed by repetitively

overlapping the bins until all data is plotted. The opacity of the plotted lines

can be tunned so one could observe the density of the eye.
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1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 # linear interpolating the predicted voltage with time step 10 ps

5 time = data[:,0]*1e12 # change time unit to ps

6 x = np.arange((memory_tx+memory_rx)*10,100000,10)

7 y = np.interp(

8 x,

9 time[memory_tx+memory_rx:],

10 VOUT.reshape(1,-1)[0]

11 )

12

13 # separate rising and falling edges into mini-bins

14 bins = np.split(y, y.shape[0]/100)

15

16 # specify the time-constrain on the x-axis

17 xtick = np.linspace(0,2,num=200)

18

19 # plot configuration

20 ax = plt.axes()

21 ax.set_facecolor('k')

22 plt.xticks(np.arange(0, 2.1, 0.2))

23 plt.yticks(np.linspace(-0.5, 3.0, 7))

24 ax.set_ylim([-0.5, 3.0])

25 ax.set_xlim([0, 2])

26

27 # overlap the bins to fit the time-constrain

28 for i, data in enumerate(bins):

29 plt.plot(xtick[:100], data, 'y-')

30 plt.plot(xtick[100:], data, 'y-')

Listing 8: Generating eye diagram with python.

Figure A.3: Example of eye diagram plotted with python.
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1 close all;

2 clc;

3

4 % read *.csv file as a nx1 array

5 file = 'eye.csv';

6 eye = csvread(file);

7

8 % specify number of samples per trace (half eye)

9 n = 100;

10

11 % plot eye diagram in new window

12 eyediagram(eye,2*n)

13

Listing 9: Generating eye diagram with Matlab.

Figure A.4: Example of eye diagram plotted with Matlab.

Construct Eye Diagram with Matlab

Alternatively, one may choose to skip the writing of eye-diagram function

by utilizing the pre-existing eyediagram package [47] in Matlab. In this

case, two ∗.csv files need to be prepared of which contains the reference

and the predicted voltages. Both file are single-columned with their values

sampling at the exact same time stamps. This means the predicted V/T has

to be organized first by zero-padding the memory portion and then linearly

interpolated to match with the reference. The plotting code in Matlab is

included in Listing 9. Besides, if Commnuication or SerDes tool-boxes are

purchased, one can simply import the file to the Eye Diagram component and

configure the plot there. An example of eye diagram plotted using Matlab is

shown in Figure A.4. Similar with the python method, there is no packages

available for eye height/width measurement.
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Figure A.5: Typical HSL eye diagram measurements.

Interpret Eye Diagram

As stated, the eye diagram is a common metric for quantifying the signal

quality of a HSL. With a clock referecen as trigger point, the distorted PRBS

bit stream is cropped and overlaid on the previous cycles. Generally, over

hundreds of cycles are superimposed and the closing of the eye quantifies the

bit error rate of the system. To help users to better understand this metric,

some of the key terms are described below with respect to the labeling shown

in Figure A.5.

One and Zero Levels. Theses are the high and low amplitudes of the

captured voltages. They are calculated as the mean values taken from middle

20% of the histogram. By observing them, one can conclude if the system

suffers from over- or under-shoot issue.

Eye Amplitude and Eye Height. While both of the concepts describe

the voltage margin of the eye, the eye amplitude is the amplitude difference

between the one and zero levels; the eye height is computed as the difference
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between the inner three standard deviation from the one and zero levels of

the histogram. These terms are critical because they indicate the possibility

of misinterpretation whether the data bit is 0 or 1 in digital domain.

Eye Crossing Percentage. This value marks the amplitude of switching

bit relative to the one and zero levels. Ideally, a 50% eye crossing percentage

is desired because the switching reference voltage Vref is normally set as the

mean between Vhigh and Vlow. When it deviates from this value, the HSL

system potentially exists high amplitude distortion and should be examined

carefully for the root cause of pulse symmetry.

Bit Period and Eye Width. Both these terms are relating to the hor-

izontal axis of the eye diagram, which is the time or unit-interval (UI) in

unit of seconds. An eye diagram typically shows two UI, or 2
BitRate

. For

example, a 10.0 Gbps data stream, the eye is plotted from 0 ps to 200 ps

with UI = 100 ps. The eye width marks the time margin of the eye opening,

which is calculated as the difference between the left and right crossing points

with three inner standard deviations.

Rise and Fall Times. The rise and fall times are measures of the tran-

sition time on the upward and downward slope. By default, they are defined

as the flight time between 20% and 80% values of the the maximum swing.

Depending on the logic family, the fall time is sometimes slightly shorer than

the rise time due to the nature of CMOS drivers, where the n transistor turns

on faster than the p transistor [40].

Jitter. Jitter describes the time deviation from the ideal rise and fall

timing events. A peak-to-peak (p-p) jitter is measured as the full width of

the crossing edges. There are two main categories of jitter, the random jit-

ter and deterministic jitter. The former one is Gaussian distributed and the

later one is design specific. To minimize jitter, one should trace down the

deterministic one and provide design guideline to eliminate ISI, crosstalk or

duty-cycle distortion [48].
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APPENDIX B

CUDA TOOLKIT INSTALLATION AND
USAGE GUIDE FOR LINUX SYSTEM

To re-produce the NN structure presented in this thesis, follow the guidelines

below for proper driver setup. Any skips in step will lead to configuration er-

ror. The sections below are organized based on build type: First, a CPU only

setup is presented with an example code that parallelizes the training batches

between multiple CPU cores; Second, an add-on GPU setup is introduced

for users who wish to accelerate the process by utilizing GPU computational

unites. Note that all software versions listed in this section are up to update

as of Dec 2021.

B.1 CPU Only

Linux System Requirement

1. Download and install Ubuntu 20.04.3 LTS Focal Fossa from the official

Ubuntu releases [49]. For desktop version, use the iso image named

ubuntu-20.04.3-desktop-amd64.iso. Choose normal installation and in-

clude the third-party software.

2. Python3 should be built-in within this release. To verify which python3

version is installed, type in terminal (either bash or zsh):

$ python3 --version

If a recent current python3 is needed (e.g. this thesis used python

3.8.10), update the python3 package with the following commands:

$ sudo apt-get update

$ sudo apt-get install python3.8.10
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Figure B.1: VS code installation

3. Install pip3 [50]. This is a package installer locally for python. Execute

the following commands in terminal:

$ sudo apt-get update

$ sudo apt-get -y install python3-pip

$ pip3 --version

4. Download VS Code [51]. Use the .deb package since the linux distribu-

tion is Ubuntu. To install it, double click the file and install the package

in Software Install window shown in Figure B.1. Same window can be

found if you right click on the .deb file and select Open with Software

Install.

5. VS code can be launched by clicking the windows key or click show

application at left bottom corner of Ubuntu desktop GUI. In the search

bar type VS code. You will be able to see the blue logo, click it and VS

code will be launched. To avoid doing this every time, you can right

click the logo in the task bar (on the right side of the desktop GUI

after VS code is first launched) and select add to favorite. That way

the shortcut stays in the task bar (see Figure B.2).

6. In VS code, it is recommended to install Python and Pylance extensions

from marketplace shown in Figure B.3. That way the python3 code can

83



Figure B.2: Launch VS code

be automatically compiled and checked for syntax errors. You can also

browse for more extensions using the search bar. You will be prompted

to restart the software when some extensions are installed.

7. Select which interpreter to use in VS Code. To start, run these two

commands in terminal to check the absolute path of python3 and pip3:

$ which python3

$ which pip3

The default path is /usr/bin/*. If the packages are installed in any

other folders, copy that path for the next step.

8. In VS code, click view → Command Palette → Python: Select Inter-

preter. Select python 3.8.10 64-bit with the path configured in the

previous step. An example is shown in Figure B.4.

9. (Optional) Install python packages used in this thesis with:

$ pip3 install numpy

$ pip3 install pandas

$ pip3 install matplotlib

$ pip3 install sklearn

$ pip3 install skrf
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Figure B.3: VS code marketplace

Figure B.4: Select Interpreter in VS code

85



Upon completion, use

$ pip3 list

to check if the items above have been successfully installed.

Pytorch

For CPU-only users, CUDA installation is not required nor recommended.

Reason to ignore CUDA is straightforward: This tool is a computing platform

that parallelizes GPU computation power with the CPU cores. Without the

presence of GPU, it is meaningless to prepare the CPU for loading work.

That being said, solo installing Pytorch does not lose means of parallelism,

either. Pytorch by itself is capable of auto-distributing the forward and

backward calculations evenly to every single thread CPU possesses. Install

CPU version of Pytorch [52] by the following command:

$ pip3 install torch==1.10.1+cpu

torchvision==0.11.2+cpu torchaudio==0.10.1+cpu

-f https://download.pytorch.org/whl/cpu/torch_stable.html

Code Example of NN training with GPU

1. (Optional) Depends on the training data size, sometimes it might be

necessary to increase swap size so the training process does not get

killed due to RAM space shortage. Swap is a reserved hard disk space

that can be used as RAM, in other speakings, a virtual RAM. It is

relatively slower than the physical RAMs, but it stops the program from

crashing when the code is dealing with more data than the system can

handle. Size of swap space can be selected when creating the Ubuntu

or can be adjusted later by the following terminal commands [53] (e.g

10 GB swap size):

$ sudo swapoff -a

$ sudo dd if=/dev/zero of=/swapfile bs=1G count=10

$ sudo chmod 600 /swapfile

86



Figure B.5: System processes interface

$ sudo mkswap /swapfile

$ sudo swapon /swapfile

$ /swapfile none swap sw 0 0

$ grep SwapTotal /proc/meminfo

2. (Optional) Use the following commands to monitor system processes

(CPU) shown in Figure B.5, default refresh interval is 3 s:

$ sudo apt install htop

$ htop

3. Now we are ready to kick off the training in VS code. Create a new .py

file by first importing pytorch libraries as shown Listing 10.

4. Initialize NN structure by defining layers as shown in Listing 11. This

dummy NN framework has 3 layers (number of neurons): Input layer

(input size), hidden layer (input size) and output layer (output size).

Activation function used in between the layers is Rectified Linear Unit

(ReLu) provided by Pytorch. Instructions of creating more complex

NN can be found in [54], including zipped layers, self-defined activation

function, etc.
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1 # for saving normalization vectors

2 import pickle

3 # for organizing datasets

4 import numpy as np

5 # for normalizing datasets

6 from sklearn.preprocessing import MinMaxScaler

7 # all functions in pytorch

8 import torch

9 # for building NN structure

10 import torch.nn as nn

11 # for building data structure

12 from torch.utils.data import DataLoader, TensorDataset

13 # for regulating training rate automatically

14 from torch.optim.lr_scheduler import ReduceLROnPlateau

Listing 10: Python libraries

1 class NeuralNet(nn.Module):

2 def __init__(self, input_size, output_size):

3 super(NeuralNet, self).__init__()

4 self.fc1 = nn.Linear(input_size, input_size)

5 self.fc2 = nn.Linear(input_size, input_size)

6 self.fc3 = nn.Linear(input_size, output_size)

7 self.relu = nn.ReLU()

8

9 def forward(self, x):

10 x = self.fc1(x)

11 x = self.relu(x)

12 x = self.fc2(x)

13 x = self.relu(x)

14 x = self.fc3(x)

15 return x

Listing 11: Build NN structure

5. Load the framework of NN to the module with self-defined number

of neurons. In this case we have a input layer & hidden layer of 100

neurons and output layer of 1 neuron. Then we define the loss func-

tion (MSE ), optimizer algorithm (Adam) and training rate scheduler

(ReduceLROnPlateau) as shown in Listing 12. More training optimiza-

tion methods can be found in [55]. Choose the ones that best suit the

training set.

6. Prepare the numpy dataset for training. Listing 13 shows a toy exam-
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1 input_size = 100

2 output_size = 1

3

4 model = NeuralNet(input_size, output_size)

5

6 loss_func = torch.nn.MSELoss()

7 optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)

8 scheduler = ReduceLROnPlateau(optimizer, 'min', patience = 5)

Listing 12: Load NN structure to module

ple of organizing time-domain waveform data to feature (input) and

label (output) sets. The idea is assinging each label yn with a feature

sequence of memory [xn−m, xn+1−m, . . . , xn] of length equals to input

size (m = 100). Here we used 80% of data for training / validation and

the reminding 20% was left out for testing. Normalizing the datasets is

not required, but could make a tremendous difference in time needed

for training convergence.

7. Load the pre-processed datasets as tensors and organize the mini-

batches by calling the DataLoader function (see Listing 14). Note that

the dataset must be shuffled before passing into the loader to ensure

accuracy and fairness. Otherwise, pass shuffle=True argument to the

DataLoader. Not normalized sets could potentially extend the training

time massively.

8. Write the training and validation loop (see Listing 15). This is a good

time to open htop to monitor the system performance. Both train err

and valid err should be stored during looping because they indicate:

First, whether the initial learning rate is too steep; Second, whether

the training is able to converge within the number of epochs. The print

command allows one to constantly check if the training shows signs of

non-convergence. At last, a log file of residue errors and the models are

saved for testing.

9. Test the model with the unseen 20% of data. Prepare the dataset from

original data to memory sequence arrays (test in and test out) in the

same manner as we did for the training set. In the Listing 16 example

below R2 score is used to evaluate the accuracy of predicted output.
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1 output_pickle = './rx_norm.p' # norm vector file

2 tv_percent = 0.8 # train+validate / test ratio = 8 / 2

3 memory = input_size # length of memory

4

5 # data is a numpy array from one batch in ADS simulation

6 # normally we include several batches to include more variation

7 # this example will only work for training on one particular ADS

setting↪→

8 # (details of parsing from ADS csv not shown here)

9

10 data_in = data[:,-2] # un-organized input

11 data_out = data[:,-1] # un-organized output

12 num = int((len(data_out)-memory)*tv_percent)

13

14 # create empty feature array

15 memory_in = np.zeros(

16 (data_in.size-memory, memory+var),

17 dtype=np.float32

18 )

19

20 # create feature and label arrays

21 for i in range(data_in.size-memory):

22 memory_in[i,:] = data_in[i:i+memory]

23 memory_out= data_out[memory:].reshape(-1,1)

24

25 # normalize datasets for faster training

26 input_scaler = MinMaxScaler()

27 input_scaler.fit(memory_in)

28 memory_in = input_scaler.transform(memory_in)

29 output_scaler = MinMaxScaler()

30 output_scaler.fit(memory_out)

31 memory_out= output_scaler.transform(memory_out)

32

33 # normalization vectors must be saved for testing

34 pickle.dump((input_scaler, output_scaler), open(output_pickle,

'wb'))↪→

35

36 # shuffle datasets for fairness concern

37 memory_mix = np.hstack((memory_in, memory_out))

38 np.random.shuffle(memory_mix)

Listing 13: Pre-process feature and label sets

B.2 GPU Add-On

The build in this section is based on a hardware set up of desktop PC with

AMD 12-thread Ryzen 5, NVIDIA 3070 TI, 48 GB DDR4 RAM and 500 GB

PCIe SSD (30 GB used for swap memory). Linux distribution is installed
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1 tensor_in = torch.from_numpy(memory_mix[:,:-1]).float()

2 tensor_out = torch.from_numpy(memory_mix[:,-1:]).float()

3

4 # separate training and validation sets

5 num = int(len(memory_mix))

6 valid_num = int(num/7) # train / validate ratio = 7 / 1

7

8 BATCH_SIZE = 2048 # mini-batch size depends on RAM, must be

power of 2↪→

9

10 # load tensors to DataLoader of mini-batches

11 train_loader = DataLoader(

12 dataset=TensorDataset(

13 tensor_in[:-valid_num],

14 tensor_out[:-valid_num]

15 ),

16 num_workers=12, # must be equal to num of thread in

CPU↪→

17 batch_size=BATCH_SIZE,

18 drop_last = True # drop the reminder set in mini batch

19 )

20 valid_loader = DataLoader(

21 dataset=TensorDataset(

22 tensor_in[-valid_num:],

23 tensor_out[-valid_num:]

24 ),

25 num_workers=12,

26 batch_size=BATCH_SIZE,

27 drop_last = True

28 )

Listing 14: Load training dataset as mini-batches
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1 output_model = './rx.pt' # model saving location

2 log = './rx_log.p' # error saving location

3

4 EPOCH = 100 # num of loops for training

5 train_err = []

6 valid_err = []

7

8 for e in range(EPOCH):

9

10 train_loss, valid_loss = 0.0, 0.0

11 start_time = time.time()

12

13 # set model to training mode

14 model.train()

15 for data, label in train_loader:

16 optimizer.zero_grad()

17 target = model(data)

18 train_step_loss = loss_func(target, label)

19 train_step_loss.backward()

20 optimizer.step()

21 train_loss += train_step_loss.item()

22

23 # set model to Evaluation mode

24 model.eval()

25 for data, label in valid_loader:

26 target = model(data)

27 valid_step_loss = loss_func(target, label)

28 valid_loss += valid_step_loss.item()

29

30 curr_lr = optimizer.param_groups[0]['lr']

31 scheduler.step(valid_loss/len(valid_loader))

32

33 train_err.append(train_loss/len(train_loader))

34 valid_err.append(valid_loss/len(valid_loader))

35

36 print(f'Epoch {e}\t \

37 Training Loss: {train_loss/len(train_loader)}\t \

38 Validation Loss:{valid_loss/len(valid_loader)}\t \

39 # LR:{curr_lr}')

40

41 pickle.dump((train_err, valid_err), open(log, 'wb'))

42 torch.save(model.state_dict(), output_model)

43

44

Listing 15: Training and validation loop

on a 500 GB PCIe MR2 internal SSD in parallel with another Windows 10

system.
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1 from sklearn import metrics

2

3 # load model and norm vectors

4 model.load_state_dict(torch.load(output_model))

5 input_scaler, output_scaler = pickle.load(open(output_pickle,

'rb'))↪→

6

7 test_in = input_scaler.transform(test_in)

8 pred_out =

output_scaler.inverse_transform(model(test_in).data.numpy())↪→

9 score = metrics.r2_score(test_out, pred_out)

Listing 16: Test the NN model

Graphic Driver

1. After the graphic card is inserted, switch the HDMI cable to the output

of the card and turn on PC. Users may experience longer wait before

the welcome screen shows up because Ubuntu needs to download a

series of compatible drivers to initialize the new GPU.

2. Go to the menu by pressing the Windows key. In the search bar, type

drivers. Click on Software & Updates in the results. If the icon is

missing in the application list, run this command in terminal:

$ sudo apt install gnome-control-center

3. Select the driver as shown in Figure B.6. This step is essential because

CUDA is a higher level wrapper that utilizes the GPU driver. For more

advanced GPU like NVIDIA 3090 TI, choose nvidia-driver-495 instead.

NVIDIA CUDA and Pytorch

1. Perform clean uninstall of Pytorch (CPU version). Failed to do so

would result in version conflict between Pytroch and CUDA. If pytroch

was installed by pip3 as steps described above, use these commands to

unload:

$ pip3 uninstall torchaudio

$ pip3 uninstall torchvision

$ pip3 uninstall torch
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Figure B.6: Ubuntu additional driver setting (GPU)

2. Performed the CUDA pre-installation actions presented in [56]. If all

steps above were executed correctly, the only error one might see is

GCC not found. GCC is a compiler tool that comes with the meta-

package named ”build-essential”. To fix the issue, type in terminal:

$ sudo apt update

$ sudo apt install build-essential

$ sudo apt-get install manpages-dev

3. Search online for CUDA Toolkit V11.3.0 [57]. Any other versions

of CUDA will be incompatible with Pytorch used in this thesis and

thereby lead to system failure. The download page can be found at

https://developer.nvidia.com/cuda-11.3.0-download-archive. Se-

lect option tabs as shown in Figure B.7. Installation instructions can

be copied directly to terminal for execution. A dialog GUI will appear

after the final line.

4. In the CUDA installation dialog, select toolkit ONLY. Skip the driver

installation because Ubuntu 20.4 already took care of the problem.

5. At the end of CUDA installation, a prompt will appear in the command

line which specifies the path of CUDA. Follow it by adding the following

lines in either .bashrc or .zshrc (depends on which shell system use):

export PATH=/usr/local/cuda-11.3/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64
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Figure B.7: CUDA toolkit v11.3.0

6. CUDA should be ready to use now. Check CUDA version by:

$ nvcc --version

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2021 NVIDIA Corporation

Built on Sun_Mar_21_19:15:46_PDT_2021

Cuda compilation tools, release 11.3, V11.3.58

Build cuda_11.3.r11.3/compiler.29745058_0

7. Finally, install Pytorch [52] with pip3. Configurations for this specific

version of torch is shown in Figure B.8. In terminal, type:

$ pip3 install torch==1.10.1+cu113

torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113

-f https://download.pytorch.org/whl/cu113/torch_stable.html
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Figure B.8: Pytorch with CUDA 11.3 extension

Code Example of NN training with CPU/GPU

1. (Optional) It is often-times handy to observe how GPU is utilized dur-

ing the training. By reading the instantaneous system report, one could

identify where the critical bottleneck happens during the training. For

instance, a low GPU volatile GPU utilization combined with full CPU

loading implies the NN feature resolution should be compressed before

sending for training [58]. Use this command to check GPU status in

time step of 0.1 s as shown in Figure B.9:

$ watch -n 0.1 nvidia-smi

For any amateur debuggers who wish to set up an initial step for de-

bugging bottlenecks, torch.utils.bottleneck [59] is a good way to start.

Although this package cannot pinpoint to the exact line that creates

the problem, at least it shows some insights on the code block (e.g CPU

loading) that might needs attention for further improvement.

2. Import python library and build NN structure as shown in Listing 10

and Listing 11. To load NN framework to GPU, use Listing 17 instead
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Figure B.9: NVIDIA system management interface

1 use_cuda = torch.cuda.is_available()

2 device = torch.device("cuda:0" if use_cuda else "cpu")

3 torch.backends.cudnn.benchmark = True

4

5 model = NeuralNet(input_size, output_size).to(device)

6

7 loss_func = torch.nn.MSELoss()

8 optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)

9 scheduler = ReduceLROnPlateau(optimizer, 'min', patience = 5)

Listing 17: Load NN module to device

of Listing 12. The extra lines call CUDA to prepare the devices. One

may check the content of device to see if the code is running on GPU or

CPU. Note the code assumes only one GPU is installed. If more GPUs

are available, refer to code example in [60] to call them in parallel.

3. Pre-process the dataset as shown in Listing 13. Since now we use CPU

for loading and GPU for computing, the DataLoader in Listing 14

needs to modified to pre-allocate memory space in GPU RAM (see

Listing 18).

4. Kick off the training and validation loop (see Listing 19). Put non blocking

to true only when GPU is used. This is a good time to open nvidia-smi

and htop to monitor the system performance. This saving command of
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1 # load numpy data as pytorch tensors

2 tensor_in = torch.from_numpy(memory_mix[:,:-1]).float()

3 tensor_out = torch.from_numpy(memory_mix[:,-1:]).float()

4

5 # separate training and validation sets

6 num = int(len(memory_mix))

7 valid_num = int(num/7)

8

9 BATCH_SIZE = 2048 # mini-batch size depends on GPU, must be

power of 2↪→

10

11 # load tensors to DataLoader of mini-batches

12 train_loader = DataLoader(

13 dataset=TensorDataset(tensor_in[:-valid_num],

tensor_out[:-valid_num]),↪→

14 num_workers=12, # must be equal to num of thread in

CPU↪→

15 pin_memory=True, # pre-allocate GPU RAM space

16 batch_size=BATCH_SIZE,

17 drop_last = True

18 )

19 valid_loader = DataLoader(

20 dataset=TensorDataset(tensor_in[-valid_num:],

tensor_out[-valid_num:]),↪→

21 num_workers=12,

22 pin_memory=True,

23 batch_size=BATCH_SIZE,

24 drop_last = True

25 )

Listing 18: Pre-allocate GPU memory in DataLoader

errors comes at a cost of training time efficiency since GPU and CPU

has to communicate at every single end of mini-batches. After a few

tries of tuning, one can safely remove lines relating to external error so

that maximum GPU utilization can be achieved. Testing block is the

same as in Listing 16.
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1 output_model = './rx.pt' # model saving location

2 log = './rx_log.p' # error saving location

3

4 EPOCH = 100 # num of loops for training

5 train_err = []

6 valid_err = []

7

8 for e in range(EPOCH):

9

10 train_loss, valid_loss = 0.0, 0.0

11 start_time = time.time()

12

13 # set model to training mode

14 model.train()

15 for data, label in train_loader:

16 data = data.to(device, non_blocking=True)

17 label = label.to(device, non_blocking=True)

18 optimizer.zero_grad()

19 target = model(data)

20 train_step_loss = loss_func(target, label)

21 train_step_loss.backward()

22 optimizer.step()

23 train_loss += train_step_loss.item()

24

25 # set model to Evaluation mode

26 model.eval()

27 for data, label in valid_loader:

28 data = data.to(device, non_blocking=True)

29 label = label.to(device, non_blocking=True)

30 target = model(data)

31 valid_step_loss = loss_func(target, label)

32 valid_loss += valid_step_loss.item()

33

34 curr_lr = optimizer.param_groups[0]['lr']

35 scheduler.step(valid_loss/len(valid_loader))

36

37 train_err.append(train_loss/len(train_loader))

38 valid_err.append(valid_loss/len(valid_loader))

39

40 pickle.dump((train_err, valid_err), open(log, 'wb'))

41 torch.save(model.state_dict(), output_model)

42

Listing 19: Training and validation with GPU

99



REFERENCES

[1] IBM, “How to squeeze billions of transistors onto a computer chip,”
2020. [Online]. Available: https://www.ibm.com/thought-leadership/
innovation-explanations/mukesh-khare-on-smaller-transistors-analytics

[2] J. Feng, B. Dhavale, J. Chandrasekhar, Y. Tretiakov, and D. Oh, “Sys-
tem level signal and power integrity analysis for 3200mbps ddr4 inter-
face,” in 2013 IEEE 63rd Electronic Components and Technology Con-
ference, 2013, pp. 1081–1086.

[3] N. Kapre and A. DeHon, “Parallelizing sparse matrix solve for spice
circuit simulation using fpgas,” in 2009 International Conference on
Field-Programmable Technology, 2009, pp. 190–198.

[4] Texas Instruments, “Application note 1111 an introduction to ibis (i/o
buffer information specification) modeling,” 2011. [Online]. Available:
https://www.ti.com/lit/an/snla046/snla046.pdf

[5] B. Ross, “IBIS evolution ver.7.1,” 2021. [Online]. Available: https:
//ibis.org/ver7.1/evol ver7 1.pdf

[6] T. Zak, M. Ducrot, C. Xavier, and M. Drissi, “An experimental proce-
dure to derive reliable IBIS models,” in Proceedings of 3rd Electronics
Packaging Technology Conference (EPTC 2000) (Cat. No.00EX456),
2000, pp. 339–344.

[7] X. Hu, Z. Liu, X. Yu, Y. Zhao, W. Chen, B. Hu, X. Du, X. Li,
M. Helaoui, W. Wang, and F. M. Ghannouchi, “Convolutional neural
network for behavioral modeling and predistortion of wideband power
amplifiers,” IEEE Transactions on Neural Networks and Learning Sys-
tems, pp. 1–15, 2021.

[8] S. Zhang, X. Hu, Z. Liu, L. Sun, K. Han, W. Wang, and F. M. Ghan-
nouchi, “Deep neural network behavioral modeling based on transfer
learning for broadband wireless power amplifier,” IEEE Microwave and
Wireless Components Letters, vol. 31, no. 7, pp. 917–920, 2021.

100



[9] J. Chu, W. Chen, L. Chen, and Z. Feng, “A cascaded memory
polynomial-neural network behavior model for digital predistortion,” in
2020 IEEE MTT-S International Conference on Numerical Electromag-
netic and Multiphysics Modeling and Optimization (NEMO), 2020, pp.
1–3.

[10] Z. Chen, M. Raginsky, and E. Rosenbaum, “Verilog-A compatible re-
current neural network model for transient circuit simulation,” in 2017
IEEE 26th Conference on Electrical Performance of Electronic Packag-
ing and Systems (EPEPS), 2017, pp. 1–3.

[11] W.-T. Hsieh, C.-C. Shiue, and C.-N. Liu, “A novel approach for high-
level power modeling of sequential circuits using recurrent neural net-
works,” in 2005 IEEE International Symposium on Circuits and Systems
(ISCAS), 2005, pp. 3591–3594 Vol. 4.

[12] A. Beg, P. Chandana Prasad, M. M. Arshad, and K. Hasnain, “Using re-
current neural networks for circuit complexity modeling,” in 2006 IEEE
International Multitopic Conference, 2006, pp. 194–197.

[13] M. Haque, “TI IBIS file creation, validation, and distribution
processes,” 2022. [Online]. Available: https://www.ti.com/lit/an/
szza034/szza034.pdf

[14] M. Mirmak, “IBIS modeling cookbook,” 2005. [Online]. Available:
https://ibis.org/cookbook/cookbook-v4.pdf

[15] Y. Wang and H. N. Tan, “The development of analog spice behavioral
model based on ibis model,” in Proceedings Ninth Great Lakes Sympo-
sium on VLSI, 1999, pp. 101–104.

[16] H. Lee and F. Rao, “Back to basics: IBIS/IBIS-
AMI and the path to (LP)DDR5,” 2021. [Online]. Avail-
able: https://www.signalintegrityjournal.com/articles/2020-back-to-
basics-ibisibis-ami-and-the-path-to-lpddr5

[17] X. Chu, J. Li, X. Li, J. Wang, and Y. Li, “Modeling for nonlinear high-
speed links based on deep learning method,” in 2019 12th International
Workshop on the Electromagnetic Compatibility of Integrated Circuits
(EMC Compo), 2019, pp. 19–21.

[18] T. Lu, J. Sun, K. Wu, and Z. Yang, “High-speed channel modeling with
machine learning methods for signal integrity analysis,” IEEE Transac-
tions on Electromagnetic Compatibility, vol. 60, no. 6, pp. 1957–1964,
2018.

101



[19] X. Wang, T. Nguyen, and J. E. Schutt-Ainé, “Laguerre–Volterra feed-
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