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ABSTRACT

Both users and industries demand devices and systems with higher perfor-

mances and better reliabilities. To achieve both, an electro-thermal simula-

tor is needed as the thermal aspect of a device, such as the temperature, can

play a big role on its reliability. By doing just the electrical simulation, an

engineer cannot possibly determine the temperature of operation, and thus

cannot know whether the design is reliable.

The approach of this work is to separate an electro-thermal simulator into

two components, one takes care of the electrical part while the other one

takes care of the thermal part. The main focus of this work is the ther-

mal simulator. Two thermal simulators are discussed: the latency insertion

method (LIM) and the Douglass-Gunn method (DGM). These two meth-

ods are chosen because they have linear complexity, which is valuable when

doing a simulation on a large system from the simulation time perspective.

In-depth formulations are covered for these two methods.

The problem of interest is a large metal-oxide semiconductor field-effect

transistor (MOSFET). Simulation results of both LIM and DGM are pro-

vided and validated using Ansys Icepak, a commercially available thermal

analysis tool.

Lastly, some comparisons and future work are provided, to improve results

and take further steps from this work.

ii



To my family, for their love and support.

iii



ACKNOWLEDGMENTS

Foremost, I would like to thank my family for their love, support, and guid-

ance. Without them, getting an Electrical and Computer Engineering degree

at University of Illinois at Urbana-Champaign would not be possible.

I would like to thank my advisor, Professor José Schutt-Ainé, for providing
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CHAPTER 1

INTRODUCTION

1.1 Motivation

As the reliability requirements for devices become more strict, the heat gen-

erated by the system can become an important aspect to investigate. For

example, a small device cannot contain as much heat due to smaller volume

and cannot be cooled as fast with natural convection due to a smaller convec-

tive area. Another example is that if a device operates at high voltage, then

it probably also produces a lot of heat, and its electrical properties could

change when operating at high temperature. In the extreme case where the

temperature of a device is too high, the device may be permanently damaged.

Even if the device can withstand the high temperature, the electrical prop-

erties may change and the electrical performances may be altered so that it

no longer meets the reliability requirements. Therefore, thermal analysis is

needed to ensure the reliabilities of devices in addition to electrical simula-

tions. A simulator that can capture both thermal and electrical phenomena

can help to assess the performance of engineers’ designs more accurately

while operating in the physical world.

There are several steps of building such a simulator that can do electro-

thermal simulations. First, one must choose the desired electrical and ther-

mal simulation methods. Second, some connections between those simulation

methods need to be established.

There will be a brief discussion of electrical simulators. However, the main

focus of this thesis is on the thermal simulators.
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1.2 Electrical Simulator

There are many ways to perform electrical simulations. The Simulation Pro-

gram with Integrated Circuit Emphasis (SPICE) [1] is widely accepted by

industries. SPICE uses the modified nodal analysis which involves inverting

a matrix to get simulation results. This matrix inversion has a complexity

of n1.x where n is the number of nodes. Another way to do such an electrical

simulation is to use the latency insertion method (LIM) [2]. The LIM can

produce simulation results with complexity proportional to the number of

nodes. As the number of nodes increases, the linear time solver can pro-

duce results much faster than a super-linear time solver. Therefore, the LIM

allows the electrical simulation to be done comparatively faster.

Another advantage of the LIM is that the method can do transient analysis

by its natural formulations. In other words, it is capable of doing transient

analysis without any modifications. To do an electro-thermal transient anal-

ysis, the electrical simulator should be able to produce transient results.

Due to LIM’s advantages, it has been chosen as the electrical simulator

portion of the electro-thermal simulator. To develop an electro-thermal sim-

ulator for steady state analysis, the LIM has demonstrated the abilities to

do steady state analysis as well [3].

1.3 Thermal Simulator

In a similar manner to electrical simulations, there are many ways to perform

thermal simulations. This thesis mainly focuses on two 3-D finite difference

methods in performing thermal simulations that are both in linear time: LIM

and the Douglas-Gunn method (DGM) [4]. Being able to solve problems in

linear time is important, because when the system gets large, a superlinearity

time method may result in a much longer runtime.

1.4 Outline

The two thermal simulation methods, LIM and DGM, will be covered exten-

sively in this thesis.
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Chapter 2 discusses the formulation, stability analysis, and boundary con-

ditions of the LIM. This includes the requirement of the LIM models and

discusses the capabilities of the method to simulate in both electrical and

thermal domains.

Chapter 3 discusses the formulation and boundary conditions of the DGM.

This is a variation of the Crank-Nicolson method that is favored for 3-D

thermal analysis due to its speed and stability.

Chapter 4 provides simulation results of the problem of interest: a large

metal-oxide semiconductor field-effect transistor (MOSFET). Both results

for LIM and DGM are presented. Some comparisons of the two methods

are made. The two methods are validated with Ansys Icepak, which is a

commercially available product for conducting thermal analysis.

Chapter 5 contains the conclusion and future work of the thesis. Some steps

are suggested to improve the accuracy of the thermal simulation methods and

to finally completing an electro-thermal simulator.
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CHAPTER 2

LATENCY INSERTION METHOD

2.1 Formulation

The LIM [2] is a finite-difference numerical technique to simulate circuits

that can be modeled as various nodes and interconnecting branches between

the nodes with resistors, inductors, and capacitors. As stated previously, this

method is fast and produces results with linear complexity with respect to

the number of nodes in the model.

The models of branches and nodes are shown in Fig. 2.1 [5]. Each branch

(from node i to node j) is modeled as a series of a resistor Rij and an inductor

Lij, and each node is modeled as a parallel combination of a conductance Gi,

a capacitance Ci, and a current source Hi to ground.

By applying Ohm’s law for the branch model on the left of Fig. 2.1, the

following expression between node voltages and the branch current can be

established as

Vi − Vj = IijRij + Lij
∂Iij
∂t

. (2.1)

Similarly, by applying Kirchhoff’s current law (KCL) for the node model

on the right of Fig. 2.1, the following expression between branch currents

and the node voltage can be established as

−
Bi∑
k=1

Iik = Ci
∂V

∂t
+GiVi −Hi, (2.2)

where Bi is the total number of branches that are connected to node i.

However, since numerical methods cannot work with continuous equations

like Equations (2.1) and (2.2), these two equations need to be discretized. By

substituting in the central difference formula of the finite difference method
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Figure 2.1: Branch and node models for LIM simulation.

which is second-order accurate [6], given by

df

dx
=
f(x+ ∆x)− f(x−∆x)

2∆x
, (2.3)

Equations (2.1) and (2.2) can be rewritten as:

V
n+1/2
i − V n+1/2

j = Rij

In+1
ij + Inij

2
+ Lij

In+1
ij − Inij

∆t
(2.4)

and

−
Bi∑
k=1

Inik = Ci
V

n+1/2
i − V n−1/2

i

∆t
+Gi

V
n+1/2
i + V

n−1/2
i

2
−Hn

i , (2.5)

where the superscripts denote discrete time. One thing to note is that similar

to Yee’s finite-difference time-domain scheme [7], voltages are computed at

half time steps (t = (n + 1/2)∆t) and currents are computed at whole time

steps (t = n∆t). This way, LIM can be viewed as a “leapfrog” scheme that

solves voltages and currents in the alternating fashion. Also notable is that

the Iij term in Equation (2.1) is taken to be the average of In+1
ij and Inij, and

Vi in Equation (2.2) is taken to be the average of V
n+1/2
i and V

n−1/2
i . This

is part of the semi-implicit LIM formulation [8].

Finally, the updating equations are obtained by rearranging the current or

the voltage term of the next time step in Equations (2.4) and (2.5) as the

only term on the left-hand side, namely

In+1
ij = 2∆t

V
n+1/2
i − V n+1/2

j

2Lij +R∆t
+ Inij

2Lij −R∆t

2Lij +R∆t
(2.6)

5



and

V
n+1/2
i = V

n−1/2
i

2Ci −Gi∆t

2Ci +Gi∆t
− 2∆t

∑Bi

k=1 I
n
ik −Hn

i

2Ci +Gi∆t
. (2.7)

During each time step, an iteration over all the nodes and branches is

performed. The complexity of the LIM is therefore linear with respect to the

number of nodes.

2.2 Stability of LIM

One way of evaluating the stability of LIM is suggested in [8]. Equations

(2.6) and (2.7) can be written in the matrix form

Vn+1/2 =

(
C

∆t
+

G

2

)−1 [(
C

∆t
− G

2

)
Vn−1/2 + Hn −MIn

]
(2.8)

and

In+1 =

(
L

∆t
+

R

2

)−1 [(
L

∆t
− R

2

)
In + MTVn+1/2

]
, (2.9)

where V and I are voltage and current vectors at different times according

to the superscript, C, G, L, and R are diagonal matrices of RLGC values

at each node, H is a diagonal matrix of the current source going into each

node, and M defined as

Mij = 1 if branch j incidents on node i while the current

flows away from the same node.

Mij = −1 if branch j incidents on node i while the current

flows toward the same node.

Mij = 0 if branch j does not incident on node i.

Equations (2.8) and (2.9) can be rewritten into a discrete linear time invariant

system representation with source terms omitted:[
Vn+1/2

In+1

]
= A

[
Vn−1/2

In

]
, (2.10)
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where

A =

[
P+P− −P+P

Q+M
TP+P− Q+Q− −Q+M

TP+M

]
(2.11)

and

P+ =

(
C

∆t
+

G

2

)−1
P− =

(
C

∆t
− G

2

)
Q+ =

(
L

∆t
+

R

2

)−1
Q− =

(
L

∆t
− R

2

)
.

(2.12)

For a system like Equation (2.10) to be asymptotically stable, the spectral

radius of A must be less than 1. One observation is that the spectral radius

of A depends only on the circuit to be solved and ∆t. Therefore, for every

problem, there is a maximum ∆t one can choose for the scheme to be stable.

Even though the above method can get the absolute upper bound of ∆t

by sweeping through the possible range of ∆t’s, finding the eigenvalues of

matrix A can be computationally expensive. An alternative way using the

energy method is proposed in [9]. Using the method, the upper bound of ∆t

is given by

∆t <
√

2
Nn

min
i=1

√Ci

N i
b

N i
b

min
p=1

Li,p

 , (2.13)

where Nn and Nb are the total numbers of nodes and branches of the system,

Ci is the capacitance to ground at node i, N i
b is the number of branches

incident to node i, and Li,p is the inductance for the pth branch that incidents

to node i.

This shows that LIM requires latency in the circuit. If there is no ca-

pacitance to ground for a node, or if there is no inductance for a branch, a

fictitious value should be added to enable the method.

2.3 Thermal LIM

The analysis for LIM so far is for electrical simulation. However, in general,

the governing equation for a heat conduction problem is

∂u

∂t
=

k

cpρ
∇2u+

g

cpρ
, (2.14)

7



Figure 2.2: Analogy between electrical and thermal domain for LIM.

where u is the temperature, k is the thermal conductivity, cp is the specific

heat capacity, ρ is the mass density, and g is the volumetric heat flux. There

is an analogy between an electrical problem and a heat conduction problem,

as shown in Fig. 2.2 [5]. Therefore, solving Equation (2.14) with the LIM

formulation is possible once the equivalent model in the electrical domain is

established.

The equivalent thermal resistance and thermal capacitance for a rectan-

8



gular grid is given by [5]

Rx =
∆x

k∆y∆z

Ry =
∆y

k∆x∆z

Rz =
∆z

k∆x∆y

(2.15)

and

Ceq = ρcp∆x∆y∆z. (2.16)

Note that this is a model that has only resistances for branches and ca-

pacitance to ground for nodes.

2.4 Boundary Conditions

The boundary conditions used for the heat conduction problem focused on

here is the convective boundary condition

k
∂T

∂n
= h(T − T∞), (2.17)

where n is normal to the convective boundary, h is the heat transfer coeffi-

cient, and T∞ is the ambient temperature of the boundary. The heat transfer

coefficient is also defined as

h =
heat flux density

∆T
=

q

Aeff∆T
, (2.18)

where Aeff is the area that belongs to the node. Equation (2.18) can also be

written as

∆T = q
1

hAeff

↔ ∆V = iRh, (2.19)

where

Rh =
1

hAeff

. (2.20)

This suggests that the boundary nodes with convective boundary condition

can be modeled as having another branch with an equivalent convective re-

sistance to a node that is held at the ambient temperature, as shown in Fig.

9



Figure 2.3: Equivalent RC model in the electrical domain for heat
conduction problems.

2.4 [5].

One thing to note is that the equivalent convective resistances for nodes

at the edges need some special scaling since they do not occupy full Aeff as

other nodes on the boundary.

With Equations (2.15) and (2.16), a heat conduction problem can be mod-

eled as an RC electrical problem as shown in Fig. 2.3. The locations of equiv-

alent thermal resistances and current sources modeling the source terms are

shown in Fig. 2.4. The convective boundary conditions are modeled as re-

sistances Rh to nodes with voltage V where the value of the voltage is equal

to the ambient temperature. As stated previously, since the RC equivalent

model does not have any inductance, fictitious inductance must be added to

every branch between two nodes.

10



Figure 2.4: Locations of equivalent resistances in the electrical domain for
heat conduction problems and equivalent convective boundary condition.
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CHAPTER 3

DOUGLAS-GUNN METHOD

3.1 Formulation

This section focuses on another linear-time time-difference method, the Doug-

las-Gunn method (DGM). This method is a variation of the Crank-Nicolson

method. The DGM uses an alternating direction implicit (ADI) scheme that

is unconditionally stable and has second-order accuracy for a 3-D problem

[4].

Equation (2.14), the heat conduction equation, for a 3-D problem can be

discretized using the central difference formula [10] as

T n+1 − T n

∆t
=
k

cpρ

[
δ2xT

n+1 + δ2xT
n

2(∆x)2
+
δ2yT

n+1 + δ2yT
n

2(∆y)2

+
δ2zT

n+1 + δ2zT
n

2(∆z)2

]
+

g

cpρ
,

(3.1)

where

δ2xT
n

2(∆x)2
=
T n
i+1,j,k − 2T n

i,j,k + T n
i−1,j,k

(∆x)2

≈
T n
i+1,j,k − 2T n

i,j,k + T n
i−1,j,k

(∆x)2
+O(∆x)2 =

∂2T

∂x2
|ni,j,k.

(3.2)

Similarly, the approximation is applied for y and z directions.

Using Equation (3.2), Equation (3.1) can then be rewritten as

T n+1 − T n =rx
δ2x
2

(T n+1 − T n) + ry
δ2y
2

(T n+1 − T n)

+ rZ
δ2z
2

(T n+1 − T n) +
∆t

cpρ
g,

(3.3)

where rx = k∆t/cpρ(∆x)2, ry = k∆t/cpρ(∆y)2, and rz = k∆t/cpρ(∆z)2.

12



So far, the formulation is identical to the Crank-Nicolson method. To solve

Equation (3.3), a matrix of size N × N needs to be solved where N is the

number of nodes. This matrix is big and computationally expensive to solve

for a large system, just like what was discussed about the modified nodal

analysis for SPICE. This is why a variation on the Crank-Nicolson method

is needed, which evolves to the DGM.

Following [4], Equation (3.3) is broken up into three smaller time steps,

given by

T n+1/3 − T n =
rxδ

2
x

2
(T n+1/3 + T n)

+ ryδ
2
yT

n + rzδ
2
zT

n +
∆t

cpρ
g,

(3.4)

T n+2/3 − T n =
rxδ

2
x

2
(T n+1/3 + T n)

+
ryδ

2
y

2
(T n+2/3 + T n) + rzδ

2
zT

n +
∆t

cpρ
g,

(3.5)

and

T n+1 − T n =
rxδ

2
x

2
(T n+1/3 + T n)

+
ryδ

2
y

2
(T n+2/3 + T n)

+
rzδ

2
z

2
(T n+1 + T n) +

∆t

cpρ
g.

(3.6)

Intuitively, the first sub-time step tries to approximate the solution by as-

suming only the x-direction is implicit, the second sub-time step refines the

approximation by taking the y-direction as implicit, and the last sub-time

step further refines the approximation by taking the z-direction as implicit.

By combining these three smaller time steps, the result of a full time step is

obtained.

Equations (3.4)-(3.6), which are continuous equations, can be expanded

13



into the finite-difference equations

rxT
n+1/3
i−1,j,k + 2(1 + rx)T

n+1/3
i,j,k − rxT n+1/3

i+1,j,k

=rxT
n
i−1,j,k + 2ryT

n
i,j−1,k

+ 2rzT
n
i,j,k−1

+ 2(1− rx − 2ry − 2rz)T
n
i,j,k

+ rxT
n
i+1,j,k + 2ryT

n
i,j+1,k

+ 2rzT
n
i,j,k+1 +

2∆t

cpρ
gi,j,k,

(3.7)

ryT
n+2/3
i,j−1,k + 2(1 + ry)T

n+2/3
i,j,k − ryT n+2/3

i,j+1,k

=
{
rxT

n+1/3
i−1,j,k − 2rxT

n+1/3
i,j,k

+rxT
n+1/3
i+1,j,k

}
+
{
rxT

n
i−1,j,k

+ryT
n
i,j−1,k + 2rzT

n
i,j,k−1

+2(1− rx − ry − 2rz)T
n
i,j,k

+rxT
n
i+1,j,k + ryT

n
i,j+1,k

+2rzT
n
i,j,k+1

}
+

2∆t

cpρ
gi,j,k,

(3.8)

and

rzT
n+1
i,j,k−1 + 2(1 + rz)T

n+1
i,j,k − rzT

n+1
i,j,k+1

=
{
rxT

n+1/3
i−1,j,k − 2rxT

n+1/3
i,j,k

+rxT
n+1/3
i+1,j,k

}
+
{
ryT

n+2/3
i,j−1,k

−2ryT
n+2/3
i,j,k + ryT

n+2/3
i,j+1,k

}
+
{
rxT

n
i−1,j,k + ryT

n
i,j−1,k

+rzT
n
i,j,k−1

+2(1− rx − ry − rz)T n
i,j,k

+rxT
n
i+1,j,k + ryT

n
i,j+1,k

+rzT
n
i,j,k+1

}
+

2∆t

cpρ
gi,j,k.

(3.9)

These difference equations form a tridiagonal matrix A for the system of

equations Ax = b. The tridiagonal matrix A of size Nl ×Nl can be inverted

14



in linear time with respect to O(Nl) using the Thomas algorithm [10] where

l is either x, y, or z depending on the sub-time step. Since the DGM needs

to repeat the first sub-time step for all y and z values, the second sub-time

step for all x and z values, and the third sub-time step for all x and y values,

the time complexity is O(Nx)×NyNz + O(Ny)×NxNz + O(Nz)×NxNy =

O(NxNyNz) = O(N), which means it has linear complexity with respect to

the total number of nodes in the model.

The DGM can be proven to be unconditionally stable by applying a discrete

Fourier transform of Equations (3.4)-(3.6) [10].

3.2 Boundary Conditions

The boundary conditions of interest are still the convective boundary condi-

tion, which is given by Equation (2.17). The boundary condition can again

be discretized as

−k∂T
∂x
≈ −k

T n
1,j,k − T n

−1,j,k

2∆x
= hx−(T − T∞) (3.10)

at surface x = 0. Then, the virtual point at x = −1 is

T n
−1,j,k = T n

1,j,k +
2∆xhx−

k
(T∞ − T n

0,j,k). (3.11)

Similar processes can be applied to other boundaries to obtain the corre-

sponding virtual points.

To actually realize this, the simulator would have to keep the values for

these virtual points that are outside of the solution domain. These values are

used as given in Equation (3.10) and Equation (3.11) to calculate the nodes

that are located at the boundaries of the domain.
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CHAPTER 4

EXAMPLES AND RESULTS

4.1 Structure of Interest

The problem of interest is a circuit with the majority of its parts comprising a

large MOSFET. Therefore, the thermal simulator techniques were tested on a

MOSFET structure, shown in Fig. 4.1. For the model, the gate, source, and

drain are made of polysilicon; the oxide layer is made of silicon dioxide (SiO2);

and the rest of the structure is made of silicon. The material properties used

for those materials are shown in Table 4.1. The thermal capacitance in the

table is equivalent to cpρ in prior formulations. The heat source of the model

is assumed to come from the MOSFET channel when the device is on. The

boundaries are assumed to be insulated except the top and the bottom of

the structure, because heat-exchange with the environment or cooling is most

likely to occur at those spots.

In the rest of this chapter, the results of LIM and DGM are compared with

results derived from Ansys Icepak, a commercial product for doing thermal

analysis. Using comparisons with a commercially available product, some

observations and comparisons can be made.

Table 4.2 shows the dimensions of different parts in the MOSFET struc-

ture, which are in the top portion of Fig. 4.1. In the table, substrate refers to

the entire structure excluding the gate, source, drain, and oxide. The whole

structure’s thickness (the third dimension) is 2 µm.

One thing to note is that Ansys Icepak has its built-in non-uniform mesh

builder, so the meshes for the LIM and the DGM are close to the mesh in

Ansys Icepak, but not exactly the same.
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Figure 4.1: The MOSFET structure for simulation examples.

Table 4.1: Material Properties for MOSFET Model

Thermal Conductivity Thermal Capacitance
(W/m K) (J/cm3 K)

Silicon 180 1.63
SiO2 1.4 2.2

Polysilicon 125 1.755

Table 4.2: Dimensions of Simulated MOSFET Example

Length (µm) Width (µm)
Gate / Oxide 1.2 0.04

Source / Drain 0.2 0.04
Wells 0.5 3

Channel 1 2
Substrate 2.4 4.5

4.2 LIM Validation

For testing the thermal simulation using the LIM formulation, mesh sizes

of the structure showed in Fig. 4.1 are ∆x = ∆y = 1.33 × 10−8 m and
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∆z = 6.66×10−7 m. The effective heat transfer coefficients are 5 W/m2K at

the top and 45 W/m2K at the bottom of the MOSFET structure in Fig. 4.1.

The source is an ideal pulse that has a value of 0.3094 W (power of the entire

channel) from t = 0.02 µs to t = 0.05 µs, and the device is off otherwise. The

chosen value of the fictitious inductances for the LIM is on the order of 10−8

H, and that results in a ∆t on the order of 10−11 s from Equation (2.13). By

having a similar mesh in Ansys Icepak and the same structural parameters,

the simulation results are shown in Fig. 4.2.

Since LIM requires the insertion of fictitious inductance, but there is no

equivalent thermal inductance, the rise and fall times of the LIM results

are a bit different than those of Ansys Icepak results. More trials of the

same simulation are studied using different fictitious inductance values in

each branch, and the results are shown in Fig. 4.3 and Fig. 4.4. For the

different fictitious inductance values, regular inductance is on the order of

10−6 H, lower inductance is on the order of 10−7 H, and lowest inductance is

on the order of 10−8 H. The time step, ∆t, of each run is chosen according

to Equation (2.13). In general, the lower the fictitious inductance, the more

accurate the results. However, by lowering the fictitious inductance, the time

step has to be scaled down accordingly, making the simulation time longer.
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Figure 4.2: Temperature of the MOSFET structure using LIM and Ansys
Icepak.
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Figure 4.3: Differences of temperature from LIM and Ansys Icepak.
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Figure 4.4: Percentage errors of temperature from LIM and Ansys Icepak.
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Table 4.3: Error of DG for Different ∆t

∆t (s) Error at t = 10−7s
10−8 5.63× 10−2%
10−9 6.95× 10−4%
10−10 6.94× 10−6%
10−11 9.11× 10−8%

4.3 DGM Validation

For testing the DGM, minimum mesh sizes of the MOSFET structure in Fig.

4.1 are ∆x = 1.66× 10−8 m, ∆y = 1.33× 10−8 m and ∆z = 5× 10−7 m. The

effective heat transfer coefficients are 5 W/m2K at the top and 45 W/m2K

at the bottom. The source is an ideal pulse that has a value of 0.3094× 10−3

W (power of the entire channel) from t = 0 s to 0.5 µs, and the device is

off otherwise. By having a similar mesh in Ansys Icepak and the structural

parameters the same, the results are shown in Fig. 4.5.

Since the DGM does not require insertions of fictitious inductances, the

timing of the transient results seems to match. The trial with ∆t = 10−9 s for

DGM, implemented in Matlab, also runs twice as fast as Ansys Icepak, using

the same ∆t, with the same hardware. The differences and errors are shown

in Fig. 4.6 and Fig. 4.7. For a self-consistency test, more trials of simulation

for different ∆t were conducted. By assuming the trial with ∆t = 10−12 s is

the exact solution, errors of other trials with larger ∆t are shown in Table

4.3. It can be seen that as ∆t is reduced by 10 times, the error is reduced by

100 times. This demonstrates that DGM is second-order accurate with ∆t,

as discussed in Chapter 3.
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Figure 4.5: Temperature of the MOSFET structure using DGM and Ansys
Icepak.
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Figure 4.6: Differences of temperature from DGM and Ansys Icepak.
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Figure 4.7: Percentage errors of temperature from DGM and Ansys Icepak.
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4.4 Effect of Fictitious Inductance

In Chapter 2, the LIM requires the presence of inductances in each branch of

the model. Those inductances introduce a delay in the information or volt-

age propagation between nodes. This enables the LIM to solve for voltage or

temperature of each node separately from most of other nodes. While it is de-

sirable that the method obtains linear complexity with fictitious inductance,

the inserted elements introduce other effects to the simulation.

First, as discussed in Section 2.2, the time step has to be picked accordingly.

The smaller the fictitious inductance, the smaller the time step and the longer

the simulation time.

Second, the fictitious inductances allow oscillation of the voltage/temperature

when combined with other capacitors in the model. Figure 4.8 and Fig. 4.9

show the difference between two simulations with different fictitious induc-

tance values. Figure 4.8, with lower fictitious inductance, has less magnitude

of oscillation than Fig. 4.9, with higher fictitious inductance. It can be seen

that if the steady-state solution is the interested quantity, having a high fic-

titious inductance value will produce the solution faster, since the oscillation

eventually diminishes after reaching a steady state. However, if the transient

solution is the interested quantity, those oscillations make the simulated solu-

tion deviate from the actual solution. More importantly, there is no thermal

inductance in the thermal domain. By having oscillations in temperature,

the second law of thermal dynamics is violated.

For the DGM, since there are no inductive elements in the model, it does

not have oscillations in the simulated results. Figure 4.10 and Fig. 4.11

are results of DGM simulation of the same structure but with different time

steps. Figure 4.11 has sharper transitions since there are fewer points, but

does not have oscillations. With a smaller time step, the simulation result

is more accurate. However, it may be rewarding to use a larger time step so

the simulation takes less time, as long as the error is within the designated

margin.
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Figure 4.8: A LIM simulation with low fictitious inductance.

Figure 4.9: A LIM simulation with high fictitious inductance.
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Figure 4.10: A DGM simulation with small time step.

Figure 4.11: A DGM simulation with large time step.
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Figure 4.12: Temperature at the bottom of transistor simulated by LIM,
Ansys Icepak, and DGM.

4.5 LIM and DGM Comparison

Since the LIM and the DGM are both capable of solving thermal problems,

the example in Section 4.2 can also be simulated with the DGM. Figure 4.12

and Fig. 4.13 show the results for LIM, Ansys Icepak, and DGM. While

the results of both LIM and DGM have good agreements with that of Ansys

Icepak, the effect of fictitious inductances change the timing accuracy of

LIM slightly. Figure 4.14 is the zoomed-in version of Fig. 4.13 at around

t = 0.5×10−7 s. One can see that the timing of the DGM simulation matches

that of the Ansys Icepak simulation, and that of the LIM simulation is slightly

delayed. This effect is not introduced by the mesh difference, as that seems

to only change the temperature at a given time but not the sign of the slope,

but is introduced by the fictitious inductance.
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Figure 4.13: Temperature at the top of transistor simulated by LIM, Ansys
Icepak, and DGM.

Figure 4.14: Temperature at the top of transistor simulated by LIM, Ansys
Icepak, and DGM, zoomed in.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, two linear-time 3-D thermal methods for transient electro-

thermal simulations, the LIM and the DGM, are discussed. Both are finite-

difference methods that discretize the solution domain (the structure of in-

terest) to find the solutions of the governing differential equations. In this

case, the governing equation is the heat conduction equation. The linear

complexity of these two methods is extremely valuable as is the speed of the

simulation, comparatively, faster than that for the methods with super-linear

complexity.

The problem of interest is the thermal simulation of a large MOSFET.

Using a model from the physical structure of a MOSFET, some simulation

results are produced using the LIM, the DGM, and Ansys Icepak. From the

results in Chapter 4, it seems to be the case that the simulation by DGM,

without fictitious elements, has a better timing agreement with that produced

by Ansys Icepak. However, if one chooses to integrate a thermal method with

the LIM as the electrical method, the LIM is also capable of doing thermal

simulations with good accuracy without the need of implementing a second

solver.

5.2 Future Work

Both LIM and DGM are shown to be able to perform accurate transient

thermal simulations. However, there are some improvements and steps that

could be implemented in future studies.

The effect of the fictitious inductances are experimented in Chapter 4.
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Higher fictitious inductances allow faster simulation times but introduce more

oscillations and delay in the simulation results. Currently there is no way to

determine the value of the fictitious inductances that balances the accuracy

versus simulation time. A good algorithm for choosing such a value not only

enhances the LIM for thermal simulation, but is also appreciated when using

the LIM for electrical simulations.

The model that is used in this work is a simple model of a MOSFET. A

better MOSFET model can more accurately capture the heat production and

propagation in an actual device, thus improving the quality of the simulation

results.

Next, the meshes used in Ansys Icepak is different than the meshes used

in LIM and DGM simulations in this work. Since Ansys Icepak is a com-

mercially available tool, it is very likely that the meshing algorithm is more

powerful and more accurate. Therefore, by having better meshes with LIM

and DGM, they may produce even more accurate results than those presented

in Chapter 4.

Finally, choosing a electrical simulator and a thermal simulator is half of

the entire process of making an electro-thermal simulator. The connection of

those two simulators in different domains must be made to perform accurate

electro-thermal analysis of engineering designs.

Taking these steps further will produce an electro-thermal simulator that

is capable of producing accurate simulation results. This is important be-

cause the thermal aspect of designs must be examined to ensure both good

performance and reliability of devices.
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