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ABSTRACT

With a short product cycle as we see today, fast and accurate modeling
methods are becoming crucial for the development of new generations of
electronic devices. Furthermore, increased complexity in circuitry and in-
tegration compounds design iteration and the associated, high-dimensional
sensitivity analysis and performance optimization studies. Expedient design
iteration, performance optimization, and design verification of state-of-the-
art electronic devices and systems are hindered by the ever-increasing func-
tionality integration. This thesis is meant to contribute a small part to the
enormous amount of effort of the electronic design automation community
in the quest for computationally efficient methods capable of handling the
high-dimensional design space of such devices and systems using machine
learning methods. This thesis focuses on applications related to high-speed
channel and microwave circuit designs. It first explores the recurrent neural
network for time-domain waveform prediction. Two different recurrent neural
network architectures are distinguished, their advantages and disadvantages
are pointed out. Different examples are used to demonstrate how each can
be used to create macromodels of high-speed channel, speeding up signal
integrity simulations. When combining with a feed-forward neural network,
the recurrent neural network can be used as a parametrized model, creating
a tunable equalization circuit.

In the weakly nonlinear system regime, Volterra representation is widely
acceptable due to its familiarity and analogy to time-invariant linear system
theory. Similar to IBIS in the data collection, but require less training data
compared to recurrent neural network or even IBIS, Volterra-Laguerre theory
is shown to be very effective in modeling I/O buffers. On top of that, using
a simple multidimensional interpolant, a parametrized model can be created
and verified to match very well with transistor level circuit simulations.

At the final stage of the design verification process, a system level inte-
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gration and assessment is needed. Simulations of such complicated systems
involve many tools at different levels of physics (die, package, board). At
the end of the day, the ultimate goal is to judge whether the integration
works using a handful number of figure of merit. Therefore, a surrogate
model whose inputs are the design variables and outputs are the figures of
merit is needed to replace expensive and lengthy simulation. For exam-
ple, in high-speed link design, a model that receives the channel’s geometry
and equalization settings and return the eye width and eye height would
be highly appreciated by the designer as it would dramatically reduce the
verification time and make optimizations become convenient. The last part
of this work introduces Gaussian Process for this purpose. Through its full
Bayesian treatment, the Gaussian Process appears to be an excellent can-
didate for a black-box surrogate modeling method due to its data efficiency
and fast convergence. Other machine learning methods are also considered
in a comparative study in which Gaussian Process performs consistently well
as expected.
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Chapter 1

INTRODUCTION

1.1 Problem statement

With the increasing complexity in modern designs of electronic systems,
the two advantages of macro-modeling, namely, protecting intellectual prop-
erty (IP) and reducing simulation time, become more comparative to con-
ventional transistor-level simulation. In additon, system level integration is
an important stage of electronics design cycle. This step involves putting
all pieces of a design together and verifying their functionalities as a whole.
In most cases, the need for system level integration is obvious because parts
used in a design are supplied by different vendors whose IPs need protecting.
The term macromodeling used in this thesis refers to black-box macromodel-
ing, a modeling problem in which there is little to no information about the
internal structure of the system of interest. Most information is collected via
the terminals of the system, either in the time domain or frequency domain.
Macromodeling problems in which the underlying structure is fully or par-
tially known are called white-box or gray-box problems, and are not in the
scope of this work.

Linear macromodeling techniques could also be applied to linear active
devices (such as a linear power amplifier), but they mostly focus on simu-
lating passive structures such as interconnects, power distribution networks,
packages etc. Vector Fitting (VF) [2] is the most common algorithm and has
been used in most commercial solvers. Loewner matrix framework [3] was
introduced a decade after VF but only became popular in recent years and
are drawing attentions due to its ease in implementation. The scope of this
thesis, however, focuses on nonlinear macromodeling. This is especially im-
portant for applications involve time-intensive simulation such as high-speed
link.
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In high-speed link design, a passive channel is simulated along with a
transmitter (TX) and a receiver (RX) for millions of bits of data to collect
statistically sufficient data for the whole link performance. Simulating non-
linear and time-varying circuits in TX/RX architecture are challenging. The
two most popular methods to model such circuits are I/O Buffer Informa-
tion Specification (IBIS) [4] and Mπlog [5]. Over times, these methods have
been adopted, enhanced, and improved by many researchers in the commu-
nity to capture more signal and power integrity (SPI) phenomena. Similar
to other nonlinear macromodeling techniques, IBIS-alike models use time-
domain data for model extraction.

In recent years, machine learning (ML) methods have gained a lot of atten-
tion because they are robust, capable of efficiently handling a large amount
of data. This thesis introduces some most prominent algorithms such as
Neural Network (NN) and Gaussian Process (GP) to modeling problems,
in particular, the modeling and analysis of high-speed links. The thesis
is organized as follows: Chapter 2 presents input-output recurrent neural
network (RNN) modeling in high-speed link, we will demonstrate different
types of RNN, their advantages and disavantages, how to train and use them
for modeling purposes. Eye diagrams can be efficiently constructed from
RNN generated waveforms with accuracy as high as those constructed from
other methods. Chapter 3 investigates the I/O buffer modeling problem
using Volterra/Wiener theory. It discusses both time-domain and frequency-
domain modeling techniques. X-parameters1 are also reviewed and discussed
as a data source for high-speed link model extraction. Finally, high-speed
link performance black-box prediction and optimization are studied in Chap-
ter 4. Variability analysis and uncertainty quantification are also carried out.
The mathematical tool for these analyses is Gaussian Process due to its non-
parametric nature and computational flexibility.

1.2 A brief review of machine learning/neural
network methods

1X-parameters is a trademark of Keysight Technologies. However, the X-parameters
format and underlying equations are open to public and are well-documented.
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In this section, a concise introduction to machine learning (ML) methods
is presented to equip the readers with basic understanding of them and their
terminologies. An excellent introductory literature about the core under-
standing of ML methods is [6]. ML methods, particularly neural networks
which are the focus of this thesis, are mostly fitting tools, like any other
traditional interpolation methods, they seek for a relationship between some
inputs x ∈ Rn and some outputs y ∈ Rm:

y = f (x) (1.1)

where f is a vector-valued function.
Take the linear regression method as an analogy, without loss of generality,

we will assume n = 1 and m = 1, the mapping f becomes a scalar function.
First, a hypothesis is proposed, that is, an assumption is made about what
form f takes, what family functions f could be. For example, “f is a polyno-
mial order M ” is a hypothesis which assumes that the relationship between
x and y is an order M polynomial. The larger the hypothesis, the more
expressive f is, which means f can represent a more complicated mapping.

Given a hypothesis, a set of parameters, frequently denoted as θ, (also
refered to as hyper-parameters) is introduced. In our polynomial hypothesis
example, the polynomial coefficients are the model’s unknown parameters.
Equation (1.1) becomes:

y =
M∑
i=0

θix
i (1.2)

To find the hyper-parameters, a set of training data is needed. They are a set
of N input - output pairs

{
x(i), ŷ(i)

}
i = 1, 2, ..., N , ŷ is used to denote the

known data while y is used to denote the output generated by the model. For
example, x could be 20 geometry related variables (n = 20) in a microstrip
line filter design such as widths or lengths of the microstrip segments, y could
be the operating frequency or the −3dB bandwidth (m = 1), or both of them,
in which case, m = 2. Using these N data points, the hyper-parameters can
be extracted by constructing a least-square solution if y and θ are linear with
respect to each other. In our polynomial hypothesis example, it is completely
feasible to extract θ by doing so. The data can be used to set up a system
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of equations:
ŷ(1)

ŷ(2)

...
ŷ(N)

 =


1 x(1)

(
x(1)
)2 · · ·

(
x(1)
)M

1 x(2)
(
x(2)
)2 · · ·

(
x(2)
)M

...
1 x(N)

(
x(N)

)2 · · ·
(
x(N)

)M




θ0

θ2
...
θM

 (1.3)

For N ≫ M , Equation (1.3) is an over-determined system. θ is the least
square solution. This type of ML method is called the supervised learning
method, named due to the fact that pairs of input - output are given to
find the model’s parameters. Unsupervised learning methods do not have
pairs of input - output as data nor to find some mappings. An analogy of
unsupervised learning is performing principle component analysis (PCA) on
a data set to reduce the dimensionality. Both types of learning methods can
be used together to achieve the best modeling solution. For example, not
all 20 variables of the filter design may contribute significantly to its −3dB

bandwidth. To efficiently predict the −3dB bandwidth of the filter, we can
apply PCA on the input data to find, say, 8 most significant components in
the input that strongly affect the bandwidth (unsupervised), then construct
a regression model to learn the mapping between these 8 most significant
components and the bandwidth (supervised). We will see this idea again in
Chapter 4 with the Partial Least Square Regression method.

In some cases, the hypothesis is too complicated, a system of equations
like Equation (1.3) is infeasble to obtain. The hyper-parameters have to be
extracted by an iterative algorithm. At its core, solving for θ is to solve the
optimization problem:

argmin
θ

L (y, ŷ) (1.4)

where L (y, ŷ) is called a loss (cost) function, measured how well the model
output matches the observed data. The most popular loss function is the
mean-square error (MSE) between the two, defined by:

MSE (y, ŷ) = ∥y − ŷ∥22 (1.5)

where ∥·∥2 is the 2-norm (Euclidean norm). Gradient descent [7] is a variety
of iterative algorithms to solve for θ using the simple idea: follow the oposite
direction of the gradient to arrive at the minimum of a function. Gradient
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descent optimization methods are popular because they only require the first
order derivative of L (y, ŷ). Their convergence rates are slower than those
of other optimization methods that rely on higher order derivatives but they
require less computations and storage. They start with a random initial value
of θ then iteratively update θ as data is fed in. At iteration k, we have:

θ(k) = θ(k−1) − η∇θ(k−1)L (y, ŷ) (1.6)

where η is called the learning rate. The learning rate is one important param-
eter of the training process. Too large η will lead to the solution bouncing
around the optimal value while too small η will unnecessarily prolong the
training time. Modern gradient descent based algorithms use adaptive learn-
ing rate to speed up the training process when it is allegedly far away from
the solution and slow down the steps when it appears to be close to a poten-
tial optimal solution. Due to the high complexity in the hypothesis, L (y, ŷ)

could have multiple local, suboptimal solutions. Modern gradient descent
based algorithms adjust the learning rate during the solving process in or-
der to escape these local minimums and to have higher chances arriving at
the global minimum. Note that because L (y, ŷ) could be non-convex, there
could be more than one global minimum. For example, the bird function [8]
shown in Figure 1.1 is given by:

f(x1, x2) = sin (x1) e(1−cos(x2))
2

+ cos (x2) e(1−sin(x1))
2

+ (x1 + x2)
2 (1.7)

has two global minima at (x1, x2) = (4.70104, 3.15294) and (x1, x2) = (−1.58214,
−3.13024) with the minimum function value of −106.764537.

Moreover, many of these algorithms recognize that feeding the whole dataset
into the calculation of the gradient puts a burdern on the computation, they
often split data into batches and feed the data into the algorithm one batch
after another. These derive a whole family of algorithms called stochastic
gradient descent. One round feeding the whole dataset to the optimization
algorithm is called one epoch. Typically for the optimization to converge,
multiple epochs are required. In-depth discussion and overview of different
gradient descent optimization methods can be found in [7].

If the hypothesis is complex, Equation (1.4) represents a highly non-convex
optimization problem. The solution can be highly unreliable. For example,
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Figure 1.1: A non-convex function with more than one minimum.

Figure 1.2: Overfiting happens to Model 2.
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Figure 1.2 shows two different models and their fitting to the data compared
to the true underlying function. Model 1 obviously matches the underlying
function better than Model 2 even though Model 2 has lower fitting error. In
fact, the fitting error of Model 2 is 0 because it goes through all the provided
data points while that of Model 1 is small but not 0. This is called overfitting.
We realize Model 2 in Figure 1.2 is a bad solution because we were able to
observe its evaluations at other points than the provided data (black dots).
This gives us a hint on how to properly manage the data to avoid overfitting.
The observed/collected data is always split into two parts, typically 90%
- 10% or 80% - 20%. The major part is called the training data and the
minor part is called the validation data. The loss functions calculated using
training data and validation data are called training loss and validation loss
respectively. The training data is fed into the optimization algorithm to
solve for θ. It is usually refered to as the data seen by the model. While
the validation data is only used to calculate the validation loss at the end of
each epoch, it is refered to as the unseen data. Figure 1.3 shows a few typical
scenarios of what could happen with the training and validation loss and the
insights they provide. As the epoch progresses (the optimization algorithm
iteratively converges θ to a solution), the relative position between training
and validation loss could tell us how the training is and the possible problem
(if any). For instance, Figure 1.3a shows what the losses would look like when
we have overfitting. The losses match with what is shown in Figure 1.2. The
model fits the seen data very well, the training loss is very small, but when
the unseen data is fed into the model, its prediction is far off from the true
value, resulting in very high validation loss. Figure 1.3b, on the other hand,
presents a different problem. At first, the validation and training loss track
each other very well and trendind down. This is a good sign that the model
is converging and perform relatively well on unseen data. However, toward
the end, suddenly they both get larger. This could very well be due to the
learning rate was not properly adjusted. In particular, the learning rate was
too large when θ was approaching the right solution. Due to the large step,
the algorithm missed the minimum and did not converge, moving away from
the optimal solution, making the losses grow again. Finally, Figure 1.3c and
Figure 1.3d show typical losses for a well converged model. The losses are
trending down in both cases, they track each other well. The only difference is
that in Figure 1.3d, the validation loss appear to be lower than the training
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(a) Overfitting. (b) Large learning rate toward the end of training.

(c) Good convergence. (d) Good convergence. Testing loss being lower
than training loss is typical result from using
regularization during training.

Figure 1.3: Tracking of training and testing loss could provide more insight
into the convergence of the model.

loss. If the model has some kinds of regularization, this is the expected
behavior.

Regularization is a technique that modifies the loss function to keep the
balance between the fitting ability and the model complexity. The loss func-
tion introduced above has a single term: a measure of how well the fit is
(i.e. the MSE). But the regularized loss function has an additional term to
enforce some conditions about the model’s hyper-parameters. For example,
the following loss function:

L (y, ŷ) = ∥ŷ − f (x)∥22 + λ ∥θ∥1 (1.8)

where λ is a regularization coefficient, is called the Lasso regularized loss
function [9]. Recall that f is parametrized by θ. Hence, in Equation (1.8), θ
appears in both the first term (2-norm) and the second term (1-norm). The
first term simply measures how large the fitting error is, while the second
term is large if θ is dense (i.e. all hyper-parameters are non-zeros). To
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minimize L (y, ŷ) in Equation (1.8), we are not looking for any solution that
minimize the fitting error, we are actually looking for a sparse solution.

Advanced regularization methods for neural network such as dropout [10]
randomly turn off some of the neurons in the network, forcing the neural
network to make predictions without the contribution of those neurons to
avoid overfitting. Training processes ultilize dropout as regularization will
have slightly worse performance during training but better performance when
validating, which explains the losses behavior in Figure 1.3d.

After the model is converged, a seperate set of data is used to test the
model. The test dataset may appear to be same as the validation set, the
process of feeding it through the model with fixed hyper-parameters also
appears to be the same, but they are very different in nature. The validation
dataset is used to test the model during training to check for convergence,
the validation loss is used to compare against the training loss to give insight
about what could be happening in the training process. For example, we
could terminate the training early, or use the information about training
and validation loss to appropriately adjust the learning rate or other hyper-
parameters in the model such as the inital value of θ, the hypothesis etc. The
test dataset is strictly used for testing purpose only. In practice, usually there
is a single set of data. It should be shuffled and split into 2 sets: training
and testing, the training set is then further split into actual training and
validation as above. Shuffling the data is very important it ensures that the
data is evenly distributed over the domain. If the model does not have any
regularization but the losses behave like Figure 1.3d, it is an indicator that
the data was not randomly shuffled. Too many difficult samples were in the
training set while the test set has too easy samples. Figure 1.4 visualize this
situation, because the data was not evenly distributed, the training data is
located in the highly nonlinear region (difficult to learn) while the validation
(or test) data is located in the fairly linear region (easy to learn), a model
trained with this dataset will have training and validation loss exactly same
as Figure 1.3d. In this case, because model was trained on difficult samples, it
will perform well on the test set. However, if it happened to be the opposite,
the performance of the model will be extremely poor on the test set.

In the case of neural network, a hypothesis is a composition of a series of
weighted functions. For example, a 2-layer feed-forward neural network with
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Figure 1.4: Unevenly distributed data.

tanh as the activation function is mathematically represented as:

y = tanh [W2z] = tanh [W2 tanh [W1x]] (1.9)

where W1, W2 are the weights, z is an intermediate signal, output of the first
layer and input of the second layer. To optimize the MSE loss, we need to
be able to evaluate its gradient:

∇WMSE (y, ŷ) = ∇W ∥y − ŷ∥22
= ∇W (tanh [W2 tanh [W1x]]− ŷ)2 (1.10)

Manual calculations of the gradients are straightforward. However, auto-
matic calculation is needed for robustness and flexibility in building different
neural network architectures. When the activation function changes, there
should be no extra effort to reimplement the gradient calculation. The auto-
matic calculation of the gradient is called autodifferentiation and can be done
thanks to chain rule. In machine learning terms, the function that imple-
ments a mapping between two variables with many intermediate variables in
between is called a computational graph. Figure 1.5 shows a computational
graph which happens to be as same as the feed-forward neural network. The
nodes are nonlinear functions fi and g while the branches are the input and
output signals of each nodes. The forward path of the graph reads:

L = g (y)
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Figure 1.5: Forward and backward signal flows in a computational graph.

y = fL (zL)

zL = fL−1 (zL−1)

. . .

z1 = f1 (x)

Compactly, we could write:

L = g • fL • fL−1 • . . . • f1 • x

where • is the composition operator, that is, g • f • x = g (f (x)). Note that
each fi, i = 1, 2, ..., L has hyper-parameters embedded in it. For example, in
Equation (1.9), f1 ≡ f2 ≡ tanh, the hyper-parameter of f1 is W1 and that of
f2 is W2.

To take the derivative of L w.r.t the hyper-parameter, say Wi, we need to
evaluate:

∂L
∂Wi

=
∂g

∂y

∂y

∂zL−1

∂zL−1

∂zL−2

. . .
∂zi+1

∂zi

∂zi
∂Wi

(1.11)

Comparing the terms in Equation (1.11) with where they are in the graph
in Figure 1.5, we realize that each term the signal flowing backward through
each node. Any node in the graph receive some gradient information from the
node after it (to the right in Figure 1.5), calculate the term it’s responsible,
then pass that information to the node after it (to the left in Figure 1.5).
This process of having each node in the graph handle a part of the derivative
that is corresponding to it and hand off the information to the next node
that is closer to the target weight is called backpropagation. Implementation
wise, if a node has an analytical expression for evaluating the forward pass
(zi = fi (zi−1)), it should also has an analytical expression to perform the
backward pass (i.e. calculate ∂zi

∂zi−1
).

Pytorch [11] is a Python framework that support autodifferentiation. Af-

11



ter declaring and registering a variable in Pytorch, it will keep track of all
variables and all of the nodes they input to. The user just needs to define the
forward pass using Pytorch’s standard mathematical functions. We have to
use Pytorch’s mathematical functions because only then, Pytorch’s autodif-
ferentiation feature will be able to recognize them and use the corresponding
derivatives of those functions when calculating the derivative. Backpropaga-
tion then can be performed to calculate the gradients needed for the opti-
mizer. Pytorch uses Tensor datatype with the grad attribute to keep track of
the computational graph and its nodes for gradient propagation. Data in this
thesis is generated using Ansys Electronics Desktop and Keysight Advanced
Design System, implementation of ML models and simulations is done in
Python, Pytorch is the package of choice for autodifferentiation suport and
neural network implementation.
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Chapter 2

HIGH-SPEED LINK MODELING WITH
RECURRENT NEURAL NETWORK (RNN)

2.1 Introduction

In the area of signal integrity, eye diagrams have become important metrics
to assess the performance of a high-speed channel. In order to generate an
eye diagram, transient waveforms are first obtained from a circuit simulator
and then overlaid. Generating eye diagrams by using a circuit simulator can
be very computationally intensive, especially in the presence of nonlineari-
ties. As shown in Figure 2.1, there are often several Newton-like iterations
involved at every time step when a SPICE-like circuit simulator handles a
nonlinear system in the transient regime [1]. Given the size of a practical
and large-scale circuit, the runtime of a circuit simulator on modern proces-
sors can be hours, days, or even weeks. There are many efforts in seeking
novel numerical techniques to improve the computation efficiency of a cir-
cuit simulator. For example, hardware accelerators including FPGAs [1] and
GPUs [12] are used to achieve the acceleration of matrix factorization in a
circuit simulator. There is also work in efficiently generating eye diagrams,
for example, using shorter bit patterns instead of the pseudo-random bit
sequence as input sources to simulate the worst-case eye diagram [13]. In
this work, we propose taking a different route and using machine learning
methods, to be specific, recurrent neural network (RNN), to improve the ef-
ficiency of a transient simulation with nonlinear circuits, specifically, applied
to high-speed link simulation.

Recently, many remarkable results are reported on modern time-series tech-
niques by using RNN in the fields such as language modeling, machine trans-
lation, chatbot, and forecasting [14–18]. There are also a number of prior
attempts in incorporating RNN into modeling and simulating electronic de-
vices and systems. For example, researchers propose combining a NARX
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Figure 2.1: Flow chart of a circuit simulator [1].

(nonlinear auto-regressive network) topology with a feedforward neural net-
work in modeling nonlinear RF devices [19], most recently, effort to model
transmitter I/O buffers using this topology was also reported in [20] and
references therein. A variant of RNN, known as Elman RNN (ERNN), is ap-
plied in simulating digital designs [21,22]. More recently, researchers present
an ERNN-based model in simulating electrostatic discharge (ESD) [23]. The
aforementioned two topologies, to be specific, NARX-RNN and ERNN, will
be discussed in details in the following section. It is also worth mentioning
that ML methods in general have been applied to many applications related
to electronic designs such as modeling high-speed channels [24–26], replac-
ing computationally expensive full-wave electromagnetic simulations [27,28],
and building macro-model from S-parameters [29,30]. The difference between
ERNN and NARX-based RNN will be discussed thoroughly.

Through the proposed approach, a modern ERNN is first trained and then
validated on a relatively short sequence generated from a transient simula-
tion. Once the training completes, the RNN can be used to make predictions
on the remaining sequence in order to generate an eye diagram. The train-
ing cost can also be amortized when the trained RNN starts making pre-
dictions. As the time-domain waveforms are generated from RNN through
inference instead of iterations of solving linear systems involved in a circuit
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simulator, it significantly improves the computation efficiency. Besides, the
proposed approach requires no complex circuit simulations nor substantial
domain knowledge. We demonstrate through two high-speed link examples
that the proposed approach can meet the accuracy of transistor-level simu-
lation while the run time can be dramatically reduced.

We also investigate the performance of ERNNs built with different recur-
rent units, to be specific, vanilla recurrent neural network (VRNN) and long
short-term memory (LSTM) unit in generating accurate eye diagrams. It is
shown that the LSTM network outperforms VRNN in terms of both conver-
gence and accuracy. The numerical issue of gradient vanishing or explosion
during back propagation in the VRNN is also well resolved in the LSTM
network. The activation function in this work is chosen as the rectified linear
unit (ReLU) [31] as it enables better numerical stability and higher efficiency
in training. Adam [32] optimizer is found to stand out among investigated op-
timizers such as Stochastic Gradient Descent (SGD) [33], Root Mean Square
Propagation (RMSProp) [34] for fast convergence in training. It is also shown
that with the training scheme proposed in this work, training sample length
plays an important role in the convergence of the RNN.

2.2 Recurrent neural network

Understanding RNN cannot be separated from the feed-forward neural
network (FNN), which consists of multiple layers of neurons. Unlike a FNN,
in which the signal flows unidirectionally from the input to the output, an
RNN has, in addition, a feedback loop from the output to the input. The
FNN is a universal approximator, which can be written as the following:

y = fL ◦ fL−1 ◦ ... ◦ f1 ◦ x, (2.1)

where x ∈ Rn and y ∈ Rm represent the input and the output, respectively,
fl (l = 1, 2..., L) is the weighted activation, and ◦ denotes the composition
operation. As a comparison, the RNN can be understood as a universal
Turing machine in the form of:{

ht = gh (xt, ht−1)

yt = go (ht)
(2.2)
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where ht and xt are the hidden state and the input at time t, respectively,
and gh and go are weighted activations. yt is the predictive output at time t.
A loss function quantifying how close in some sense the prediction yt is to
the true value ỹt corresponding to the input x. Since both input and output
are real values, it is most convenient to choose mean-square error (MSE) loss
function. MSE loss is calculated as the square of 2-norm of the error vector.

Et (ỹt, yt) = MSE (ỹt, yt) = ∥ŷt − yt∥22 (2.3)

Similar to that in a dynamical system, the concept of state is employed to
describe the temporal evolution of a system, the power of an RNN in dealing
with time-series tasks arises from the special variable, namely, the hidden
(internal) state ht. In system identification, the mappings including both gh

and go in Equation (2.2)) are learned via a least-square alike approximation
process during which a set of pre-defined parameters are tuned. Similar mod-
els to the one described by Equation (2.2) can be found in the autoregressive
(AR) family model, which are also very popular for time-series tasks. The
models of an AR family can often be implemented with:

yt = g (xt−i, yt−j) 0 ≤ i ≤ Kx, 0 ≤ j < Ky, (2.4)

where Kx and Ky are known as the memory length of the input and output,
respectively. It can be seen from Equation (2.4) that there is no explicit
hidden state; instead, the feedback comes from the delayed versions of the
output. In order to differentiate the mechanism described in Equation (2.4),
the RNN with explicitly defined hidden states are often called the Elman
RNN (ERNN) [35]. We use RNN to denote ERNN for simplicity. The term
NARX-RNN and output-feedback RNN will be used interchangeably to refer
to AR-based RNN which is described by Equation (2.4).

The difference between ERNN and NARX-RNN can be summarized by
the visualization in Figure 2.2. It is obvious that ERNN structure detaches
the dependency of the current time step output from the past time step ones.
This is significantly speeding up the training and prediction process.
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(a) NARX-RNN.

(b) ERNN.

Figure 2.2: Differences in input - output of NARX-RNN and ERNN.

It is often beneficial to unroll an RNN, which will ease the understanding
for why the learning process of an RNN could be computationally intractable
and how it is made tractable. As shown in Figure 2.3, the RNN is unrolled
such that it can be fed with an input sequence of K time steps. The signal
propagating through a unit in the unrolled RNN can thus be written as:

ht = ϕh (Wihxt +Whhht−1) (2.5)

and the output of the RNN unit is given by:

yt = ht, (2.6)

where ϕh is the nonlinear activation function and W ’s are of appropriate
dimensions and contain the tunable weights. It is worth mentioning that one
can always add a fully connected layer to yt in Equation (2.6) to transform
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it into the desired form, which is also the reason why modern formulation of
RNN takes the current state as the output.

Figure 2.3: An unrolled RNN with input sequence of K steps with ỹτ and
Eτ representing the prediction and the corresponding loss (error) at time
step t.

The unrolled RNN looks like a deep FNN (DNN), but the weights are
shared across the units over time. It is an advantage of RNN over FNN as
by unrolling the RNN, one obtains a DNN of the same number of layers but
with much fewer parameters. Unfortunately, this also leads to disadvantages
of RNN, which can be understood in the following. The gradient of the loss
E at output with respect to a parameter θ can be written as:

∂E

∂θ
=

t∑
τ=1

∂Eτ

∂θ
, (2.7)

where
∂Eτ

∂θ
=

τ∑
j=1

∂Eτ

∂yτ

∂yτ
∂hτ

∂hτ

∂hj

∂hj

∂θ
(2.8)

The parameters in the RNN are updated through the back-propagation of the
calculated gradients. After the kth iteration the weight W (W denotes any
of the weights in the neural network defined above) is updated by gradient
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decsent:
W (k+1) = W (k) − ηk∇W (k)E (2.9)

where ηk is the learning rate at iteration k. The back-propagation of the
gradients from time τ are done through all possible routes toward the past,
which is also known as back-propagation through time (BPTT).

The disadvantages of BPTT is its computation inefficiency and numerical
instability because at any time step τ , the calculation of the loss Eτ depends
on all previous quantities in all previous time steps. It can be seen that
with BPTT, the longer the sequence with which the RNN is trained, the
more challenging the computation becomes considering both the degraded
convergence rate and the increased demand in computing resources. An-
other numerical issue associated with the gradients with BPTT is that as
the span of the temporal dependencies increases, the gradients tend to van-

ish or explode. The Jacobian term in the gradient of the loss function,
∂hτ

∂hj

in

Equation (2.8) can be proved to be upper bounded by a geometric series [36]:∥∥∥∥∂hτ

∂hj

∥∥∥∥ < γτ−j, (2.10)

where γ is a constant decided by the norm of the nonlinearity in RNN. When
hyperbolic tangent function, tanh, is chosen as the activation function, γ = 1

and for sigmoid, γ = 0.25 [36]. Therefore, the gradient either explodes or
vanishes. We can use a simple numerical experiment to demonstrate the
gradient vanishing and explosion. As shown in Figure 2.4, an input signal
whose magnitude ranges from −10 to 10 is passed through various types
of activation functions in multiple times. After the third time, the signal
is flattened when sigmoid is taken as the activation function. Due to the
vanishing of the gradients, sigmoid cannot be used as the activation function
in a RNN unit. In contrast, as shown in Figure 2.4(c) when ReLU is taken
as the activation function, the signal sustains its original shape after being
passed through the unit for several iterations, which is also the reason why
ReLU is very popular in modern RNN structures.
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(a) Sigmoid.

(b) Tanh.

(c) ReLU.

Figure 2.4: Multiple passes through the same activation function.
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One remedy to the problem of gradient vanishing or exploding is known
as truncated back-propagation through time (TBPTT) [37, 38], which is a
modified version of BPTT. The TBPTT used in this work assume that the
signals only have memory length K. Equation (2.5) and Equation (2.6) can
be explicitly written as:

{
ht = gh

(
xt, xt−1, . . . , xt−(K−1), ht−1, ht−2, . . . , ht−(K−1)

)
yt = go (ht)

(2.11)

Another remedy utilizes a more sophisticated activation function with gat-
ing units to deal with problem of gradient vanishing or explosion, for example,
the long short-term memory (LSTM) unit [39] and the gated recurrent unit
(GRU) [40]. Both LSTM unit and GRU own gates, which allow the RNN
cell to forget. The LSTM network implements the mapping gh (·) with a
more complicated mechanism than that of the vanilla RNN which is shown
in Equation (2.5). 

it =σ (Wiixt +Whiht−1)

ft =σ (Wifxt +Whfht−1)

gt =tanh (Wigxt +Whght−1)

ot =σ (Wioxt +Whoht−1)

ct = ftct−1 + itgt

ht = ot tanh (ct) ,

(2.12)

where ht is hidden state at time t, ct is called the cell state, and it, ft, gt and ot

are the input, forget, cell and output gates respectively. All of the W ’s are
learnable weight matrices.

LSTM unit is chosen for this work due to its ablity to store and retrieve
relevant information from the past time steps by using gating control signals,
which resolves the issue of gradient vanishing or explosion [39]. The LSTM
unit is used as the basic building block for the RNN structure. Figure 2.5
graphically shows the RNN unrolled K time steps in the horizontal direction,
each square represents an LSTM unit. When processing an input sequence
of length K, K units are cascaded such that ht−j is the input to ht−(j−1)

for j = 0, 1, ..., K − 1. Each sequence of these LSTM units is then stacked
on top of another to create stacked sequences which deepens the RNN. In
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Figure 2.5, L stacks of sequence of length K are used. The output of the

Lth layer, h(L) =
[
h
(L)T

1 h
(L)T

2 · · · h
(L)T

K

]T
, is then used to map to the

output yt.

Figure 2.5: RNN cells are stacked up and concatenated to form a deep
RNN.

Mathematically, the K time step truncated full stack RNN is now:{
ht = g

(L)
h ◦ g(L−1)

h ◦ · · · ◦ g(2)h ◦ g(1)h (xt,ht−1)

yt = go (ht) ,
(2.13)

where

xt =


xt−(K−1)

xt−(K−2)

· · ·
xt

 ∈ Rd1×K

ht =


ht−(K−1)

ht−(K−1)

· · ·
ht

 ∈ Rlh×K

and ht ∈ Rlh where lh is the dimension of the hidden unit at time step t.

22



Following Equation (2.7), the gradient of the loss function of an L layer, K
time step unrolled RNN at time t w.r.t. the parameter θ is:

∂E

∂θ
=

t∑
τ=t−(K−1)

∂Eτ

∂θ
(2.14)

where
∂Eτ

∂θ
=

τ∑
j=t−(K−1)

∂Eτ

∂yτ

∂yτ
∂hτ

∂hτ

∂hj

∂hj

∂θ
(2.15)

with hj , hτ are given by Equation (2.13).
The most trivial way to train an RNN is the readout training as shown in

Figure 2.6. The readout training takes the output of the previous time step
as the input. The ground-truth ỹk is only used in calculating loss with the
corresponding prediction yk. The RNN is fed with what it generated, which
is also the reason it is called readout. Readout is mostly adopted in inference,
i.e. when predictions are being made on the unseen data. Training in readout
mode often takes longer time on convergence because the model has to make
a lot of mistakes, being penalized for many times before it eventually learns
to generate accurate predictions. Therefore, teacher force training is often
preferred over readout. In teacher force training as illustrated in Figure 2.7,
the ground-truth values are fed into an RNN as input.

Figure 2.6: Readout training.

However, teacher forcing can only ensure an RNN to learn faster but not
necessarily better. Similar to the mechanism behind overfitting, the under-
lying distribution of the input data in teacher force training may be very
different from that during its readout mode inference. In that case, teacher
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Figure 2.7: Teacher force training.

force training may have worse performance on unseen data comparing to its
performance on the training set. To filter out the potential bias in training,
we adopt a scheduling process in training as introduced by [41]. A good anal-
ogy of the scheduling process is the event of flipping a coin: we can imagine
that a coin is flipped every time before the previous output is fed into an
RNN as the input. The coin used in the scheduling process is biased: for
the first few training epochs, the coin is biased towards the training data
distribution such that the training is more into a teacher force mode; as
the training evolves, the coin becomes biased towards the distribution of the
predicted data, in other words, in a readout mode. In other words, at the
begining of the training, the RNN is fed with true values of the output so
it can converge faster, toward the end of the training, the RNN eventually
gets fed with its prediction to improve its generalization ability. A simple
implementation for such scheduling is using a Bernoulli random variable with
a decaying sucess probability at epoch i (i = 0, 1, ...) given by

p (i) =
K

K + exp
(
i−1
K

) (2.16)

Typical nonlinear circuits involved in a high-speed link are parameterized
by some control variables. In particular, the equalization circuits often have
so-called tap values that are decided by the link designers. Often times,
the taps are set using some sort of optimization routines. In any cases,
having a macro-model of the equalization circuit with the ability to tune the
tap values without having to re-train the model is desirable. Noting that
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the dynamical behavior of the RNN is controlled not only by the weights
but also a hidden initial state which, in most cases, is set to zero when
training an RNN model, we propose to make use of this hidden state to
parametrize the RNN. An FNN is used to learn the mapping between the tap
values and this latent variable which, in turn, controls the dynamical behavior
of the RNN. This is feasible because for an equalization circuit, changing
the tap values should not drammatically change its behavior. Figure 2.8
illustrates how FNN and RNN can be combined to create tunable models.
The gradient is now back-propagated through RNN, then continue to back-
propagate through the FNN, then weights of both networks are updated at
the same time. Pytorch’s auto-differentiation throughout the computational
graph should be able to handle this configuration without much more effort
when training RNN or FNN separately.

Figure 2.8: FRNN signal flow.

2.3 Numerical examples

The robustness of the proposed method using RNN to model high-speed
channels will be illustrated through two different types of RNN presented
in section 2.2 using a PAM2 and a PAM4 driver circuit. Different training
conditions such as optimization method, memory length and recurrent cell
topology etc. will be investigated. An example using FNN and RNN com-
bined to model a receiver decision feedback equalizer is also presented. First,
let us investigate a toy example: the Lorenz attractor.
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2.3.1 Toy example: Lorenz system

The first example we will look into is the Lorenz system [42]. Lorenz model
is a simplified model for atmospheric convection which describes the fluild
flow between 2 rectangular plates. It is complicated enough to be a classical
example in chaotic theory for chaos observation and modelling. The Lorenz
attractor obeys the following equations:

dx
dt

= σ (y − x)

dy
dt

= x (ρ− z)− y

dz
dt

= xy − βz

(2.17)

where σ, ρ, β are system parameters related to the physics of the fluid of
interest and some other physical constants such as Rayleigh number. Note
that x, y, z are not spatial coordinates, they are thermodynamics quantities.
Lorenz system is famous because it illustrates the butterfly effect. A slight
change in initial condition could lead to a totally different evolution of the
system. Figure 2.9 shows a Lorenz attractor with many different initial con-
ditions, indicated by the dots, for σ = 10, ρ = 28, β = 2.667. We collected
the state evolution in 1,000 steps, 1ms each, for 100 different initial condi-
tions. Due to fading memory, any past states values that are longer than a
specific number, K, should not have any effects on the current states. Thus,
we split the data into chunks of K values from t−K to t− 1 as inputs and
use them to predict the outputs which are the states value at time t for all
t > 0 in the limit of the generated data. The data is then splitted into train,
validation and test set.
K is varied among 1, 2, 3, and 5 time steps to investigate the memory effect

in Lorenz system. We kept the 10 trajectories away from training process for
testing purposes. The rest of them are splitted into training and validation
set. A few unseen trajectories prediction result are shown in Figure 2.10.
It shows clearly that the memory length is an important factor to ensure
the correct model is learned. The four models in Figure 2.10 have the same
architecture: 4 layers of standard LSTM cells, each has 20 neural units,
0.3 dropout regularization. They were all trained using Adam optimizer
with initial learning rate 0.001 and all reach convergence after more than
120 epoches. The shorter memory length models take a bit longer to train
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Figure 2.9: Lorenz attractor with different initial conditions (dots).

compared to the longer memory ones. However, when facing unseen data,
the winning model is obvious. This experiment, conveniently, also shows
that Lorenz system, though is chaotic, has short-term memory. Increasing
the memory length in training doesn’t improve the accuracy on test set,
however, it helps training converge faster. Figure 2.11 shows convergence
during training a memory length K = 50, while short memory length models
in Figure 2.10 requires at least 120 epoches to acceptably converge, this long
memory model only needs about 50 epoches. Figure 2.12 shows a comparison
between ground truth and the model’s prediction.

2.3.2 PAM2 channel simulation with output-feedback RNN
(NARX-RNN)

In this section, we illustrate the training procedures of the RNN, with
which the predictions can be made on the voltage waves arriving at the
receiver of a high-speed channel using NARX-RNN. As demonstrated in
Equation (2.4), the NARX-RNN does not have a hidden state explicitly de-
fined in the model. The current output response is determined only using the
current and past values of the input and the past values of the output. The
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Figure 2.10: Prediction for Lorenz trajectories with different models trained
on different memory lengths.

Figure 2.11: Training and validation error when training the Lorenz
attractor.
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Figure 2.12: Prediction made on unseen trajectories by feeding a seed
sequence of first 50 steps.

setup is shown in Figure 2.13: VTX0 is the output voltage of the transmitter
(TX) when it is terminated with a 50 Ohm resistor; and VTX and VRX are
voltages at the immediate output of TX and the input of RX in the presence
of the channel. In this example, we use VTX and VTX0 of the current time
step and VRX of the past to predict VRX of the current time step.

Figure 2.13: Simulation setup for data collection.

The data is normalized and segmented into sequences of length K. Sample
sequences after normalization of all the signals of interest are depicted in Fig-
ure 2.14. This number K represents the memory dependency of the system.
The larger the K is, the longer the memory the system keeps. A portion of
the data (10%) is reserved for test. In this example, a stack of four LSTM
cells of 20 hidden units is used. The optimization method used is Adam with
0.3 dropout regularization. Throughout our experiments, increasing K not
only improves the convergence but also achieves higher accuracy. However,
once K reaches the underlying memory length of the system under learn-
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ing, a further increase does not offer better convergence nor higher accuracy.
We use K = 10 in the following numerical experiments. The time steps for
training is 11,000 and the model converges in about 48 epochs. Accurate
predictions are achieved on unseen sequence as shown in Figure 2.15.

Figure 2.14: Training data collected with the setup shown in Figure 2.13.

Figure 2.15: Predicted voltage at the receiver VRX with a LSTM network.

Figure 2.16 and Figure 2.17 show the comparison between LSTM network
and vanilla RNN in terms of their capability of handling the long-term mem-
ory. The same network architecture is adopted in this comparison including
the number of layers, the layer width, and the regularization. It is shown
that when the memory is relatively short with K = 4, the vanilla RNN cells
fails to capture the signal evolution whereas the LSTM network makes quite
accurate predictions. When the memory is sufficiently long, the vanilla RNN
starts making comparably accurate predictions as the LSTM network does,
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which is shown in Figure 2.17. From this comparison, it also reveals that
training with Adam optimizer achieves better performance than the SGD
optimizer regardless of the memory length.

Figure 2.16: Comparison between vanilla RNN and LSTM network in
handling relative short memory when the memory length K is chosen as 4.

It is worth mentioning that while using the LSTM and GRU networks, one
needs to pay particular attention upon the selection of activation functions.
For example, the gating signals ft and it in Equation (2.12) controls the
percentage of the memory passing through the gates, which ranges from 0
to 1. In this case, the activation function associated with ft and it has to be
the sigmoid function. Besides, the gating signal gt in Equation (2.12) allows
both addition and subtraction operations between the input and the forget
gates and the hyperbolic tangent function is appropriate. As for a VRNN,
the selection of activation functions is only based on the nonlinearities. As
shown in Figure 2.18, using the hyperbolic tangent function as the activation
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function in a vanilla RNN achieves more accurate predictions than that with
ReLU.

Figure 2.17: Comparison between vanilla RNN and LSTM network in
handling sufficiently long memory when the memory length K is chosen as
10.

In addition, SGD optimizer does not work for the proposed RNN structure
under the aforementioned settings for training. Adding momentum for SGD
does not help the learning process either. However, Adam optimizer achieves
accurate predictions. We also investigate RMSProp optimizer, which has
been used for RNNs long before Adam is invented, to train the same archi-
tecture in terms of both VRNN and LSTM network. It is found that for
short memory such as K = 4, using RMSProp optimizer does not achieve
convergence; as the memory length K goes beyond 5, RMSProp optimizer
performs as well as Adam. The result shown in Figure 2.19 confirms that
for K = 5, networks trained by RMSProp make accurate predictions on the
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Figure 2.18: The impact from different types of activation functions on the
prediction accuracy in a vanilla RNN.

output waveform. However, setting a high momentum to deploy adaptive
learning rate degrades the performance of the network; as can be seen in
Figure 2.19, the prediction accuracy becomes worse with momentum added
in RMSProp.

2.3.3 PAM4 channel simulation with ERNN

The limitation of the output-feedback RNN used in the PAM2 example is
that it strictly requires the output of the current time step before it can make
predictions on one future time step, which can be seen from Equation (2.4).
The neural network model, when being used in this way, cannot utilize batch
inference. In this example, it is shown that using a deeper and wider network,
an RNN-based model can be developed to utilize batch inference, which can
dramatically reduce the run time for long transient simulation.

To prepare the training data, first, the transmitter output is measured
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Figure 2.19: Performance of the same architecture using different RNN
cells, trained by RMSProp when K = 5.

when it is opened, denoted as VTX0. This signal is the Thevenin source to the
combined “channel and receiver” system of interest. When the transmitter is
connected to the channel and the receiver, the input to the channel from the
transmitter VTX and the input to the receiver after the channel VRX are both
collected for training purpose. Besides, the output voltage from the receiver
VRO is also captured and included in the training set. The setup for data
collection is shown in Figure 2.20. The data in this example comes from a
PAM4 transceiver circuit transmitting data at 28 Gbps. An LSTM network

Figure 2.20: Setup to obtain training data for PAM4 example.
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Figure 2.21: Voltages used to train ERNN in PAM4 example.

is trained on about 10, 000 time points of time domain response of as shown
in Figure 2.21. A training waveform sample is shown in Figure 2.22.

We first investigate the impact from memory length on the training process.
The memory length depends on not only the nonlinearity of the transmitter
and receiver but also the delay of the channel. As for the training setup,
Adam is used as the optimizer with initial learning rate of 0.001 and dropout
regularization is fixed at 0.3. The LSTM network has six layers each with 30
hidden units. The memory length K is varied with everything else remaining
the same. Figure 2.23 demonstrates the training performance under various
memory lengths with the same network topology. By showing the results at
different epochs, Figure 2.23 also reveals the fact that the learning ability
of the LSTM network evolves as the training progresses. For example, at
the 100th epoch, the LSTM network learned the switching pattern of the
waveforms; at the 1000th epoch, the same network is able to make accurate
predictions on VTX in terms of both the pattern and the amplitude.

With the memory length chosen as K = 50 and at the 1000th epoch, the
predictions made with the LSTM network on VRO are less accurate than
those on VTX , as shown in Figure 2.23. The reason that obtaining accurate
predictions on VRO is more challenging than that for VTX is because the
former requires a much better knowledge of the delay imposed by the channel.
It seems the memory length set by K =50 does not provide adequate data
on the channel delay. After the memory length is increased to K = 90,
the predictions on VRO become much more accurate, as shown in 2.23c. A
further increase of the memory length to K =100 does not further improve
the performance while demands more computation resources.

To further validate the model, we employ a PRBS much longer than the
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Figure 2.22: A training sample by windowing the training sequence with
K = 100.

training one and generate eye diagrams. In Figure 2.24, it shows a very good
agreement between the eye diagram generated from traditional SPICE-like
simulation and the one from the proposed RNN-based model. For example,
both eye diagrams point out that the optimal sampling point is about 14.662
µs.

One limitation of the proposed method with RNN is the accumulation of
numerical error. During the training process, TBPTT gives a noisy gradi-
ent information to the optimizer, which translates to the numerical error in
the solution. This numerical error, though initially very small, gradually
accumulates as the prediction goes on with the input sequence. Figure 2.25
shows the performance of the trained model in the previous section on a very
long PRBS. Initially, the predicted results from the RNN model agree well
with those obtained from the circuit simulation. However, as the prediction
progresses, the numerical error due to TBPTT accumulates and degrades
the performance of the RNN model. The accumulation of the numerical
error is a well-known limitation of RNN trained by TBPTT, which at the
same time leaves room for improvement in the future work on the proposed
method with advanced techniques for sequence modeling such as attention
mechanism [43]. However, it is worth noting that this accumulated error is
naturally upper bounded by the complexity (also, partly by the truncated
memory length) of the model. It can be seen that the performance of the
RNN after hundreds of thousands of bits is still well acceptable.
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(a) When K = 50, trained in 100 epochs.

(b) When K = 50, trained in 1,000 epochs.

(c) When K = 90 trained in 1,000 epochs.

(d) When K = 100, trained in 1,000 epochs.

Figure 2.23: Training error (most left) and test performance of RNN model
in PAM4 transceiver example.
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(a) From SPICE

(b) From RNN

Figure 2.24: Eye diagram obtained in PAM4 transceiver example.

2.3.4 RX DFE circuit modeling with FNN and RNN combined

The example presented in this section is a 2-tap RX DFE circuit designed
for a 32Gpbs link. The channel delay is about 1.7ns, as shown in Figure 2.26,
there are 2 significant post-cursors that strongly contributes to intersymbol
interference. The designed DFE is meant to cancel these 2 post-cursors. The
channel pulse response and the equalized response are shown in Figure 2.26.
The effect of DFE is reflected clearly on the equalized waveform which is
cancelled out exactly at 2 most significant sampled post-cursor locations.
The tap values are normalized so that they span from 0 to 1. Negative
values of the taps will amplify the post-cursors instead of cancelling them,
hence, are excluded from the study.

To prepare training data, many combinations of tap values are swept, the
unequalized and equalized waveform is collected for each combination of tap
values. In this example, we chose a 2-layer FNN which has 10 neurons and
20 neurons, respectively and a 6-layer, LSTM-cell RNN whose hidden state
is in R30. Adam [32] is used for optimization with initial learning rate being
0.01. Also, RNN when trained was set to start out in teacher-force mode but
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(a) Initially

(b) After tens of thousands of bits

(c) After hundreds of thousands of bits

Figure 2.25: Waveform comparison between SPICE simulation and RNN
prediction on PAM4 example with another PRBS.
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Figure 2.26: Single pulse response and DFE effect.

we used the scheduled training presented in Equation (2.16) to eventually
switch the data fed to RNN during training to its own generated data. This
will ensure the RNN to not overfit and have better generalization property.

After trained, the RNN is set to read-out mode and the model is tested
with an unseen PRBS for various unseen tap values. The experiment result
is shown in Figure 2.27, doted lines are results from a tradional SPICE-
like simulator while dash lines are results from the FRNN model. Different
colors are corresponding to different combinations of tap values. As shown,
the predictions from FRNN model match the transient simulation very well,
more noticeably, the FRNN model can be parameterized by tap values.

Figure 2.27: Performance of FRNN on unseen PRBS for unseen tap values.

40



Chapter 3

VOLTERRA MODELS FOR WEAKLY
NONLINEAR CIRCUITS

3.1 Volterra Series

A general nonlinear dynamical system can be described by:{
ẋ (t) = f (x (t) , u (t))

y (t) = g (x (t) , u (t))
(3.1)

where u (t) ∈ Rp , x (t) ∈ Rd, y (t) ∈ Rq for an p-input, q-output system with
d latent states, f (· ) and g (· ) are the nonlinear mapping from the input to
the states amd between the states to the output. If they are affine mappings,
Equation (3.1) becomes the well-known LTI statespace. For simplicity, we
will consider the single-input, single-output (SISO) case (p = d = q = 1) in
the following.

Given a weakly non-linear time-invariant (NLTI) system, also known as the
Volterra system, memory effects can be well approximated by a truncated
Volterra series [44]:

y(t) =
N∑

n=1

yn(t)

yn(t) =
1

n!

∫
Rn

hn (τ1, τ2, ..., τn)
n∏

i=1

u (t− τi) dτi
(3.2)

where hn (τ1, τ2, ..., τn) is the nth order Volterra kernel (VK). It can also be
called multi-dimensional impulse response. An NLTI system is considered
weakly non-linear if it possesses fading memory property. That is, the present
output does not depend on the complete history [45]. Figure 3.1 shows a
systematic decomposition of a weakly NLTI system superimposing contri-
butions of VK’s as described in Equation (3.2). Rigorous foundations and
details about Volterra series can be found in [46, 47]. Volterra series can be
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Figure 3.1: Volterra system decomposition.

thought of as the generalization from one to multi-dimensional representation
of a dynamical system. It is associated with the class of weakly non-linear
systems. The advantage of using Volterra series for modeling is that Fourier
theory can be applied with a minor modification to reflect high-dimension
functionals involved. Time- and frequency-domain responses are related by
multi-dimensional Fourier transform. There have been efforts to estimate
Volterra kernels from a truncated Volterra series using analytical deriva-
tions, time-domain measurements and even spectrum measurements [48–51].
Unlike the impulse response of an LTI system, a nonlinear system can be
represented by different sets of VKs [47]. However, the symmetric VKs,
which can be computed from all possible variable permutations of the same
order non-symmetric kernels [47], are shown to be unique. The term Volterra
kernels used in this work refers to the symmetric kernels.

A Volterra time-domain kernel can be transformed to its frequency-domain
counter-part through a multi-dimensional Fourier transformation:

Hn (ω1, ω2, ..., ωn) =

∫
Rn

hn (τ1, τ2, ..., τn) exp

(
−j

n∑
k=1

ωkτk

)
n∏

i=1

dτi

(3.3)
Generally, Equation (3.3) is not straightforward to evaluate because it in-

volves a high-dimensional integration. In practice, during the system iden-
tification, certain assumptions about the system of interest can be made.
For example, there are no discontinuity jumps in the system response, or,
the nonlinearity is polynomial. This results in some special forms which VKs
can take, the evaluation of Equation (3.3) can make use of these special forms
to simplify the calculation. Inversely, time-domain kernels can be recovered
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using a multi-dimensional inverse Fourier transform:

hn (t1, t2, ..., tn) =

∫
Rn

Hn (ω1, ω2, ..., ωn) exp

(
j

n∑
k=1

ωktk

)
n∏

i=1

dωi (3.4)

As mentioned above, depending on the form of f (· ) and g (· ), Equation (3.1)
can be reduced to a particular expression, the corresponding Volterra repre-
sentation can be derived. An example of such specialization is the Wiener
system. A Wiener model describes a nonlinear system by introducing a
polynomial nonlinearity following an LTI system. Figure 3.2 shows a block
diagram for 2nd order Wiener system.

Figure 3.2: A 2nd order Wiener system

A Wiener system has the nth order Volterra kernel, which is separable [47],
given by:

hn (τ1, τ2, . . . , τn) = an

n∏
i=1

h1 (τi) (3.5)

A visualized example of 2nd order VK H2 (f1, f2) which is the Fourier
transform of h2 (τ1, τ2) is shown in Figure 3.3.

Figure 3.3: Second order Volterra kernel of a Wiener system.

For a Wiener system, Equation (3.1) simplifies to:{
ẋ (t) = A0x (t) +B0u (t)

y (t) =
∑N

i=0 aix
i (t)

(3.6)
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with A0, B0 being size-appropriate state matrices.
If the VKs values are approximated by a sum of delayed delta pulses, i.e.

sampled directly at discrete points τ1, τ2, ..., τn, Equation (3.2) is a non-
parametric model. Whilst projecting VKs onto an orthogonal basis such
as the Laguerre basis as presented in the coming section will result in a
parametric model. The former is simple to model and straightforward to
extract but requires a large number of coefficients to be determined while the
latter requires more analytical work to be carried out before the extraction
process but much fewer coefficients are needed. Also, by using a parametric
model, additional assumption about the kernels, hence the system, is made.
Laguerre basis is shown to be effective for nonlinear circuits in the scope of
this thesis [52]. Therefore it is the choice of parametrization for the VKs in
this thesis.

3.2 Time-domain non-parametric kernel estimation

In discrete time, indexed by k, Equation (3.2) becomes:

yn(k) =
k∑

τn=0

...
k∑

τ1=0

hn (τ1, τ2, ..., τn)
n∏

i=1

Tu (k − τi) (3.7)

where T is the sampling interval when converting the continuous into a dis-
crete time system, t = kT . hn (τ1, τ2, ..., τn) is now simply the function eval-
uation of the continuous VK at discrete time indexed by τ1, τ2, ..., τn.

Without loss of generality, let us walk through the details of extracting a k-
time step VKs of a second order Volterra system. Explicitly writing out the
1st and 2nd term will allow us to see how non-parametric kernel estimation
is feasible:

y1(k) = T

k∑
τ1=0

h1 (τ1)u (k − τ1) (3.8)a

y2(k) = T 2

k∑
τ2=0

k∑
τ1=0

h2 (τ1, τ2)u (k − τ1)u (k − τ2) (3.8)b

It can be seen that yn (k) is linear in terms of hn (τ1, τ2, ..., τn) with co-

efficient T n
n∏

i=1

u (k − τi). Constructing a set of Equation (3.8)a for k =

0, 1 and 2 we have:
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 y1 (0)

y1 (1)

y1 (2)


︸ ︷︷ ︸

ȳ1

= T

 u (0)

u (1) u (0)

u (2) u (1) u (0)


︸ ︷︷ ︸

U1

 h1 (0)

h1 (1)

h1 (2)


︸ ︷︷ ︸

h̄1

(3.9)

Similarly, let

h̄2 (k) =



h2 (0, 0)

h2 (0, 1)
...

h2 (0, k)

h2 (1, 0)

h2 (1, 1)
...

h2 (1, k)

...

h2 (k, 0)

h2 (k, 1)
...

h2 (k, k)



(3.10)a

and

u0k =
[
u (k)u (k) u (k)u (k − 1) u (k)u (k − 2) · · · u (0)u (0)

]
(3.10)b

U2(k) =
[
u0k u1k · · · ukk

]
(3.10)c

Equation (3.8)b can be written in the matrix form as:

ȳ2 (k) = T 2U2 (k) h̄2 (k) (3.11)

in which U2 (k) is a very long row vector (Rt2×1) and H2 (k) is a very long
column vector (R1×t2). Finally,

ȳ = ȳ1 + ȳ2 =
[
TU1 T 2U2

] [ h̄1

h̄2

]
(3.12)
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(a) First order VK, h1 (τ).

(b) Second order VK, h2 (τ1, τ2).

Figure 3.4: Non-parametric VKs extracted from CLTE circuit slightly
driven nonlinear.

Note that the number of columns of U2, a.k.a the number of unknown in the
2nd order kernel, or length of H2, grows with t2. If the training data is just
a long sequence of input/output, Equation (3.12) is an under-determined
system. Whilst there are enough multiple short input/output sequences,
Equation (3.12) will be an over-determined system. Finding a minimum-
norm least square in the former and a least-square solution in the latter case
will ensure a unique solution to Equation (3.12). It is important to note that
in this approach, the size of the kernels grows with the available data.

Figure 3.4 shows the first and second order VK extracted from an active
continuous-time linear equalization (CTLE) circuit. Though CTLE was sup-
posed to be linear, it was implemented with active devices, a slight increase in
the voltage swing would purposely drive it into nonlinear region. The input
and output voltage waveform were collected to construct a system similar to
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Equation (3.12) up to order 3.
As can be seen in Figure 3.4, the kernel values die out quickly. This is

practically reasonable for any real-world devices, the memory effect should
be limitted to a few time steps back into the past. It is, therefore, more
computationally suitable to truncate the impulse responses in Equation (3.7)
to M time steps only. The nth order response of a Volterra system now reads:

yn(k) =
M∑

τn=0

...

M∑
τ1=0

hn (τ1, τ2, ..., τn)
n∏

i=1

Tu (k − τi) (3.13)

Equation (3.7) implements an inifite impulse response (IIR) alike system
while Equation (3.13) implements a finite impulse response (FIR) alike sys-
tem. The two are illustrated in Figure 3.5. Thanks to the fading memory
property, the FIR alike implementation can be used without much of trading
off accuracy for computational expense.

(a) IIR-like response by h1 (τ).

(b) FIR-like response by h1 (τ).

Figure 3.5: IIR versus FIR non-parametric first order Volterra impulse
response.
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3.3 Time-domain parametric kernel estimation

3.3.1 Volterra-Laguerre expansion

Non-parameteric modeling is straightforward as the model coefficients come
directly from the data. However, these extracted kernels are not orthogonal.
Most of the time, the order of the system of interest is unknown, the best can
be done in practice is to iteratively increase the order until the fitting error,
or some other figures of merit indicating the quality of the model, falls be-
low a threshold. Without orthogonality, the identification process will have
to solve for low order kernels all over again. Having a model in which the
kernels are orthogonal by design will allow adaptive idenfication, elimilate
the need to resolve the whole kernel set everytime the order is changed. In
this section, we will see how the development of the Volterra model is carried
out. Let us first discuss about functional orthogonality.

A set of real-value functions ℓi (t) is called orthonormal (loosely called
orthogonal) over the interval (a, b) if:

∫ b

a

ℓi (t) ℓj (t) = δij (t) =

0 for i ̸= j

1 for i = j
(3.14)

A function f (t) is said to be expandable in terms of ℓ (t)’s over the interval
(a, b) when:

f (t) =
R∑
i=0

θiℓi (t) (3.15)

The expansion coefficients can then be given by:

θi =

∫ b

a

f (t) ℓi (t) dt

Laguerre polynomials are naturally orthogonal and a complete set over L2

space. In addition to that, they are causal by definition. Expanding the
Volterra kernels in terms of Laguerre polynomials is advantageous. They
are, hence, chosen to be the projecting basis in this section. The Volterra-
Laguerre (VL) expansion and its detailed implementation are discussed next.
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For t ≥ 0, let

Lr (t) =
1

r!
et

dr

dtr
(
tre−t

)
=

r∑
i=0

(−1)r

r!

(
r

i

)
ti (3.16)

be the Rodrigues representation of the Laguerre polynomials,

(
r

i

)
is a

binomial coefficient. Laguerre polynomials can also be computed recursively:

L0 (t) = 1

L1 (t) = 1− t

Lr (t) =
2r − 1− t

r
Lr−1 (t)−

r − 1

r
Lr−2 (t)

r = 2, 3, 4, . . .

(3.17)

The continuous time domain rth Laguerre basis, ℓr (t), r = 0, 1, 2..., is built
on top of these Laguerre polynomials with a decaying factor representing
fading memory effect [53]:

lr (t) =
√
σLr (t) e−σt =

√
σ

r∑
i=0

(−1)i r!2r−i

i! [(r − i)!]2
(σt)r−i e

−
σ

2
t

(3.18)

where σ < 1 is known as the time scale factor of the Laguerre basis, in the
frequency domain, −σ

2
is the pole of the Laguerre basis .

Thorough details about the developement of continuous-time Laguerre
functions in both time and frequency domain can be found in [44]. The
algebraic form of the discrete Laguerre functions (DLF) is:

lr (k) = α
k−r
2 (1− α)

1
2

r∑
i=0

(−1)i
(

k

i

)(
r

i

)
αr−i (1− α)i (3.19)

where [54]:

a = e
−σ

2
T

(3.20)

a2 = α (3.21)

Figure 3.6 shows the first 5 Laguerre functions given by Equation (3.19).
Before moving to applying the Laguerre expansion to the Volterra frame-

work, let us now look at the evaluation of DLFs in a different perspective:
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Figure 3.6: First few Laguerre functions.

the time evolution of Laguerre functions is obtained through a discrete linear
system. The z-transform of DLFs is given as:

Γ0 (z) =

√
1− a2

1− az−1

Γ1 (z) = Γ0 (z)
z−1 − a

1− az−1

...

Γr (z) = Γ0 (z)

(
z−1 − a

1− az−1

)r

(3.22)

or

Γ0 (z) =

√
1− a2

1− az−1

Γr (z) =
z−1 − a

1− az−1
Γr−1 (z) r = 1, 2, 3, . . .

(3.23)

with |a| < 1 be the pole of the discrete time Laguerre network.

Let R + 1 DLFs form a vector LR (k) =
[
l0 (k) l1 (k) · · · lR (k)

]T
∈

RR+1, it sastifies the following difference equation [55]:

LR (k + 1) = ARLR (k) (3.24)
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with the initial condition:

LR (0) =
√

β



1

−a

a2

...
(−1)R aR


β = 1− a2 (3.25)

which was derived from Equation (3.19) by letting k = 0 for each DLF, and
the transition matrix:

AR =



a

β a

−aβ β a

a2β
. . . β a

... . . . . . . . . . . . .

(−1)R−1 aR−1β · · · a2β −aβ β a


∈ R(R+1)×(R+1) (3.26)

If the Volterra kernels are projected to the space spanned by the first R+1

DLFs, we have:

hn (τ1, τ2, . . . , τn) =
R∑

rn=0

· · ·
R∑

r1=0

θr1,r2,...,rn

n∏
i=0

ℓr (τi) (3.27)

where θr1,r2,...,rn is the Laguerre coefficients. It can be arranged into an n-
dimensional hypercube length R + 1 for better correlation to the original
Volterra kernels.

Let, at time step k,

vr (k) =
M∑
τ=0

ℓr (τ)u (k − τ) (3.28)

be the response to the input u (k) through the rth Laguerre function, a linear
combination of their products gives rise to the output. Equation (3.2), in
discrete time, becomes [52]:
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y (k) =
N∑

n=0

yn (k)

yn (k) =
R∑

rn=0

· · ·
R∑

r1=0

θr1,r2,...,rn

n∏
i=0

vr (k)
(3.29)

Essentially, one can find the final output by doing the following steps:

1. Generate the Laguerre responses, vr, according to Equation (3.28). Fig-
ure 3.7 illustrates this step, the input u is passed through a bank of
Laguerre filters, which result in vr’s.

2. Generate a product of any n Laguerre responses to generate one of the
nth order Laguerre responses.

3. Take the linear combination of all possible nth order Laguerre responses
to form the nth order Volterra response, yn. Once all nth order Volterra
responses are avalable, simply take the sum of them to obtain the final
output.

Figure 3.7: Generation of Laguerre responses.

Once again, we can see that yn is nonlinear in vr, consequently, in u, but is
linear in θr1,r2,...,rn . These Laguerre coefficients, therefore, can be extracted by
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setting up a linear system. In fact, the same implementation in the previous
section can be used to obtain the solution just by replacing u with v.

The dynamical point of view of the DLFs is important because it enables a
one-step-back ability. To calculate the response at any time point, only the
most recent time step information is needed. This is particularly important
for this approach to be incorporated into existing solvers.

Figure 3.8 shows a comparison of the first order Volterra kernel extracted
from the CTLE circuit using non-parametric and Laguerre discussed so far.
It is quite obvious that Laguerre expansion based kernel is much smoother
and flats out much quicker than non-parametric one.

Figure 3.8: Extracted first order Volterra kernel: non-parametric vs.
parametric.

In the next section, more examples will be presented to show the effective-
ness of the proposed approach. Comparing to IBIS, the presented approach
requires less data for training yet does not compromise its accuracy.

3.3.2 Parameterization of Volterra-Laguerre models

Using parametric VL models gives another advantage: the ability to parametrize
the models. In the previous chapter, it was shown how the dynamical be-
havior of an RNN model can be adjusted using the initial hidden state which
is mapped from the control inputs via an FNN. Figure 3.9 shows the signals
flow in a paramterized model. In the previous chapter, f was represented
by the FNN, gζ was the RNN while the latent variable z was the initial hid-
den state of the RNN. Using this parameterization model, one can always
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parametrize a determinstic model to model stochastic effects caused by the
control variables ζ without the knowledge of stochastic or statistical modeling

In this chapter, the dynamical response of a system is modeled with the
VL representation. The models are actually just a handful of Laguerre coeffi-
cients. The parametrization, hence, can be done via an interpolation between
ζ and θr1,r2,...,rn ’s. In the example shown in the next section, Gaussian Process
which is presented in the next chapter was used as the interpolant. However,
any interpolation method can be used to represent the mapping between ζ

and the Laguerre coefficients.

Figure 3.9: Parametrized nonlinear dynamical models.

3.4 Example

In this section, a 12V DC powered CMOS inverter is modeled by the
presented framework. Figure 3.10 shows the training signals used to extract
the Laguerre model for the inverter. Using the inverted signals of those
shown in Figure 3.10 also lead to the same result as it has both rising edge
and falling edge information.

The model is constructed with N = 3, M = 200, R = 5, α = 0.01. The
extracted model is then used to make predictions on a pseudorandom bit
sequence (PRBS) test signal. Figure 3.11 shows the high agreement between
the model and the transient simulation result.

Next, a decision feedback equalization (DFE) circuit is used to demonstrate
the robustness of the presented framework. The DFE circuit must be tunable
so that users can change the tap values to optimize the its performance
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Figure 3.10: Training pulse to extract VL model for the inverter.

Figure 3.11: Test performance of extracted VL model the inverter with
0.5Gpbs, 1ns rise time PRBS input.

according to their specific design. In the previous chapter, it was shown
how a combination of an FNN and an RNN can be used to parametrize a
dynamical model of the DFE circuit. In this section, we show how to use
the presented framework to achieve the same goal. As can be seen above, to
sucessfully train a VL model, all needed was a pulse response which contains
a rising and a falling edge. This would simplify the training process as
much less data is needed for the training compared to using FRNN in the
previous chapter. A 2-tap DFE circuit is used in this example for the ease
of visualization. A uniform grid sweep of tap values is done, for each tap
value, a pulse response similar to that in Figure 3.10 is collected for training.
Then interpolants, particularly in this example, Gaussian Processes are used
to represent the mapping between tap values and Laguerre coefficients, given
a new tap value combination, the Laguerre coefficients that make up the
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corresponding system are sampled from these interpolants and predictions
can be made using Equation (3.28) and Equation (3.29).

Figure 3.12: A second order Laguerre coefficient, θ5,5, vs. tap values.

Figure 3.13: First 30 Laguerre coefficients for test case tap values of -0.3
and -0.35.

The parametrized model, at the end, consists of 1,111 interpolants whose
input are the tap values and output are the Laguerre coefficients (total of
1 + 10 + 10*10 + 10*10*10). Figure 3.13 shows a good match between
the interpolated Laguerre coefficients and direct extraction from known data
(only the first 30 coefficients are shown). Figure 3.14 shows the performance
of the resulted model for three different tap values. The output voltage
predicted by the VL model is in high agreement with that from a transistor
level simulator while that from IBIS has lower accuracy.
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Figure 3.14: DFE circuit output for the same input PRBS, different tap
values.

3.5 Volterra model extraction from frequency-domain
data

As pointed out in [46,47,56,57], Volterra model of a nonlinear system can
also be extracted from frequency domain data. The most popular method
is harmonic probing. The idea is to excite the system of interest with a
number of sinusoidal tones. The response is charactersized by harmonics
and intermodulations, the Fourier transform of the Volterra kernels can then
be calculated. It was shown in [44] that the Fourier transform of the nth

order Volterra kernel can only be completely characterized by an n−tone
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excitation. We could either use Harmonic Balance (HB) simulation [58] or
multi- large signal operating point (LSOP) X-parameter [59] data to obtain
the desired model. In this section, the discussion will be focused on using
X-parameter data.

3.5.1 X-parameter overview

Figure 3.15 visually summarizes different types of X-parameters and how
the signals flow in an X-parameter measurement (simulation) with one tone
LSOP. Mathematical development and discussion on X-parameters can be
found in [60,61]. A typical device under test (DUT) has DC stimuli and RF
stimuli, X-parameters characterize the DUT by observing the DC and RF
response caused by both DC and RF stimuli, under LSOP excitations and
under small-signal excitations on top of the LSOP.

Figure 3.15: X-parameters concept.

For the response to LSOP excitations:

• RF responses to RF stimuli are B-type X-parameter (XB).
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• DC responses to DC stimuli are V-type X-parameter (XV) (if the stim-
uli are DC current sources) or I-type X-parameter (XI) (if the stimili
are DC voltage sources).

For the response to the small-signal excitation superimposed on top of the
LSOP:

• RF responses to RF stimuli are S-type and T-type X-parameter (XS/XT).

• DC responses to DC stimuli are Z-type X-parameter (XZ) (if the stimuli
are DC current sources) or Y-type X-parameter (XY) (if the stimuli are
DC voltage sources).

Mathematically, the mth harmonic output power wave at port i is given by:

bi,m = XFBi,mP
m +

∑
j,l ̸=1,1

(
XSi,m,j,lP

m−laj,l + XTi,m,j,lP
m+la∗j,l

)
(3.30)

whilst the DC response at port i is given by:

Ii = XI +
∑

j,l ̸=1,1

Re {XYi,j,laj,l} (3.31)

Vi = XV +
∑

j,l ̸=1,1

Re {XZi,j,laj,l} (3.32)

where a11 is the incident large signal at port 1 at the fundamental frequency,
corresponding to a certain power level and is used as reference to measure
other signals at other ports and harmonics, P = ∠a11 is the phase of a11. The
index i,m, j, l means the excitation was supplied to port j, harmonic l and
the output was observed at port i, harmonic m. While for DC parameters,
there is one less index because the output observation is a DC quantity. Index
i, j, l means the DC output was observed at port i when the excitation was
fed at port j, harmonic l.

3.5.2 The limitation of current NVNA

Consider the magnitude spectrum of a clock signal with peak-to-peak mag-
nitude A and on-time τ and period T (for example, as shown in Figure 3.16).
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It has an approximated spectrum bound shown in Figure 3.17 [62]. The
spectrum contains several large tones up to at least 1

πτ
. For PRBS signals,

the number of tones as well as their magnitudes may reduce but the bound
remains the same. When a PRBS-like signal excites a buffer circuit, multiple
large tones arrive at the input at the same time. To describe the behavior of
the circuit, a multi-tone LSOP X-parameter is required. By design, n-tone
LSOP X-parameter provides the both harmonic and intermodulation infor-
mation required by the harmonic probing setup. Unfortunately, measurement
of X-parameter with more than 01 LSOP excitation is not yet available and
all X-parameter measurement is limited to single LSOP.

Figure 3.16: Clock signal.

Figure 3.17: Envelope of a clock spectrum.
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Chapter 4

HIGH-SPEED LINK DESIGN,
OPTIMIZATION, AND VARIABILITY

ANALYSIS WITH GAUSSIAN PROCESS

4.1 Introduction

Expedient design iteration and performance optimization and design veri-
fication of state-of-the-art electronic devices and systems are hindered by the
ever-increasing functionality integration. In the quest for computationally
efficient methods capable of handling the high-dimensional design space of
such devices and systems, machine learning (ML) methods are being explored
recently for modeling and design optimization applications. Surrogate mod-
eling becomes a prominent need due to several reasons. First, for system
level assessment, running a full simulation at different physical dimension
levels (for example, the chip to chip communication link: IC - package -
board - package - IC) is simply too expensive. A surrogate model would
provide a tool to evaluate the output given an input almost instantly. This
fast-to-evaluate property of a surrogate model proves to be extremely useful
when a stochastic analysis such as variability or sensitivity analysis involves,
direct Monte Carlo (MC) simulation, or millions and millions of evaluations
can be performed to get the statistics or distribution of the variable of inter-
est. Second, the surrogate model is an analytical expression of the mapping
between inputs and outputs, hence opens the possibilities for direct design
optimization. In the following paragraphs, we provide an overview of recent
and on-going research pursuits in this direction that are most pertinent to
the work reported in this chapter.

In the surrogate modeling area, the work in [24,25], which use feed-forward
neural network (FNN) based models to solve the forward problem, is worth
noting. A forward problem in this chapter refers to a problem where a
set of design parameters is given and the electrical performance of a cir-
cuit is desired. While an inverse problem seeks for the inputs that yield a
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desired output. For example, in a high-speed link, the channel geometry
and equalization settings are inputs while the eye openings (eye width, eye
height) could be the output. A comparative study between different ML
methods such as Support Vector Regression (SVR) and FNN has been re-
ported in [63–65] focusing on predicting performance of a high-speed link
system. The work reported in [66] uses an SVR-based model to address the
design process as an inverse problem instead of an optimization problem.
In [67, 68], SVR and active subspace [69] are combined to perform reduced
dimensionality regression. This results in a speed-up of the fitting process
and facilitates the solution of the sensitivity analysis and design optimiza-
tion problem. [70] uses Gaussian Process (GP) building a surrogate model to
study the behavior of a bandpass filter under the variation of its design pa-
rameters. Also solving the forward problem, [71–74] use Partial Least-square
Regression (PLS) and Least-square Support Vector Machine (LS-SVM) to
perform not only predictions but sensitivity anlysis on design problems with
as many as 30 design parameters. In addition, realizing that LS-SVM has a
deterministic nature, [73] proposes to combine LS-SVM and GP to create a
fully statistical model which, in addition to predictive modeling, provides a
confidence measure for its predictions.

In the uncertainty quantification (UQ) regime, in general, we are interested
in knowing how a variation in the input would affect the output. Robust,
adaptive and computationally cheap methods for efficient stochastic analyses
are favorable over naive MC (brute-force) analysis due to the prohibitive cost
of MC especially for high dimensional problems. There are various studies
and reports on this problem using polynomial chaos expansion (PCE) meth-
ods [75,76]. PCE methods can be categorized into intrusive methods, which
require the refomulation of the problem at hand to insert the randomness
seeking for a PC representation of the solution [77, 78], and non-intrusive
methods, which leave the deterministic model of interest untouched and use,
instead, a sampling strategy to sample the data and fit the PCE [76,79,80].
Most surrogate modeling methods are suitable for non-intrusive uncertainty
propagation, once the input - output mapping is learnt, propagating uncer-
tainty from input to output can be obtained simply by running MC simula-
tion on the surrogate model. Hence, the UQ problem can also be reduced to
obtaining a very accurate and fast surrogate model.

Unlike the aforementioned methods, GP is stochastic in nature. A GP is
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not just a possible mapping that explains the seen data but a distribution of
possible such mappings. Full Bayesian treatment applied to GP parameters
during training is what makes it stand out from other surrogate models. In
the next sections, we review and compare different surrogate modeling meth-
ods, including GP, PLS, SVR and PC. Examples are presented to benchmark
the performance of the models. As seen later, GP, more specifically, multi-
output GP, overall performs consistently well in all experiments; therefore,
it offers an attractive option for input-output black-box modeling, and for
efficient uncertainty propagation and sensitivity analysis.

4.2 Gaussian Process Regression

The understanding of Gaussian Process Regression (GPR) cannot be sepa-
rated from that of Bayesian regression. In the following, nonlinear regression
will be revisited in the context of Bayesian learning. Then, the connection
between Bayesian regression and GP is established.

4.2.1 Bayesian parametric regression

Consider the probabilistic view of a regression problem: given a set of data
D =

{(
x(i), y(i)

)
, i = 1, 2, ..., N

}
of N pairs of d−dimensional vector-valued

input x(i) ∈ X = Rd and function-valued output y(i) ∈ R such that:

y = f (x) + ϵ (4.1)

where ϵ ∼ N (0, σ2) being independent and identically distributed (i.i.d.)
Gaussian noise, we seek for the conditional mean of the output, y∗, at test
input x∗, namely E (y∗|x∗,D) = f (x∗).

To better understand the probabilistic view of regression, consider the
linear regression problem. Bayesian linear regression assumes a parametric
form of f as ∃θ ∈ Rd, such that:

f (x) = xTθ =
d∑

k=1

xkθk (4.2)

The least-square fitting problem minimizes the residual between the data and
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the model, i.e. it seeks the solution of:

argmin
θ

N∑
i=1

[
ϵ(i)
]2

= argmin
θ

N∑
i=1

∥∥y(i) − f
(
x(i)
)∥∥2

2
(4.3)

while the probabilistic view aims to explain the probability of seeing the data
given the model, hence, it seeks the solution of:

argmax
θ

N∏
i=1

p
(
y(i)
∣∣x,θ) (4.4)

Figure 4.1: Linear regression: fitting point of view vs. probabilistic point of
view.

Let us use a visual plot to understand how Equation (4.3) and Equation (4.4)
are mathematically equivalent and are both result in the famous least-square
solution. In Figure 4.1, black dots are the “noisy” output, the probabilistic
model explains the residual as the following: when an input x is given, the
regression model (the line) evaluates to f (x). However, when collecting the
data, a noise has disturbed this evaluation which results in the black dots as
the observed data. The likelihood distribution (the purple bell-shape curve)
tells us how likely a black dot is observed from its most likely value. In brief,
the least-square solution minimizes the sum of vertical distances from the
data to the regression line (the sum of green segments in Figure 4.1),while

64



the probabilistic model view maximizes the total likelihood of the observed
data (the product of red segments). Since the noise is Gaussian, we have:

p (D|θ) =
N∏
i=1

p
(
y(i)
∣∣x,θ)

=
N∏
i=1

1√
2πσ2

exp

{
− 1

2σ2

[
y(i) −

[
x(i)
]T

θ
]2}

=

(
1√
2πσ2

)N

exp

{
− 1

2σ2

N∑
i=1

[
y(i) −

[
x(i)
]T

θ
]2}

=

(
1√
2πσ2

)N

exp

{
− 1

2σ2
(y −Xθ)T (y −Xθ)

}
(4.5)

where X ∈ RN×d is the input matrix whose rows are corresponding to differ-
ent samples and columns are corresponding to different input components,
y ∈ RN is the output vector.

Finding the maximum of p (D|θ) now is equivalent to finding the minimum
of ℓ (θ) = (y −Xθ)T (y −Xθ). Taking the derivatives of ℓ (θ) gives:

∂ℓ (θ)

∂θ
= −2XTy + 2XTXθ (4.6)

Letting ∂ℓ(θ)
∂θ

= 0, we obtain the least-square solution for θ as:

θ =
(
XTX

)−1
XTy (4.7)

Recall that we have applied the following matrix calculus identities: if A
is square and not a function of x and u is a vector and a function of x, then:

∂

∂x
uTAu = uT

(
A+AT

) ∂u
∂x

(4.8)

and
∂

∂x
Ax = AT (4.9)

In the above process, we did not assume any prior on θ. In other words,
it was implied that θ can be any real numbers (hence, some authors refer
to this as the same as applying a uniform prior). The consequence of this
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is that the solution we obtain is a point estimate, or, a single value. Indeed,
it yields the solution given by Equation (4.7). In general, the probabilistic
modeling process relies on Bayes’ rule to solve for the parameters. Full
Bayesian treatment is usually applied as it provides a convenient and powerful
mean to insert domain knowledge into the model. The solution for θ is not
a single value anymore but a distribution. It tells the user how likely or
unlikely a value θ can take. A full Bayesian treatment to Bayes regression
model will have a connection to GP.

When doing Bayesian regression, after imposing a prior on θ, in particular

θ ∼ N
(
0,

1

d
Σθ

)
, the parameter’s (θ’s) posterior is given by Bayes’ rule:

p (θ| D) =
p (D|θ) p (θ)∫

θ

p (D|θ) p (θ)dθ
(4.10)

for a test (unseen) input x∗, the predicted output y∗ can be sampled from
the posterior predictive distribution calculated by marginalizing θ out,

p (y∗|x∗,D) =

∫
θ

p (y∗|x∗,θ) p (θ| D) dθ (4.11)

Usually, Equation (4.10) is intractable due to the integral in the denomi-
nator. However, thanks to θ’s prior and the noise being Gaussian, the poste-
rior predictive distribution, Equation (4.11), is also Gaussian. Hence, what
is left is to find its mean and variance, which is a straightforward process.
A Bayesian nonlinear regressor introduces a nonlinear transformation, often
called the feature map, to transform a d−dimensional vector-valued input x
to a d′−dimensional vector-valued feature z, φ : Rd 7−→ Rd′ ; Equation (4.2)
now becomes:

f (x) = φ (x)T θ (4.12)

The posterior predictive distribution now involves the term φ (x) TΣθφ (x′)

instead of just simply xTΣθx
′ where x and x′ are 2 arbitrary inputs in either

the training or the prediction points. Since Σθ ≻ 0 , let

k (x,x′) =
1

d
φ (x) TΣθφ (x′) (4.13)

be the covariance function. It characterizes the similarity and correlation
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between the features φ (x) and φ (x′), as we shall see in detail later, it gives
rise to the conditional predictive distribution.

4.2.2 Non-parametric Gaussian Process

A Gaussian Process (GP) is a random process, i.e. a collection of random
variables whose any finite set obeys a multivariate Gaussian distribution.
That means a GP can be fully characterized by a mean function m (x) and
a covariance function k (x,x′). We say that f (x) ∼ GP (m, k) iff for all
M ∈ N,

f =
[
f
(
x(1)

)
f
(
x(2)

)
· · · f

(
x(M)

) ]
∼ N

(
f̄ ,K

)
(4.14)

where
f̄ i = m

(
x(i)
)

(4.14)a

m (·) is, typically, without loss of generality, chosen to be 0 and:

Kij = Cov
(
f
(
x(i)
)
, f
(
x(j)
))

= k
(
x(i),x(j)

)
(4.14)b

which is also refered to as the Gram(ian) matrix.
A classical literature on this topic is [81]. GP is known as a probability

distribution over a family of functions. A sample from a GP is a function,
or more precisely, a finite set of (N) evaluations of a function. The kernel
function gives rise to the covariance matrix of a multivariate Gaussian distri-
bution which needs to be positive semi-definite (PSD). This puts a constraint
on the type of kernel functions that are valid to describe a GP.

There are many popular kernel functions that can be used to specify a
GP prior: squared-exponential, rational quadratic, Matern, RBF, periodic,
etc. [81]. Kernel functions can also be combined together to represent a
complex prior; the following kernel is the sum of q basic kernels:

ka (x,x
′) =

q∑
i=1

ki (x,x
′) (4.15)

Since ki (x,x
′)’s are PSD, their sum, ka (x,x′), is also PSD.

Eventhough GP relies on Gaussian noise assumption to make use of its
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analytical property, as pointed out in the previous section, it is rich enough
to approximate any family of functions. For example, the RBF kernel is
defined as:

kRBF (x,x′) = h2 exp

(
− 1

2w2
∥x− x′∥2

)
(4.16)

We will use a one-dimensional GP for ease of visualization. Figure 4.2
shows 10 different samples from a 1D GP built on the RBF kernel with h = 1

and w = 1. Each curve with different color in Figure 4.2 is a function sampled
from the GP. Points on any curve in Figure 4.2 obey the multivariate Gaus-
sian distribution whose covariance matrix is computed by Equation (4.16).

Figure 4.2: GP prior

Once some data points are given, there is no more uncertainty at the lo-
cations where data is available. Any functions that are sampled from the
updated (posterior) GP are forced to go through the given data points. Fig-
ure 4.3 illustrates this phenomenon. Notice that all points on a function are
correlated. Their correlation is given by the covariance matrix. Therefore,
available data points only not enforce what the functions look like at the
data location but also changes what they look like around those location.
As we can see from Figure 4.3, 10 samples from the posterior GP look much
more organized as if they were about to form a particular function that best
explain the 5 given data points.
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Figure 4.3: GP posterior

If we take all of the curves 50 examples of which were shown in Figure 4.4
and average them, we obtain the predictive mean. Figure 4.4 shows the true
function and the GP predictive mean obtained from 5 data points above. The
predictive mean can be interpreted as the prediction given by the trained
GP model. The shaded area in Figure 4.4 can be interpreted as the 95%
confidence interval of the GP prediction, in other words, 95% of the functions
that go through the given data points will land in the shaded regions at
locations where data is not given as shown.

Figure 4.4: Predictive mean and uncertainty from the posterior GP

In addition, [82] proposes additive kernels that act differently on each di-

69



mension of the input x which enrich the class of functions that can be rep-
resented by GP even more. Furthermore, such an approach can also capture
different degree of interactions between the input dimensions. The scope of
this chapter will focus on basic kernels. Applications of GP involving additive
kernels have been reported in [83,84].

4.2.3 Relationship between GP and Bayesian Regression

Without loss of generality, we will use d as the dimension of the feature
space in this section. In parametric Bayesian regression, Equation (4.12)
assumes the model is a d-component basis expansion and could be rewritten
as:

f (x) =
d∑

i=1

φi (x) θi (4.17)

and the kernel function is written as:

k (x,x′) =
σ2

d

d∑
i=1

φi (x)φi (x
′) (4.18)

If we take d → ∞ then Equation (4.18) becomes a Riemann sum and:

k (x,x′) =

∫ ∞

−∞
φc (x)φc (x

′) dc (4.19)

This is a remarkable result. First, it indicates that each feature map in
Bayesian regression is corresponding to a kernel function in GP. For example,
the squared exponential kernel function:

kSE (x, x′) = σ2
SEexp

[
−(x− x′)2

2ℓ2SE

]
(4.20)a

was derived from the feature map:

φi (x) = exp

[
−(x− ci)

2

2ℓ2

]
(4.20)b
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and the prior imposed on the model coefficients:

θi ∼ N
(
0,

σ2

d

)
(4.20)c

with σ2
SE =

√
πℓσ2, ℓSE =

√
2ℓ.

Second, instead of choosing a set of finite feature map basis φi (x) and per-
form regression task, an infinite order model (d → ∞) can be formed by using
GP. The model can learn as much as available data. Its complexity increases
as the data provided increases and does not depend on the complexity of the
hypothesis, i.e. the number of parameters. It is especially clear when the GP
model making predictions at unseen points, the posterior predictive distri-
bution requires Equation (4.11) to maginalize the model parameters θ out.
Third, a reproducing kernel Hilbert space (RKHS), k (x,x′), is all needed to
build a powerful non-parametric model from the data. Topologically speak-
ing, when using feature maps to convert the original input space (x) to the
feature space, φ (x), we only need to be able to compute the dot product
of the feature maps, i.e. evaluating k (x,x′) for any pair of input x,x′, the
transformation itself, φ (·), is not needed [85,86]. Any valid GP kernel func-
tion must have a corresponding feature map in Bayesian regression point of
view. Thus, in doing regression by GP, instead of putting a prior on the
expansion coefficients of a specific basis function, we put a GP prior on the
mapping we are interested in and compute the posterior distribution as the
data becomes available. A thorough treatment of Hilbert space and RKHS
with more details can be found in [85].

It can be seen that for large d and small N , performing regression by GP
is prefered over using a feature map while the reverse is true if the problem
at hand has small d but N is large.

4.2.4 Inference in GP models

This section presents the steps needed to implement a GP regressor. First,
a kernel is choosen, this is equivalent to choosing a nonlinear feature map in
classical regression. Typically, depending on domain knowledge, an appro-
priate kernel can be chosen to reflect the property of the mapping of interest.
However, there are certain kernels such as the Matern kernel are shown to
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be empirically working for most applications as long as the mapping is con-
tinuous and differentiable (also known informally as nicely behaved). In this
chapter, Matern-3/2 kernel [87] is chosen as the default kernel for all ex-
periments shown later in the example section. The Matern-3/2 kernel is a
particular case of a more general family of kernel called the Matern kernel,
parametrized by a parameter ν. When ν = 1.5, the Matern kernel is called
Matern-3/2 and is given by:

kMatern−3/2 (x,x
′) = σ2

(
1 +

√
3
∥x− x′∥

ℓ

)
exp

(
1−

√
3
∥x− x′∥

ℓ

)
(4.21)

where σ and ℓ are the hyper-parameters.
Kernels always have some hyper-parameters that need to be picked by the

users. However, thanks to the full Bayesian treatment, no cross-validation
or grid search is needed to tune these hyper-parameters in GP. They can
be learnt by minizing the negative log-likelihood (NLL) using a gradient
based optimization method such as Adam optimizer [32]. The NLL can be
analytically derived as [81]:

NLL (θ) =
N

2
log (2π)− 1

2
log |Krr| −

1

2
yTK−1

rr y (4.22)

where |Krr| is the determination of matrix Krr. The subscript r indicates
that the Gram matrix Krr is calculated from Equation (4.14)b using training
data.

For example, if the training data is tabulated as in Figure 4.5, we have
16 inputs and 2 outputs (eye height and eye width), x ∈ R16 and y ∈ R2.
Figure 4.5 shows 5 samples (indexed 0 to 4). Assuming that these 5 samples
are all training data we have, in order to compute the NLL, we first need to
calculate the covariance matrix Krr ∈ R5×5 the ij element of which is given
by Equation (4.21):

Krr =



kM
(
x(0),x(0)

)
· · · kM

(
x(0),x(4)

)
kM
(
x(1),x(0)

)
kM
(
x(1),x(4)

)
. . .

...
...

kM
(
x(4),x(0)

)
· · · kM

(
x(4),x(4)

)


(4.23)
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Figure 4.5: Excerpt of training data for the high-speed link example.

In this case, Krr is a matrix function of σ and ℓ. So is the NLL.
To optimize the NLL, a gradient based optimizer is used. The gradient

of the NLL can be calculated analytically to iteratively optimize the hyper-
parameters:

∇θjNLL (θ) = −yTK
−1∂K

∂θi
K

−1
y − tr

(
K

−1∂K

∂θi

)
(4.24)

where K = Krr+σ2I. This process of finding the optimal hyper-parameters
for the kernel is refered to as the training process. Implementation wise, the
NLL can be implemented in Pytorch the same way a neural network is and
Pytorch’s optimization methods can be made use of. The NLL is coded as
a Pytorch function according to Equation (4.22) and registered to Pytorch
as the cost (loss) function that needs to be minimized. Thanks to auto-
differentiation, the gradient of NLL w.r.t. θ can be automatically calculated,
there is no need to compute ∇θjNLL (θ) manually. After looping through the
training dataset, the hyper-parameters are updated the same way the weights
in a neural network is updated.

Once the training completes, as testing data, x∗, is fed into the model,
prediction, y∗, can be made by sampling from the posterior distribution:

p (y∗|x∗,D) = N (µ∗,K∗) (4.25)

where
µ∗ = KtrK

−1
y (4.25)a

K∗ = Ktt −KtrK
−1
Krt (4.25)b

The subscript t stands for testing data. Ktr is the covariance submatrix
between test and train data, i.e. (Ktr)ij = k

(
x
(i)
t ,x

(j)
r

)
.

For a multi-output system, it is reasonable to expect a relationship, or
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a correlation between different components of the outputs. As shown in
the examples, for a multi-output system, learning all the output together
exploits the correlation between them, makes the training converge faster and
improves the prediction ability of the model. An m-component output GP,
generally refered to as multi-output GP (MOGP) in this thesis, is constructed
by creating a linear mixture of multiple single-output GPs. For example, if
the output has two features, i.e. m = 2, the model can be constructed as:[

f1

f2

]
=

[
a11 a12

a21 a22

][
u(1)

u(2)

]
=
[
a1 a2

] [ u(1)

u(2)

]
(4.26)

where u(1) and u(2) are output of two latent single-output GP, a1 =
[
a11 a12

]T
and a2 =

[
a21 a22

]T
. The covariance matrix of the MOGP relates to that

of the latent GPs, Ku, by

cov (f (x) ,f (x′)) =

(
m∑
i=1

aia
T
i

)
Ku (4.27)

The coefficient aij’s are also considered hyper-parameters, included in θ.
There are many other methods to generate a multi-output kernel from single-
output ones which are discussed in [87]. They are more complicated, more
expensive to implement and more appropriate for big data applications than
the scope of this thesis, hence, are not discussed here.

4.3 Other surrogate modeling methods

For comparison purposes, this section is devoted to review some most re-
cent ML techniques for surrogate modeling in the literature including Partial
Least-square Regression [71,72], Support Vector Regression [63,65,67,68,88,
89] and Polynomial Chaos Regression [76, 79, 80, 90]. Polynomial Regression
is also reviewed and used as the baseline to indicate the nonlinearity in the
problem.
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4.3.1 Partial Least-square (PLS) Regression

Partial Least-square (PLS) regression relies on the idea of principle com-
ponent analysis. Principle component regression (PCR) involves the princi-
ple component analysis (PCA) in which the input space is reduced to the
principle component space; then, an interpolation is carried out between a
few significant principle components and the output. Assume a multi-input
multi-output system, i.e. y ∈ Rq. Let

X = V P T (4.28)a

Y = UQT (4.28)b

be the principle decomposition of X ∈ RN×d and Y ∈ RN×q, V ,P ,U and Q

are of appropriate dimensions. PCR perform regression on V and U . We
can see that though V best describes inputs and U best describes outputs as
PCA was applied to both input and output, it was applied separately. PLS
fixes this limitation, it iteratively projects input and output onto the most
significant components but the projection happens in a leapfrog scheme so
that there is cross-information exchange between input and output while do-
ing projections. Process details can be found in [71,72]. After L projections,
we obtain an L-component decomposition of X and Y , V ,U ∈ RN×L and
P ∈ Rd×L, Q ∈ Rq×L. A regression model can be created using U and V :

U = V θ (4.29)

Predictions can be obtained by:

Y = UQT = V θQT = XPθQT (4.30)

For single-output case, the process finding V and U becomes one-step cal-
culation while for multi-output case, it is iterative. In the experiments below,
single-output and multi-output PLS are used as two different approaches and
will also be benchmarked against each other. To find the optimal L, a cross-
validation scheme is used, multiple PLS models are built as L varies and
the optimal L is chosen when the corresponding model achieve lowest fitting
error.
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4.3.2 Support vector regression (SVR)

Support vector regression (SVR) [91], an important branch of support
vector machine (SVM) [92], aims to solve the regression prediction problem
by finding a regression plane to which all the data set are closest.

SVR method is utilized to find a plane expressed by h (x) = wTφ (x) + b,
such that h (x) is as close as possible to y.

The SVR problem can be written as:

min
w,b,ξ,ξ

′

1

2
∥w∥+ C

∑
1≤i≤N

(
ξi + ξ

′

i

)
, (4.31)

s.t. h
(
x(i)
)
− y(i) ≤ ε+ ξi,

y(i) − h
(
x(i)
)
≤ ε+ ξ

′

i,

ξi ≥ 0, ξ
′

i ≥ 0, i = 1, 2, . . . , N

where ξi and ξ
′
i are slack variables, w =

[
w1 · · · wd

]T
is a normal vector

of hyperplane, C is a positive constant and SVR allows a margin of toler-
ance ε. The final SVR predictive function can be calculated via a Lagrange
multiplier:

h (x) =
∑

1≤i≤N

(
α

′

i − αi

)
κ
(
x,x(i)

)
+ b (4.32)

where αi ≥ 0 and α
′
i ≥ 0 are introduced as Lagrange multipliers and Gaussian

kernel was used for expriments presented in the example section [?, 68]:

κ
(
x,x(i)

)
= exp

(
−
∥∥x− x(i)

∥∥2
2σ2

)
(4.33)

where σ > 0 is the width of Gaussian kernel.
SVR algorithm is implemented by MATLAB Statistics and Machine Learn-

ing Toolbox, which hyperparameters, e.g. C, σ and ε, are calculated by
Bayesian optimization method in order to minimize the cross-validation er-
ror and provide accuracy prediction results with robustness.

4.3.3 Polynomial Chaos (PC)

The Polynomial Chaos (PC) theory introduces a way to estimate an arbi-
trary random variable of interest as a function of another random variable
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with a given distribution, and as a model of an orthonormal polynomial ex-
pansions. This method is known as its fast convergence and low computation
cost than Monte Carlo (MC) analysis [93]. The statistic information such
as mean and variance of the output is given at no cost with the process
of solving PC model. The general form of multidimensional polynomials is
estimated as [94]:

y ≈
P∑
i=0

ciΦi(x) (4.34)

where ci denotes the unknown polynomial coefficients to be determined,
Φi(x) represents multidimensional orthonormal polynomials, constructed us-
ing the product of the 1D orthonormal polynomials, via:

Φi =
∏
k∈Ki

ϕk (4.35)

where Ki is multi-index set for 1D orthonormal polynomials:

Ki = {ki1, · · · , kid} ,
∑

kij ≤ m (4.36)

The number of polynomial terms, P =
(m+ d)!

m!d!
where m is the polynomial

order and d as the dimension of the input. Depending on the distribution of
input variables x, the polynomial basis ϕ(·) is chosen accordingly to make the
bases are orthogonal to each other. According to [94], Hermite polynomials
can be used as basis functions to represent Gaussian random variables by
a set of deterministic coefficients. In other case, Legendre polynomials can
be used for uniform distributions. Rewriting Equation (4.34) in matrix form
yields: 

y(1)

y(2)

...
y(N)


︸ ︷︷ ︸

y

=


Φ0(x

(1)) Φ1(x
(1)) · · · ΦP (x

(1))

Φ0(x
(2)) Φ1(x

(2)) · · · ΦP (x
(2))

...
... . . . ...

Φ0(x
(N)) Φ1(x

(N)) · · · ΦP (x
(N))



c0

c1
...
cP


︸ ︷︷ ︸

c

(4.37)
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The coefficients ci’s are linear w.r.t to y, therefore, given N sets of training
samples, ci’s can easily be solved by linear regression method, given by:

c = (ϕTϕ)−1ϕTy (4.38)

4.3.4 Polynomial regression

Polynomial regression (PR) is the oldest regression method but appears
to be very effective in modeling real world data. PR assumes the mapping
between the input x and the output y is given by:

y =
P−1∑
i=0

βi

d∏
j=1

x
kj
j (4.39)

where P is the number of terms, given by P = (M+d)!
M !d!

, m is the polynomial
order, xj is the jth component of x ∈ Rd, or the jth input variable. The
monomial power kj ≥ 0 must satisfy the condition:

d∑
j=1

kj ≤ M (4.40)

When M = 1, the regression model is linear, hence, refered to as linear
regression (LR). For example, if M = 3 and d = 2, P = 6 and the PR model
reads:

y = β0 + β1x1 + β2x2 + β3x1x2 + β4x
2
1 + β5x

2
2 (4.41)

and the LR model only has linear terms:

y = β0 + β1x1 + β2x2 (4.42)

PR and LR are included in the study as the baseline to indicate how much
nonlinearity exists in the problem. For a problem that LR performs well on,
the input - output mapping must be linear and vice versa.
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4.4 Examples

In this section, different examples in microwave circuit and high-speed de-
signs will be used to investigate the performance of various surrogate models
against GP. Each experiment is designed to build a predictive model start-
ing with N = 10 randomly distributed training samples. Once a model is
generated, it is validated by calculating the coefficient of determination, or
R2 score, between the true values ŷ and the predicted values y, defined as:

R2 = 1−
∑N

i=1

∥∥y(i) − ŷ(i)
∥∥2∑N

i=1 ∥ŷ(i) − ȳ∥2
(4.43)

where ȳ = 1
N

∑N
i=1 ŷ

(i).
An R2 score of 1.0 means the predicted and the true values are in perfect

agreement. If the validation R2 score of a model reaches 0.99, the training
for that particular model may be stopped, this will sometimes be refered to
as the convergence of a model. If the model has not reached convergence, i.e.
R2 < 0.99, a number of training samples is added and the model is retrained
using this new set of training data. It is worth noting that in cases where the
output is multi-dimensional, when using single-output models such as PLS
or SVR, we have to create multiple independent such models. Since MOPLS,
MOGP and PC are multi-output models, only one model is needed. In the
following, training R2 scores for each output feature are reported separately
as they are different for single-output models but one should expect a single
R2 score to report for multi-output models.

As demonstrated below, the PLS method, though fast, is inherently lin-
ear, hence, unable to capture nonlinear input-output mapping correctly. PC
method, on the other hand, appears to over-handle the nonlinearity, hence,
struggles to achieve a fast convergence rate when the underlying mapping
is linear. For comparison convenience, a simple linear regression (LR) and
third order polynomial regression (PR) model are also included.

Note that out of the three presented examples below, there are examples
(the filter and low-noise amplifier) in which only a few numbers of samples
were needed for the models to converge or nearly converge while in the other
examples (the high-speed link), the models need much more training samples
to do so. As discussed later, it is not due to the mapping being simple or
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almost linear but rather due to the sensitivity of the output when varying
the input. More discussions and arguments are presented along with the
examples as that would highlight the pros and cons of using GP from a
practical point of view.

4.4.1 Milimeter-wave filter

The first example is a 12GHz coupled-line bandpass filter [70]. There are
twelve geometry-related design variables such as lengths, widths, and sepa-
rations of the coupled lines, and stack-up features such as dielectric permit-
tivity, loss tangent, etc. Figure 4.6 shows the geometry design and defined
variables. In this experiment, it was assumed that there is perfect symmetry
between the right and left half of the design. Which is why they share the
same design variables. In reality, even if the nominal values are same on
both sides, there is no reason for them to vary the same way when taking
into account for stochastic effects. In this experiment, all 12 variables are
varied up to 20% around their nominal values.

Figure 4.6: Filter design in Keysight ADS.

Figure 4.7 shows the insertion loss of the filter as design variables vary. To
quantify the insertion loss of the filter, the center frequency (y0), bandwidth
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(y1) and shape factor (y2) are calculated. Surrogate models were created to
predict these 3 figure of merits (FOM).

Figure 4.7: Filter insertion loss variations.

Three single-output GPs and one multi-output GP are trained on the same
number, N = 40, of samples, then are tested on 5,000 test points. The GPs
are constructed with zero mean function, Matern-3/2 kernel. Multi-output
kernel is implemented using the linear model of coregionalization as explained
in the previous section, all hyperparameters are learnt by optimizing the
marginal likelihood with Adam optimizer. Since the size of our training sam-
ples are relatively small, direct inversion using the Cholesky decomposition
is a reasonable choice for training, however, if the trained model is used to
do inference on a larage number of test points, the cost will be significant,
sparse GPs may be needed in such a case.

In general, multi-output GP converges much faster than single-output GPs,
Figure 4.8 shows the result after 200 training epoch, the multi-output GP
shows good agreement with 5,000 test point results while the single-output
GP prediction is quite poor. However, if the single-output GP is trained upto
3,000 epoch, its performance is comparable to that of the multi-output GP.
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(a) Single-output GP. (b) Multi-output GP.

Figure 4.8: Filter bandwidth (BW ) prediction when training with N = 40
samples.
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Figure 4.9: Center frequency (fc) prediction when training with N = 40
samples.

Figure 4.9 shows the prediction of the multi-output GP for fc. Another
single-output GP is trained to predict fc, it reaches to similar performance
after 3,000 training epoch.

Other surrogate models are now added for a comparative study against
GP. Figure 4.10 shows the training process for each FOM. First, most mod-
els converge quite fast, only PC model requires a large number of samples
to reach a validation R2 score of 0.99. Second, single-out models have more
difficulties learning the shape factor than the center frequency and the band-
width as shown in Figure 4.10c, PLS and SVR models require more training
samples to converge than MOPLS or MOGP. As mentioned before, MOPLS,
MOGP and PC are multi-output models, there is a single R2 score to de-
termine their convergence. Table 4.1a shows the minimum training sample
required for each model to reach 0.99 validation R2 score. Though LR models
did not reach 0.99 validation R2 score even when all others have (N = 400),
the fact that it was able to achieve a validation R2 score higher than 0.96
for all 3 outputs indicates that eventhough this is a high dimensional prob-
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lem, the mapping between the design variables and the insertion loss FOMs
are relatively linear. However, ML-based models are still more advantageous
than the traditional linear model as they converge faster. In this particular
example, SVR and PLS slightly outperforms GP models in terms of using
the fewest training samples. An interesting observation is that single-output
models appear to converge faster than multi-output models, indicating that
there is little correlation between the outputs.

(a) Center frequency as output.

(b) Bandwidth as output.

(c) Shape factor as output.

Figure 4.10: Validation R2 score during training with different numbers of
training samples (N). The dash black line represents R2 = 0.99.
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Figure 4.11: Test performance predicting center frequency (y0), bandwidth
(y1) and shape factor (y2) of a mm-wave bandpass filter, input variables are
independent Gaussian distributed.

Figure 4.11 shows the test R2 score for each output using different models
trained by different N . The test performance of the models are consistent
with their validation R2 score, most models achieve test R2 scores above 0.96.

4.4.2 High-Speed Link

In this example, we consider a chip-to-chip, high-speed serial link model
which involves 16 geometry-related design parameters associated with the
stack-up and transmission lines [67, 68]. The link performance is quantified
by looking at the eye opening at the receiver (RX), after equalization. These
16 parameters constitute an input parameter space of relatively high dimen-
sionality such that a brute-force parameter sweep is intractable. A surrogate
model that can quickly generate the eye openings from the geometric in-
puts is, therefore, imperative as it can be used for design optimization or
uncertainty propagation.

Figure 4.12 shows the training result for eye width (y0) and eye height (y1).
PLS (both single-output and multi-output) models never reaches validation
R2 score of 0.99. While GP-based models quickly approach the threshold,
followed by SVR model, PC model has roughly the same convergence rate as
SVR.

As shown in Table 4.1b, when N was varied up to 900, only GP models
were able to consistently reach to 0.99 validation R2 score for all outputs.
Besides PLS models and LR, other models though did not reach the target
value 0.99, their validation R2 scores are all well above 0.96 for N > 200.
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(a) Training result for eye height as output.

(b) Training result for eye width as output.

Figure 4.12: Validation R2 score during training when varying N . Dash
black line represents R2 = 0.99
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(a) Test performance with independent Gaussian distributed input variables

(b) Test performance with correlated Gaussian distributed input variables

Figure 4.13: Performance of trained models predicting eye height (y0) and
eye width (y1)
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(c) Predictive distribution by models trained with N = 50, input variables
are independent Gaussian distributed.

(d) Predictive distribution by models trained with N = 50, input variables
are correlated Gaussian distributed.

Figure 4.13: Performance of trained models predicting eye height (y0) and
eye width (y1).
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Table 4.1: Minimum training sample for each model to reach 0.99
validation R2 score. Each row is for each output. N/A means the model did
not reach 0.99 validation R2 score within swept values of N .

(a) Filter example, N was varied up to Nmax = 400.

PLS GP MOPLS MOGP SVR PC LR PR
y0 15 20 15
y1 25 20 55 55 25 400 N/A 90
y2 N/A 300 60

(b) HSL example, N was varied up to Nmax = 900.

PLS GP MOPLS MOGP SVR PC LR PR
y0 N/A 300

N/A 300
N/A

N/A N/A N/A
y1 N/A 185 800

(c) LNA example, N was varied up to Nmax = 200.

PLS GP MOPLS MOGP SVR PC LR PR
y0 N/A 30 30
y1 N/A 30 N/A 30 20 30 N/A 45
y2 N/A 30 30

The trained models are then used to perform uncertainty propagation tests.
A set of 1, 000 test samples are collected for each test. The inputs are sampled
from two multivariate Gaussian distributions for two tests: one independent
Gaussian distribution and the other one assuming correlations between the
inputs. Figure 4.13 shows R2 score for the two tests. PC models when trained
with few samples appear to have generalization issue as its test R2 score
varies widely. Figure?? and 4.13d depict the comparison of the predictive
distribution of the outputs with the true distribution when all models are
trained with N = 50 samples. The output distributions obtained from GP-
based models prediction follow the true distribution quite well for both tests.
As N increases, eventually that obtained from SVR and PC models also
matches the true distribution well. Even with as many training points as N =

1, 000, PLS models still could not reach to acceptable prediction accuracy as
others.

Unlike the previous example, LR and PLS cannot learn the data well while
PR can. This suggests that the underlying mapping is nonlinear, which ex-
plains why PLS is unable to reach higher R2 score during training, thus failing
to predict the output when the input is sampled from a distribution different
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from the one that generated the training data. This example illustrates that
with a good surrogate model, it is possible to perform millions of direct MC
evaluations for uncertainty propagation analysis.

4.4.3 Low noise amplifier

Finally, a 2-stage low noise amplifier (LNA) designed for a carrier frequency
of 8GHz is studied. The design comprises of two amplifier stages sandwiched
by three matching networks. For this variability analysis study, one variable
from the input matching network, three variables from the middle matching
network and one variable from the second amplifying stage are varied. Three
quantities of interest at operating frequency include total gain, output return
loss and output noise figure are modeled.

Figure 4.14: Validation R2 score during training the LNA model when
varying N . Dash black line represents R2 = 0.99

The variability analysis was performed on the optimized design, hence,
even 20% variation from their optimal values of the design variables does not
yield large variations in output quantities (only about 5%). Therefore, similar
to the filter example, the input - output mapping is relatively simple for all
models to capture with a small number of samples as shown in Figure 4.14.
This is well expected because the number of samples needed to generally
sufficient cover the output space depends on the variance of the outputs
(generally, to cover the larger space, we need more points). However, GP
models are among models that reach convergence with the fewest number of
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Figure 4.15: Testing R2 score for the LNA model predicting the gain. Dash
black line represents R2 = 0.99

training samples compared to other traditional methods. It is worth noting
that, inheritly linear models such as LR and PLS can only explain the linear
part of the data and hence never reach the convergence defined by the 0.99
threshold.

Figure 4.15 shows the test performance of the trained models on more than
3,000 unseen samples. It is noticeable that PR model, though converged
during training, slightly underperforms as its prediction accuracy was below
0.99 while all other ML methods not only converged with fewer number of
samples but also yield higher accuracy in predictions.

4.5 Conclusion

In this chapter, GPR was introduced as a surrogate modeling method.
The implementation of GP is simple though the concept behind it could
potentially confusing. However, as explained above, GP is just a collection
of points that obey the multivariate Gaussian distribution. Once the mean
function and covariance matrix are known, getting the predictions from GP
is no different than sampling values from a multidimensional Gaussian ditri-
bution. The training of a GP can be simplified to the covariance matrix
computation and optimizing the marginal likelihood for learning the kernel
hyper-parameters. Both of which could potentially pose an expensive cost
for big data applications. However, in applications where a single function
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Table 4.2: Summary of reviewed surrogate models.

Method Advantages Disadvantages
PLS Fast training, fast

inference. Only linear problems.MOPLS

GP Can handle nonlinear
problems,
hyper-parameters learnt
directly from data

Training time scales with
O (N3)MOGP

SVR Can handle nonlinear
problems.

Require hyper-parameters
tuning (cross-validation,
Bayesian optimization
etc.), training time scales
with O (N2) in the best
case scenario

PC

Can handle nonlinear
problems, straightforward
implementation, no
hyper-parameters

Input distribution
dependence, training time
scales with O (N2)

evaluation is highly expensive, the number of training samples needs to be
as few as possible, this cost is acceptable. In the presented examples, data
for training were randomly sampled. The results show that multi-output GP
outperforms single-output GP for multiple output systems. The former con-
verges 10 times faster than the latter, because correlations and dependence
between outputs when learnt altogether could provide more information for
the model to converge.

Table 4.2 summarizes the key advantages and drawbacks of the meth-
ods studied above. Via a high-speed channel, a microwave filter, and a low
noise amplifier example, it was demonstrated that all of the reviewed meth-
ods show good agreement with the true distribution of the test data though
some methods would require more training data than others. PLS models
are extremely fast and straightforward to implement but they may fail to
capture strongly nonlinear mappings. The takeaway key here is that MOGP
is generally recommended to build surrogate models. MOGP though takes
more time to train, consistently yields good results while using the fewest
number of training samples. GP models mainly suffer from numerical inef-
ficiency only when a large dataset involves, making it not favorable in big
data applications but very suitable to model problems where only a small
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number of training data is available due to the expensive cost for data collec-
tion such as signal integrity applications involving fullwave EM simulations
as the scope of this thesis.

Training data is crucial to the convergence rate of surrogate models. Espe-
cially for GP models, training samples if chosen appropriately would quickly
minimize the overall uncertainty in the model prediction. Potential exten-
sion of this work should seek to investigate which sampling method would
provide the best convergence for GP models. Training speed of a GP could
use some improvement as O (N3) complexity for training process sometimes
is unacceptable when the designers want to make use of the readily available
data from past designs or from other analyses. There are reported works [95]
on exploiting structural covariance matrices to approximate the calculation
of the NLL in order to speed up the optimization process as well as the pre-
diction step. These could be the next steps to further improve GP modeling
for signal integrity analysis.
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Chapter 5

CONCLUSION AND FUTURE WORK

Overall, machine learning methods are expressive and flexible, capable of
handling different types of input - output mappings. This thesis explores
the use of recurrent neural network to represent the nonlinear dynamical
behavior high-speed channel circuits. Prior works focus on using the output-
feedback RNN topology [19,96–98] which implements an explicit dependency
of current timestep output on past timestep outputs. This explicit depen-
dency is a severe drawback that forces the prediction to be done sequentially,
which makes the models built with this topology incompatible with a channel
simulator. In this thesis, the Elman RNN topology was deployed to remove
that explicit dependency, allowing time parallelization when getting the out-
put voltage, making the proposed RNN model highly suitable for high-speed
channel simulation. If the computer memory is enough, response of millions
of time steps can be obtained at once. In addition, for the first time, a com-
bination of FNN and RNN was used to create a parameterized model. In
particular, a model of the DFE circuit with variable tap values was created,
completely protecting the IP of the IC vendor whilst giving maximum flexi-
bility to the link designer to tweak the equalization settings when designing
the high-speed link.

Alternatively to using a neural network, Volterra-Laguerre (VL) theory is
shown in Chapter 3 to be as effective as RNN for the time-domain waveform
prediction task. The framework has the advantage of sharing many simi-
larities with the linear time-invariant system theory. In this work, the VL
framework is implemented as a dynamical system. First, a filtering process
is applied to the input via a bank of Laguerre filters to obtain first order
Laguerre responses. Then high order of such responses are generated by tak-
ing high dimensional tensor product among them. A linear combination of
these high order responses is the final response. The examples demonstrate
the successful modeling of DFE circuits using this approach. The VL model
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was compared against an IBIS model, the current technique widely used in
industry, and shows a better agreement with transistor level simulations.
Extraction of Laguerre coefficients has been reported in [52, 99]. By using
a neural network to extract Laguerre coefficients, [52, 99] obtains a solution
from a non-convex loss function, the effort to parametrize Laguerre coeffi-
cients obtained using this approach was not successful. The interpolation
mapping between the control variables (specifically, the DFE taps) and the
Laguerre coefficients did not converge. The model obtained from the inter-
polants for unseen tap values fail to generate the correct output waveform
when compared to a transient simulation. The implementation in this thesis
is an improvement over that in [52,99]. First, the proposed extraction process
in this thesis allows multiple datasets from different time scales to be used for
the model identification while the method in [52,99] requires unique, uniform
timestep data. Second, by extracting the Laguerre coefficients directly using
a least-square setup, the coefficients were obtained from minimizing a con-
vex loss function. This is significant because the uniqueness of the solution
is guaranteed thanks to convexity, which opens the success of parameterizing
the Laguerre coefficients to create a tunable model just as an FNN - RNN
combination could in Chapter 2.

Lastly, a non-parametric surrogate model using Gaussian Process is pro-
posed in Chapter 4 to replace tedious simulations when the goal is to assess
the performance of a complicated system via some figures of merit. Instead
of tuning the hyper-parameter of the GP model by cross-validation or using
educated guesses when training the GP model, a full Bayesian treatment
of the hyper-parameters inside the model was implemented so that the GP
model is robust and adaptive to different problems. It can learn to adjust
its hyper-parameters using the available data fed to it, little to none domain
expertise is required for a guaranteed convergence, though putting domain
knowledge into the model through its prior will help speed up the training
convergence. The computational cost for this full Bayesian treatment might
be a concern for big data applications. However, this cost is justified and
worthy for signal integrity and electromagnetics problems where a full-wave
simulation usually involves.

X-parameter was reviewed and shown to have potential use in the Volterra-
Laguerre framework, however, due to the limitation of existing nonlinear
vector network analyzer, collecting multi-LSOP X-parameter for model con-
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struction is prohibited. However, when the equipment is available, with the
large amount of data associated with multi-LSOP X-parameters, machine
learning methods will be the first candicate approach to extract useful infor-
mation for model construction. Future extended work of this thesis should
look into this direction for further improvement of I/O buffer modeling and
the application of X-parameter in channel simulations.

Modeling is a never-ending task, the effort required to put into it will only
grow over time as the complexity and the level of integration in modern
electronics devices get higher and higher. With the advancement of machine
learning and artificial intelligence, they are shown to be effective to help
completing such an important and fascinating task.
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