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Abstract

High speed link system is one of the major components in the networking

infrastructure. Developing a high performance behavioral model for such

system is crucial but challenging, especially when taking non-linearity into

account. This work reports modeling high speed link (HSL) system using

machine learning and implementing the model into IBIS-AMI, an industrial

standard for SerDes simulation and verification. We started with developing

a Volterra series model by extracting the Volterra kernels using feed forward

neural network. We proposed a monomial power series neural network (MP-

SNN) which can extract Volterra kernels that relate to non-linearity up to

the third order. We developed an analytical mapping from neural network

weights to Volterra kernels. The analytical mapping allows accurate time

domain signal reconstruction with extracted Volterra kernels. We applied

the MPSNN to model pulse amplitude modulation 4 level (PAM-4) and non-

return-to-zero (NRZ) system. Volterra kernels up to the third order can be

accurately identified.

The curse of dimensionality associated with Volterra series impedes the

practical applications of the Volterra series. The number of Volterra ker-

nels increase exponentially with the increase in memory length and the non-

linearity order. The large number of Volterra kernels consume vast amount of

computational power during signal reconstruction. To address this challenge,

we proposed a Laguerre-Volterra feed forward neural network (LVFFN). The

input time-series signal is orthogonalized, in other words, Laguerre-expanded,

before it is feed to the neural network. The dimension of the input signal is

significantly reduced, which results much less number of neurons in hidden

layer. We modeled the PAM-4 and NRZ system with LVFFN. The resulted

model has the number of parameters that are up to 6 order of magnitudes

less than Volterra series. We could also model just the receiver instead of the
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whole system to add more flexibility to the model in practical applications.

The LVFFN model greatly addressed the curse of dimensionality associ-

ated with Volterra series. Then the next question is how are we going to use

it. Since the machine learning based model is not a standardized model, it

is difficult to be co-simulated with models generated by other approaches.

To circumvent the challenges in model transportability and interoperability,

we implemented the LVFFN into IBIS-AMI, an industrial standard model

that is compatible with most of the circuit simulators. We could simulate

the LVFFN IBIS-AMI model in Keysight ADS and conduct the eye-diagram

analysis.

IBIS-AMI model generation is not trivial. It requires cross-disciplinary

knowledge in signal integrity, HSL circuit, and software engineering. To fa-

cilitate the process of IBIS-AMI model generation, we developed a software,

ezAMI, that can generate the IBIS-AMI model by clicks. The software is

developed using Qt/C++ and is an open-source software. The software ar-

chitecture and tutorial are introduced in this thesis as well.
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Chapter 1

Introduction and Background

This chapter discusses advancements in high speed link (HSL) technology,

behavioral modeling and signal integrity, neural networks, and IBIS-AMI.

Challenges associated with HSL modeling and verification are also reviewed.

The structure of dissertation is outlined at the end of chapter.

The growth of new technologies such as big data, cloud computing, the

Internet-of-Things, 5G, and artificial intelligence, has driven demand for in-

stant data exchange around the world. High speed link(HSL) technology’s

limitations in data transmission is one of the bottle-neck threatens the entire

infrastructure. Figure 4.1 demonstrates the general architecture of a HSL

I/O buffer.

Figure 1.1: HSL technology illustration

HSL technology can be divided into two categories: Non-Return-to-Zero(NRZ),

also known as pulse amplitude modulation 2-level(PAM-2) and pulse ampli-

tude modulation 4-level(PAM-4). Over the past five decades, NRZ technol-

ogy has been evolving from 10Gb/s to current 100Gb/s and it will continue
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to scale up to next generation 400Gb/s HSL technology. PAM-4 is an emerg-

ing technology targeting 400Gb/s (8lanes, 56Gb/s/lane). Each technology

presents advantages and challenges. NRZ technology has two levels, -1 and

1. Each level represents one bit. Therefore NRZ has only one eye in its

eye diagram plot. The advantage of NRZ technologies is maturity: it has

evolved over decades. There are many design references and considerable

documentations available for designers/engineers. However there are also

challenges when linearly scaling up from 100Gb/s to 400Gb/s. At 400Gb/s,

these include totally closed eye, shorter unit interval(UI), and tighter jitter

requirements. The eye closing issue may be addressed by applying more ag-

gressive equalization technologies such as improved Decision-Feedback Equal-

izer(DFE) and Continuous Time Linear Equalizer (CTLE). The shorter UI,

only 17ps at 400Gb/s, is more challenging because of the resulting tighter

jitter budget which may be below the intrinsic jitter budget of the testing or

support equipments.

PAM-4, on the other hand, will alleviate some of challenges of NRZ tech-

nology such as the tighter jitter budget and worse channel loss etc. PAM-4

technology has four digital amplitude levels(-3, -1, 1 and 3). Each symbol

carries 2-bit information. This means that at the same throughput as NRZ,

PAM-4 only requires half of the bandwidth. This addresses the shorter jitter

budget problem that NRZ technology faces. However it alters the design,

testing, and verification of the system due to multi-level signaling. Unlike

NRZ, for which there is decades of experience on which to back new develop-

ments, there is limited information on PAM-4 to which designers and testers

can refer. Therefore, instead of designing and building PAM-4 testing and

measurement equipment, simulating and validating PAM-4 system is crucial.

Further more, behavioral modeling is needed to validate the performance

of a newly designed serial link. In order to conduct simulation and analysis, a

system developer has to extract a generic model from either a SPICE model

or system measurements. Another option directly conducts simulation on the

original SPICE model. This second option would impose challenges on HSL

IP vendors since most are unwilling to disclose their designs. In addition, a

specialized simulation environment would have to be provided together with

their SPICE models. Therefore, in most of cases, the first option, supplying

2



a generic model (i.e., a behavioral model), is a viable solution. A behavioral

model, as its name indicates, should capture all the behaviors precisely with

pre-defined input while hiding design details. Typically, the model should

have interoperability in the sense that models supplied by different vendors

can be simulated together without a specialized environment. Therefore, de-

veloping a versatile behavioral model for HSL is desirable.

At present, HSL behavioral modeling is dominated by IBIS-AMI model[1,

2]. The IBIS advanced technology modeling committee sketched up a speci-

fication for HSL modeling. The specification is called the Algorithmic Mod-

eling Interface (AMI). This model is specifically for SerDes modeling and

performance verification. It delivers executables in the form of Dynamically

Link Library (DLL) together with IBIS electrical specifications. The advan-

tages of IBIS-AMI include the following:

• Fast simulation—The model can simulate one million bits in under 5

minutes, especially for LTI systems.

• Excellent IP protection—The vendor can decide what details to reveal

to users.

• Interoperability and transportability—The models from different ven-

dors can simulate together and the same model can be simulated in

different simulation environments.

• Accuracy—The accuracy depends on which model vendors enclose in

the standard. It can be very accurate.

With the aforementioned advantages, IBIS-AMI has gained popularity and

has dominated in HSL behavioral modeling, especially for the emerging PAM-

4 technology. However, generating an IBIS-AMI model for HSL systems is

not trivial. It could take several month or even a year to close the develop-

ment loop. To address this issue, simulator vendors have provided tools for

HSL IP vendors to generate their own model. IBIS-AMI model generated

with these tools are typically derived from pulse responses and the simulation

outputs are the superposition of the responses. However, when the LTI rule

is violated, the prediction accuracy diminishes.
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Developing a behavioral model for HSL system that incorporates the non-

linear effects and time-varying properties is attracting increasing attention.

Research on the Volterra series, feed forward neural network (FFN), recurrent

neural network (RNN), and system identification have been reported. The

Volterra series is a versatile mathematical model for nonlinear time-varying

systems. Considerable research has been reported on applying Volterra series

to model various nonlinear systems, e.g. design of mechanical systems[3, 4]

and control system[5]. Telescu et.al. have reported modeling a IC buffer with

the Volterra series. In their work, the Volterra model is more accurate than

traditional approaches[6].

System identification is another popular approach for HSL behavior mod-

eling. This approach uses measured input/output pairs to produce a map

for a set of explanatory and predicted variables[7]. There are two type of

system identification models: linear and nonlinear. Linear system models

include AutoRegressive eXternal input (ARX) model and an AutoRegres-

sive Moving Average External input (ARMAX) model. Nonlinear system

identification models are structured as ARX and ARMAX, but the internal

structure is remodeled into a FFN structure. Nonlinear system identification

models are more popular than the linear ones. Li et.al. have reported model-

ing SerDes link using linear and nonlinear system identification models. The

performance is better than that of the RNN models[8]. Choi et.al. have also

reported using system identification approach to model HSL[9]. Their re-

sults show that model generated from system identification can significantly

reduce simulation time.

Growing interests on applying machine learning approaches to model HSL

buffers and other electronic systems are indicated by the increasing num-

ber of new publications on this topic. Neural networks are not a new topic.

They have long been used to model electronic systems. However, due to com-

putational resources limit and the lack of an efficient optimization/training

algorithm, the method has been growing slowly. With recent advancements

in back-propagation [10] training algorithms, deep neuron network has pro-

gressed in a variety of fields. Recent publications on modeling HSL system

and other electronic circuit/system is an evidence that deep neural network

is thriving in the field of electronic system and IC design[11, 12, 13, 14, 15].
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In this dissertation, we report modeling HSL buffer with LVFFN and im-

plementing the model in IBIS-AMI, an industrial standard for SerDes sim-

ulation and verification. We aim to develop a compact behavioral model

for HSL buffer to conduct rapid and accurate signal integrity verification.

This model will be compatible with main stream EDA softwares to enable

simulation and analysis under the universal industrial production environ-

ment. The structure of this dissertation is structured as follows: Chapter 2

discusses the mathematical formulation for MPSNN and LVFFN. Chapter3

models the PAM-4 and NRZ system using MPSNN. Volterra kernel iden-

tification via MPSNN is discussed as well. Chapter 4 discusses modeling

PAM-4 and NRZ HSL system and a COMS inverter with LVFFN. Dimen-

sion reduction with the proposed LVFFN is discussed as well. In chapter 5,

the LVFFN PAM-4 model is implemented in IBIS-AMI and is simulated in

commercial circuit simulator. IBIS-AMI model generation software, ezAMI,

is also presented in this chapter. The last chapter, chapter 6, summarizes

the research progress and proposes the future work.
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Chapter 2

Mathematical Formulation of MPSNN and
LVFFN

2.1 Volterra theory

Volterra series is a versatile mathematical model describing nonlinear system

with memory. Successful applications in modeling power amplifiers [16, 17],

analog integrated circuits [18], image processing [19], coupled devices and

circuits [20], nonlinear equalizers [21], and filters [22] have been reported.

A non-linear time-invariant (NLTI) system is considered weakly non-linear

if it processes fading memory property. That is, the present output does

not depend on the infinitely long past [23]. For a weakly non-linear time-

invariant (NLTI) system, memory effects can be well approximated by an

N-term truncated Volterra series [24], the output response y(t) of the system

under the input excitation x(t) is

y(t) =
N∑
n=1

yn(t) (2.1)

yn(t) =

∫
[−∞,t]n

hn (τ1, τ2, ..., τn)
n∏
i=1

x (t− τi) dτi (2.2)

where hn (τ1, τ2, ..., τn) is the nth order Volterra kernel (VK). A frequency-

domain VK, or generalized frequency response function (GFRF) [25], can be

obtained by multi-dimensional Fourier transform.

Hn (ω1, ω2, ..., ωn) =

∫
Rn
hn (τ1, τ2, ..., τn)×

exp

(
−j

n∑
k=1

ωkτk

)
n∏
i=1

dτi

(2.3)

Previous works have used GFRF for distortion and inter-modulation anal-
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ysis [26, 27]. Inversely, time-domain kernels can be recovered by multi-

dimensional inverse Fourier transform

hn (t1, t2, ..., tn) =

∫
Rn
Hn (ω1, ω2, ..., ωn)×

exp

(
j

n∑
k=1

ωktk

)
n∏
i=1

dωi

(2.4)

It is worth noting that Volterra kernels representing a system are, in gen-

eral, not unique [28, 24]. However, it can be seen in Equation (2.2) that any

permutation of τ ’s will leave the output y(t) unchanged. Thus, symmetrical

kernels are unique, mathematically, it is found by taking the average over all

n! possible purmutations π of τ ’s.

hnsym (τ1, τ2, ..., τn) =
1

n!

∑
π

hnasym
(
τπ(1), τπ(2), ..., τπ(n)

)
(2.5)

For simplicity, all VK notations used in this paper refer to the symmetric

kernel though the subscript “sym” is omitted. In discrete time, the contribu-

tion from nth order Volterra kernel response is given by the nth-dimensional

discrete convolution

y(n) =h0 +
M∑
m=0

h1(m)u(n−m)

+
M∑

m1=0

M∑
m2=0

h2(m1,m2)u(n−m1)u(n−m2)

+
M∑

m1=0

M∑
m2=0

M∑
m3=0

h3(m1,m2,m3)u(n−m1)

× u(n−m2)u(n−m3)

+ ...

(2.6)

where n denotes the time step, u(n) the input data sequence, y(n) the output

data sequence, M the system memory length and hi the ith- order Volterra

kernels (VKs). Equation (2.6) can be rewritten in the form

Y = Uh (2.7)
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where U denote the input Matrix with memory M and order N. Y denotes

the output vector:

Y = [y1, y2, ..., yn]T

U = [u1, u2, ..., un]T

un = [un(0), ..., un(m), un(0)un(0), un(0)un(1), ...]

h = [h0, h1(0), h1(1), ..., h1(m), h2(0, 0), h2(0, 1), ...]

(2.8)

The VKs can be estimated with the least mean square (LMS) method:

h = (U ′U)−1U ′Y (2.9)

The number of kernel values needed to be estimated is a function of the mem-

ory length and the system order. The curse of dimensionality for Volterra

series has greatly limited its applications. For example, to model a second

order system with memory length of 50, Volterra series would need total

50× 50 + 50 = 2, 550 kernel values, and a fourth order system with the same

memory length requires 6,377,550 kernel values. The number of kernel values

increases exponentially with the system order and memory length. The total

number of kernel values for a Nth order system with memory length M can

be expressed as below:

(N +M)(N +M − 1)...(M + 1)

N !
(2.10)

At the certain point, the number of kernel values exceeds the number of data

available for kernel extraction, which makes the problem intractable due

to the vast number of parameters. This limitation leads to computational

latency and over-fitting.

2.2 Monomial Power Series Neural Network

For discretized input-output data, the Volterra series of causal, stable, non-

linear, time-invariant system is given by
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y(n) =h0 +
M∑
m=0

h1(m)x(n−m)

+
M∑

m1=0

M∑
m2=0

h2(m1,m2)x(n−m1)x(n−m2)

+
M∑

m1=0

M∑
m2=0

M∑
m3=0

h3(m1,m2,m3)x(n−m1)

× x(n−m2)x(n−m3)

+ ...

(2.11)

Figure 2.1: FFN structure with one hidden layer

where n denotes the time step, x(n) the input data sequence, y(n) the

output data sequence, M the system memory length and hi are the ith- order

Volterra kernels to be identified. Identification of VKs can be achieved by a

variety of methods including the method extraction of kernels from a trained

Feed-forward neural network(FFN). A detailed discussion can be found in

[29, 30, 31, 32] . Such method employs a FFN with one input layer, one

9



hidden layer, and one output layer with single output node. The number of

neurons in hidden layer is the same as the system memory length. Figure 2.1

shows the FFN structure. The input-output mapping through FFN is given

by

y(t) =
M∑
i=1

ciσi

(
bi +

M∑
j=0

wiju(t− j)

)
(2.12)

Where y(t) is the output, u(t) the input, ci the weight from hidden unit i

to the output, wij the weight from input i to hidden unit j, and σi is the

activation function. The activation function, if infinitely differentiable, can

be represented by an equivalent truncated polynomial function gi given by

gi(x) =
M∑
j=0

ajix
j (2.13)

where xj is given by

xj = u(t)v0u(t− 1)v1 ...u(t−M)vM |v0+v1+...+vM=j (2.14)

Combining Equations (2.13) and (2.14) and plugging into (2.12), we can

represent the output y(t) in the form

y(t) =
M∑
i=1

cia0i +
M∑
i=1

cia1iwiju(t− j) + ...

+
M∑
i=1

cianiwv1iwv2i...wvni

× u(t− v1i)u(t− v2i)...u(t− vni).

(2.15)

Comparing (2.15) to (2.11), the Volterra kernel can be represented by

k0 =
M∑
i=1

cia0i (2.16)

k1(j) =
M∑
i=1

cia1iwji (2.17)

k2(j, k) =
M∑
i=1

cia2iwjiwki (2.18)

10



kn(v1, v2, ..., vn) =
M∑
i=1

cianiwv1iwv2i...wvni (2.19)

where kn is the nth Volterra kernel, ci and wni. The weights obtained from

the FFN (see Figure 2.1), and ani are the parameters in equation (2.13).

Obtaining the correct ani is crucial for accurately mapping the FFN weights

to the Volterra kernels. The existing method uses an hyperbolic tangent

activation function, σ(x) = tanh(x), in FFN. ani can be obtained from the

Taylor expansion of tanh(x), which is given by

tanh(x) = x− 1

3
x3 +

2

15
x5 − 17

315
x7 + ... (2.20)

Plug (2.14) into (2.20), the nodal output function is given below

tanh(x) =

(
bi +

M∑
j=0

wiju(t− j)

)

− 1

3

(
bi +

M∑
j=0

wiju(t− j)

)3

+
2

15

(
bi +

M∑
j=0

wiju(t− j)

)5

+ ...

(2.21)

The coefficients ani can be obtained by expansion of (2.21)

ani =
∞∑
k=n

Ck
ndkb

k−n
i (2.22)

where Ck
n is the combination given by

k!

(k − n)!n!
, dk denotes the coefficient

of the kth power in the Taylor expansion of Hyperbolic Tangent activation

function, and bi is the bias value for the jth hidden node. The critical factor

on the convergence of the series is the bias value bi, which has to be in the

range of [−π/2, π/2]. Although, the value bi is usually within this range, this

cannot be guaranteed which can result in significant deviation of ani from

the correct value.

An alternative calculation of ani is also proposed in [29]. It is given by

ani =
1

n
tanh(n)(bi) (2.23)
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Where tanh(n)(x) is the nth− derivative of tanh(x), bi is the bias value of the

ith hidden node. Although, this method greatly alleviates the complexity

in calculating ani, it introduces a truncation error when applied to a Taylor

series around bi to approximate tanh(x).

The method proposed in this paper to obtain the coefficient ani lies on

the direct expansion of activation function which is monomial power series

activation function. The new activation function is given by

σ(x) = xn (2.24)

the nodal output function can be obtained by replacing x with (2.14) and

given by

σ(x) =

(
bi +

M∑
j=0

wiju(t− j)

)n

(2.25)

To simplify the derivation, we can represent wiju(t−j) with uj and bi with

b. The simplified equation (2.25) is given by

σ(x) = (b+ u0 + u1 + ...uM)n (2.26)

Direct expansion of (2.26) is straightforward. The coefficient ani can be

obtained from the nth− power term in the expansion, which is given by

ani = bkbi

(
n

k0, k1, k2, ..., kM

)
kb+k0+....+kM=n

(2.27)

Where n is the order of the kernel, kb the order of b in the expansion of

(2.26), and k0, k1, ..., kM are the order of u0, u1, ..., uM , respectively. The sum

of all parameter k has to be equal to the order n

The proposed method employs the same FFN structure in which only one

hidden layer is used. Promisingly, it can be adapted to allow multiple hidden

layer to achieve higher order Volterra kernel identification. The proposed

method has two advantages

i it allows analytical mapping from learned weights to Volterra kernels.

ii it significantly reduces the number parameters to be identified by virtue

12



of the fact that the order of the kernel is not aligned with the system

memory length.

Since there is no truncation needed in the activation function expansion,

this proposed method produces more accurate kernels. The number of pa-

rameters will be regulated by the order of the activation function, thus the

total number of parameters needed to be identified is reduced significantly.

For instance, the system requires memory length of 100 for FFN to be well

trained. Then, with the existing method, the order of the Volterra kernel

to be identified has to be up to 100th. The total parameters to be identi-

fied can be calculated by 2.10. The total number of parameters is too large

to be practical for real applications. With our method, if a third order ac-

tivation function is employed, the total number of parameters needed for

identification can be reduced from 100 to 3 which is more practical for real

applications.

2.3 Laguerre-Volterra Feed Forward Neural Network

To reduce the curse of dimensionality associated with Volterra series, one of

the solution is projecting VKs on an set of orthonormal basis functions [33].

Laguerre functions are among the most popular ones. Laguerre functions are

the solutions of Laguerre differential function. The general form of discrete

Laguerre functions are shown below [34]:

φr(τ) = α
τ−r
2 (1− α)

1
2

r∑
k=0

(−1)k
(
τ

k

)(
r

k

)
αr−k(1− α)k (2.28)

The VKs are expandable using Laguerre functions up to Rth order

h0 = θ0

h1(τ) =
r=R∑
r=1

θrφr(τ)

h2(τ1, τ2) =

r1=R∑
r1=1

r2=R∑
r2=1

θr1,r2φr1(τ1)φr2(τ2)

hn(τ1, ..., τn) =

r1=R∑
r1=1

...
rn=R∑
rn=1

θr1,...,rn

n∏
l=1

φl(τl)

(2.29)
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where φr(τ) denotes the discrete rth orthonormal basis function. Plugging

equation (2.29) into equation (2.6):

y(n) = θ0 +
R∑
r=1

θr

M∑
τ=0

φr(τ)u(n− τ)

+

r1=R∑
r1=1

r2=R∑
r2=1

θr1,r2

M∑
τ1=0

φr1(τ1)u(n− τ1)
M∑
τ2=0

φr2(τ2)u(n− τ2)

+ ...

+

r1=R∑
r1=1

...

rn=R∑
rn=1

θr1,...,rn

M∑
τ1=0

φr1(τ1)u(n− τ1)...

...

M∑
τn=0

φrn(τn)u(n− τn)

(2.30)

In equation (2.30), the term
∑M

τ=0 φr(τ)u(n−τ) is nothing but the convolved

output of the rth order Laguerre function and the time series input signal.

Use symbol `:

`r =
M∑
τ=0

φr(τ)u(n− τ) (2.31)

Plugging equation (2.31) into equation (2.30):

y(n) =θ0 +
R∑
r=1

θr`r +

r1=R∑
r1=1

r2=R∑
r2=1

θr1,r2`r1`r2

+ ...+

r1=R∑
r1=1

...
rn=R∑
rn=1

θr1,...,rn

n∏
i=1

`ri

(2.32)

Equation (2.32) has the same form as equation (2.6). Parameter identifi-

cation shifts from VKs hn in equation (2.6) to Laguerre parameters θr in

equation (2.32). The number of parameters to be identified has been re-

duced dramatically. Typically the number of Laguerre functions R employed

for expansion is much smaller than the memory length M which determines

the number of kernel values. 2.1 and 2.2 illustrate the dimension reduction

between Volterra series and Laguerre-Volterra expansion.
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Table 2.1: Number of parameters required to model system with order up
to 4th and memory length up to 40 using Volterra Series

1st order 2nd order 3rd order 4th order
M = 10 10 110 1,110 11,110
M = 20 20 420 8,420 168,420
M = 30 30 930 27,930 837,930
M = 40 40 1,640 641,640 3,201,640

Table 2.2: Number of parameters required to model system with order up
to 4th and memory length up to 40 using Laguerre expansion

1st order 2nd order 3rd order 4th order
R = 2 2 6 14 30
R = 3 3 12 39 120
R = 4 4 20 84 340
R = 5 5 30 155 780

Laguerre parameter identification is crucial. LMS has been widely used to

obtain the Laguerre parameters. However, this method relies on matrix in-

version and consequently becomes unpractical when the parameter dimension

becomes large. The other method is through feed-forward neural network.

Geng et al. proposed a recurrent Laguerre-Volterra network which can iden-

tify the Laguerre parameters and even the decay factor α associated with

Laguerre functions [35]. Such method has been successfully applied to model

biological systems such as brain neuron cells. This method is specifically

proposed for biological signals which have dynamics in the scale of several

tens of Hz. However, it encounters difficulty when modeling an HSL system

which usually runs at several tens of GHz or even hundreds of GHz. The

latency depends largely on the channel length. Therefore, a novel parameter

identification method is desirable for HSL systems.

In our previous works, we proposed a MPSNN to identify VKs for PAM-2

and PAM-4 HSL system [13][15]. The advantages of the proposed method are

that it (1) allows the analytical mapping of trained weights to VKs, which

produce higher accuracy and (2) reduces the number of parameters to be

identified and enable reconstruction of the signal through extracted kernels.

This method can be adapted to identify all the Laguerre parameters θr in

equation (2.30).
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The proposed method employs the same feed-forward neural network struc-

ture in which only one hidden layer is used. Promisingly, it can be adapted

to allow multiple hidden layers to achieve higher order Volterra kernel iden-

tification. Since there is no truncation needed in the activation function

expansion, our method produces more accurate kernels. The number of pa-

rameters will be regulated by the order of the activation function, so the

total number of parameters to be identified is reduced significantly.

Identification of Laguerre parameters is the same as Volterra kernel iden-

tification except that an extra layer is added between the input layer and

the hidden layer to compute the convolution of the input with the Laguerre

functions. The neural network used for identification of Laguerre parameters

is illustrated in 2.2. The added layer which is labeled in the red frame does

not change the derivation above for parameter identification. The Laguerre

parameter θr takes the general form:

θr1,r2,...,rn =
R∑
i=1

cianiwr1iwr2i...wrni (2.33)

where ani is calculated through equation (2.27); R denotes the number of

Laguerre functions employed for expansion. In this work, we choose the

third order monomial power series, σ = x3, as activation function. Laguerre

parameters up to the third order can be calculated through equation (2.34)

to (2.37):

θ0 =
R∑
i=1

cib
3
i (2.34)

θr1 =
R∑
i=1

cib
2
iwr1i (2.35)

θr1,r2 =
R∑
i=1

cibiwr1iwr2i (2.36)

θr1,r2,r3 =
R∑
i=1

ciwr1iwr2iwr3i (2.37)
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Figure 2.2: LVFFN structure with one hidden layer
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Chapter 3

Volterra Kernel Extraction Through MPSNN
for Behavior Modeling of High Speed Link

System

3.1 Introduction

Signal integrity (SI) and Electromagnetic compatibility (EMC) verification

for integrated circuit (IC) design has become increasingly important in the

design of high-speed systems. The numerical model that represents the high

speed circuit or channel plays a key role in the assessment of SI/EMC for

early stage error screening. The modeling approach must be both accurate

and efficient and possess the ability to protect the intellectual property (IP).

Behavioral modeling satisfy the above requirements. Such models are usually

based on simplified equivalent circuits model and the Input/output Buffer

Information Specifications (IBIS)[36]. To generate these models, either mea-

surement or translation of other simulation model is needed. Volterra series

is one of the mathematical models that can be used to represent high speed

circuit buffer to generate IBIS model.

Volterra series is a versatile mathematical model describing nonlinear sys-

tem with memory. Successful applications in modeling power amplifier [37,

38], analog integrated circuit[39], image processing [40], coupled device and

circuit [41], nonlinear equalizer [42], and filters [3] have been reported. One

of the challenges in Volterra series is VK identification, particularly for higher

order kernels. There has been a variety of identification methods proposed.

Identification of VKs using artificial neural network, proposed by [29], pro-

vides a efficient way to identify VKs up to an order equal to the memory

length.

Applications of such method in power amplifier [30], nonlinear circuit com-

ponent [31], and nonlinear wireless communication device [32] behavioral

modeling have been reported. However in such methods, extraction of ker-

nels relies on approximation of hyperbolic tangent (HBT) activation function
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by Taylor expansion. Such approximation imposes significant amount of un-

certainty which results in less accurate kernel extraction. In addition, the

order of the kernel in the extraction is determined by the memory length,

which is typically in the range of several tens, even hundreds, for extended

memory nonlinear system. The large number parameters identified in such

high order Volterra system impedes the practical use of such system in real

applications.

Neural network has been used to model input/output mapping for a long

while. In the past, there were attempts to use neural network to extract

Volterra kernels using input/output data [29, 30, 32]. However, due to lim-

itation of computational resources and the fact that training a neural net-

work was not efficient, the method does not gain much popularity. With

recent advancement in deep learning, training a neural network with back-

propagation [10] is more efficient and faster compared to the old method such

as the Levenberg-Marquardt algorithm. In this paper, we propose to lever-

age modern development of deep learning to extract Volterra kernels for I/O

buffers. Once the Volterra kernels are extracted, time domain simulation of

high-speed channels can be performed accurately.

3.2 Model Validation with Analytical Wiener System

The proposed method is now tested using an analytical system describes by

y(t) =

(∫ t

−∞
h (t− τ)x (τ) dτ

)2

(3.1)

where h(t) = h0e
−ktsin (ωt) . The response for h0 = 4, ω = 0.5 and k = 1 is

shown in 3.1. Notice that this system is a 2nd order Wiener system. It can

be shown that for a Wiener system, the nth-order VK can be derived from

the LTI response. In particular,

hn (τ1, τ2, ..., τn) =
n∏
i=1

h (τi) (3.2)

The MPSFNN is trained with a white-noise signal input with magnitude of

zero mean and 1.0 deviation {χ ∼ N (0, 1.0)}. The input and its correspond-

19



Figure 3.1: Impulse response used in Wiener system example

ing output as shown in 3.2.
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Figure 3.2: Training signals for the second order Wiener system example

The activation function for MPSNN is chosen to be σ = ()3, the Volterra

kernel can be identified with such network is higher than the non-linear sys-

tem under modeling. Thereby, the first and third order kernels are expected

to be zero. As expected, the extracted first and third Vks are shown in

Figure3.3 and they are statistically close to zero.

Figure3.4 shows comparison between the analytical kernel (Figure3.4(a)),

extracted kernel from MPSNN (Figure3.4(b)), and extracted kernel from

traditional FFN(Figure3.4(c)) As shown, the method is able to capture the

exact nonlinear order of the system. Only the second order kernel is signif-

icant and matches the analytical kernel. However the kernel extracted with

the traditional FFN appears discrepancy from the correct one.
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(a) Extracted 1st order kernel

(b) Extracted 3rd order kernel (averaged over the 3rd time

dimension)

Figure 3.3: Extracted kernels for 2nd order Wiener system example
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(a) Analytical 2nd kernel

(b) Extracted 2nd order kernel using MPSNN

(c) Extracted 2nd order kernel using traditional FFN

Figure 3.4: 2nd order kernel of (a) Analytical system, (b)Extracted Using
MPSNN, and (c)Extracted using traditional FFN
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3.3 Modeling PAM-4 HSL System

MPSNN model is validated on a high-speed channel PAM-4 buffer circuit

transmitting data at 28Gbp/s rate. A typical schematic of a high-speed

channel is shown in 3.5. The input voltage to the transmitter TX is denoted

as VT0, input and output voltage to the channel is denoted as VTX and VRX

respectively. VRO is the output the receiver RX.

Figure 3.5: A high-speed channel with I/O buffer

Differentiating from the previous example, as mentioned, the training sig-

nal for this buffer circuit is a PRBS similar to that exists in the working

condition of the channel. A portion of the training signals is shown in 3.6.

Input signal is scaled down to be an half of original signal so that all signals

can be plotted in the same graph.

Figure 3.6: Training signals in PAM4 buffer example.
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(a) Extracted 1st order kernel

(b) Extracted 2nd order kernel

(c) Extracted 3rd order kernel (averaged over the 3rd

time dimension)

Figure 3.7: Extracted kernels for PAM4 buffer example
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Due to many flat regions in the signals, especially the input signal, the

memory length M has to be increased up to 150 in order for the training to

converge. Thanks to the proposed method, the number of kernels remains

3, the order of chosen activation function, instead of M as in the existing

method in the literature [31, 32]. In addition, Adam [43] optimizer is found

to outperform other stochastic optimization methods and gives the best con-

vergence for the training in this example.

Extracted kernels are shown in figure 3.7. Once the kernels are extracted,

an unseen PRBS is used to obtain the output response of the PAM4 channel

and verify it against simulation result from SPICE-based simulators. Up to

3-dimensional direct convolution was used to produce the response. Differ-

ent results obtained from different sets of VKs trained using various memory

lengths are reported in 3.8 to compare the effect of memory length M to the

accuracy of the output response. As shown, when M = 150, the information

contained in 3 extracted kernels is sufficient so that the output obtained from

them matches the SPICE level simulation very well.

Figure 3.9 shows a comparison of the output voltage after equalization in

PAM4 channel obtained from an SPICE model and the above Volterra series

model. They were both trained with memory length M = 150, Adam with

initial learning rate of 0.001 were used to train the model. The prediction

accuracy is 96.5% based on MSE error.
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(a) When M = 50

(b) When M = 100

(c) When M = 150

Figure 3.8: Output response of PAM4 channel under unseen PRBS
excitation using extracted VK kernels.
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Figure 3.9: Output response comparison between reference signal and VK
model for PAM4 example

3.4 Modeling NRZ HSL System

We have shown that MPSNN model can model PAM-4 system and VKs up

to the third order can be extracted accurately. In this section, modeling NRZ

system is validated with MPSNN method as well. As mentioned in Chapter1,

the signal in NRZ system has only two levels (-1,1). The system under

modeling is running at 28Gb/s. The activation function order is set at 3. All

other settings for training and validation is the same as for PAM-4 system.

As expected, varying memory length will effecting the prediction accuracy.

The optimal memory length is 300 for NRZ system under modeling. With

the memory length longer than 300, the accuracy improvement is getting

less obvious. However, the memory length shorter than 300 will result in

compromised accuracy. The result is shown in figure 3.10. The extracted

VKs up to 3rd order are shown in figurer 3.11. As seen from the figure, the
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majority of the energy is in the first order kernel. The system under modeling

is essentially a first order system.
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(a) When M = 100

(b) When M = 200

(c) When M = 300

Figure 3.10: Output response of PAM2 channel under unseen PRBS
excitation using extracted VK kernels.
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(a) Extracted 1st order kernel

(b) Extracted 2nd order kernel

(c) Extracted 3rd order kernel (averaged over the 3rd

time dimension)

Figure 3.11: Extracted kernels for PAM2 buffer example
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3.5 Conclusion and Future work

The connection between the weights of a trained neural network and VK is

established in this paper. A closed form expression is available to extract

the VK from the feed-forward neural network. It has been pointed out that

using tanh activation function and training the neural network with random

signal as prior works would lead to unstable extraction process and high

numerical cost when using the kernels for transient simulation afterward.

The robustness of the proposed method was demonstrated with two different

examples, one of which is a 28 Gbps PAM4 high-speed link circuit. Due to

the long delay of the channel, a memory length of at least M = 100 was

needed to obtain an acceptable accuracy using VK compared with SPICE

simulation. In constrast with previous works, which will require up to the

100th-order kernel, the kernel extraction process with power series neural

network could be limited the number of needed kernels to 3 only as shown

above.

In the future work, a different representation of VK, namely the Volterra

Laguerre model, and the extraction process of them will be studied to reduce

the number of parameters needed to represent the VK. This would reduce a

substantial amount of numerical effort for use of VK models in simulation,

hence speed up the simulation process.
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Chapter 4

Approach of Laguerre-Volterra Feed Forward
Neural Network for Modeling High Speed

Links

4.1 Introduction

The growth of new technologies such as big data, cloud computing, the

Internet-of-Things, 5G, and artificial intelligence, has driven demand for

instant data exchange around the world. Global IP traffic will reach 4.8

zettabytes per year by 2022, a three-fold increase since 2017[44]. Boost in

the data transmission rate to 400Gb/s and above has been called in the

next generation high-speed link (HSL) technologies. Traditional non-return-

to-zero (NRZ), also known as pulse-amplitude modulation 2-Level (PAM2),

has been evolving over the past five decades from 10Gb/s to 100Gb/s (4

lanes, 25-28Gb/s/lane). Scaling up NRZ technology to 400Gb/s challenges

the transceiver design for closed eye at receiver output. At 400Gb/s, NRZ

experiences enhanced receiver sensitivity, tighter jitter budgets, and deterio-

rated signal-to-noise ratio. To open the eye, advanced correction techniques

must be implemented at both transmitter and receiver side [45]. For instance,

enhanced receiver equalization schemes such as continuous-time-linear equal-

ization (CTLE) and decision-feedback-equalization (DFE) are needed to cor-

rect the channel loss and reflections.

To alleviate the challenges of linear data rate scale-up with NRZ technol-

ogy, pulse amplitude modulation 4-level (PAM-4) is introduced in the IEEE

P802.3bs standard [46]. Unlike NRZ, which has two levels (-1,1) encoding one

bit (0, 1) for each level, PAM-4 has 4 amplitude levels, (-3, -1, 1,3) encoding

2 bits (00, 01, 10, 11) for each level. Therefore, one symbol in PAM-4 carries

twice as much information as in NRZ, which can be interpreted as meaning

that PAM-4 doubles the throughput for the same baud rate as NRZ. From

the frequency domain perspective, PAM-4 requires only half of the band-
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width of NRZ for the same throughput. In light of these advantages, PAM-4

has gained growing attention since its introduction.

Although PAM-4 offers higher spectral efficiency, lower channel loss, and

less stringent timing requirement, challenges lie in the design, test, and vali-

dation of PAM-4 transceivers [47]. 4.1 illustrates the signal and eye diagram

difference between NRZ and PAM-4. As seen, the time domain waveform for

NRZ has two levels and only one eye is observed (4.1(a)) while that of PAM-4

has four levels and three eyes (4.1(b)). Thus, multi-level signal modulation in

PAM-4 is the game-changer in transceiver design, test, and validation. New

chip designs to support PAM-4 multi-level modulation will have to address

the area and power increase to accommodate more transistors. The size of

the integrated circuits (ICs) for PAM-4 has increased nearly 30%, while the

power consumption increased up to 35% [47]. PAM-4 transceivers of 32Gb/s

[48], 45Gb/s [49], and 56Gb/s [45] [50] fabricated with 90 nm, 60 nm, and 14

nm technologies have been reported. However, few papers are published on

testing and validation. The reason is that the testing and validation strategy

for the PAM-4 system does not share the same basis as that for the NRZ sys-

tem due to multi-level signal modulation. Consequently, more sophisticated

equipment is needed for PAM-4 system testing and validation. Moreover,

due to the much higher data rate, the jitter budget for the PAM-4 system

could be lower than the intrinsic jitter tolerance of the testing and valida-

tion equipment. Therefore, design and construction of such equipment are

expensive and time-consuming.

To alleviate the challenges of linear data rate growth on NRZ technology,

pulse amplitude modulation 4-level (PAM-4) is introduced in IEEE P802.3bs

standard[46]. Unlike NRZ, which has two levels (-1,1) encoding one bit (0,

1) for each level, PAM-4 has 4 amplitude level (-3, -1, 1,3) encoding 2 bits

(00, 01, 10, 11) for each level. Therefore one symbol in PAM-4 carries twice

as much information as in NRZ, which can be interpreted as PAM-4 doubles

throughput at the same baud rate as NRZ. From frequency domain per-

spective, PAM-4 requires only half of the bandwidth as NRZ for the same

throughput. With that being said, PAM-4 has gained great attentions since

its introduction. A few leading HSL companies has announced their PAM-

4 products and without doubt, PAM-4 is leading the next generation HSL
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technology.

PAM-4 system simulation turns out to be a viable solution to alleviate

the challenges off the PAM-4 system testing and validation. Compared to

testing and validation of a PAM-4 system in a real production environment,

verification of such a system through computer simulation can be fast and

low cost. However, the success of this method heavily relies on the accuracy

and efficiency of the PAM-4 behavioral model that is used in simulation. The

behavioral model has two major advantages: (1) it is fast and computation-

ally efficient, and (2) it is good for IP-protection. There are a variety of

excellent behavioral models such as state-space [51], NARX [52], Verilog-A

[11], Volterra series [37] [38], M/splπ/log [53]. Such models have achieved

success in a various fields such digital IC, analog/mixed-signal module, RF

amplifier/mixer, communication channels. However limited simulation work

has been reported on PAM-4 behavior modeling.

In recent years, there has been growing interest in using machine learning

methods for behavior modeling of high-speed links and integrated circuits.

An increasing number of studies have demonstrated that multi-layer artificial

neural networks and recurrent neural networks can be trained to accurately

represent non-linear electrical circuits and systems, such as zero-in zero-out

(ZIZO) circuits [13][11], PAM-4 system [15][14], and high-speed links [54].

In these models, a time-series input/output signal pair collected from either

measurement of the real circuits or a SPICE model are used for machine

learning model training. Once the models are trained, they can be used to

model the real circuit/system for prediction. They are typically computation-

ally faster than traditional models. Moreover, they are inherently suitable

for IP protection. However, there are two main limitations associated with

such models: they lack interoperability, and are computationally inefficient

when more layers and more neurons are required. For instance, such models

are not compatible with mainstream EDA software, which limits their appli-

cation in industry. Therefore further improvement in such models is essential

to promote their use in behavioral modeling of high-speed circuit/systems.

This chapter presents the work modeling HSL systems include PAM-4 and

NRZ uisng LVFFN. The proposed LVFFN can drastically reduce the com-
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Figure 4.1: Bit pattern for (a)NRZ and (b)PAM4
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plexity of FFN otherwise employed. In addition, the LVFFN model can

be implemented into IBIS-AMI, an industry standard, in order to enhance

model interoperability and transportability. The IBIS-AMI model implemen-

tation will be discussed in next chapter. This chapter is organized as follows.

Modeling PAM-4 system with LVFFN is introduced in Section II. Modeling

NRZ system (PAM-2) and just NRZ system receiver using LVFFN is pre-

sented in Section III. To demonstrate the versatility of the LVFFN model, a

heavily distorted CMOS inverter is modeling. Some preliminary results are

presented. Section IV concludes this chapter.

4.2 Modeling PAM-4 System with LVFFN

In this section, a PAM-4 high-speed link system is modeled with LVFFN.

A block diagram of a typical high speed link system is illustrated in 4.2.

The system consists of three portions: transmitter, channel, and receiver.

To compensate for the signal loss and distortion during transmission, correc-

tion blocks such as equalizers, feed-forward equalizer (FFE), and decision-

feedback equalizer (DFE) are employed. Multi-level signaling presented in

the PAM-4 system severely complicates the model development. To demon-

strate the effectiveness of LVFFN on modeling the PAM-4 system, we model

the system with both a regular FFN and an LVFFN proposed in this chapter.
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Figure 4.2: PAM-4 high speed link system block diagram

4.3 shows the input and output signals that are used for training the

models. The input/output signals are generated from an industrial PAM-

4 IBIS-AMI model. The input signal is a 4-level pseudo-random binary

sequence (PRBS) with amplitude between -1.0 V and 1.0 V. The data rate

is 28Gb/s. Total 16,651 time series samples are collected for training and

testing (70/30%). The regular FFN model employed in this work has three

layers: one input, hidden, and output. A third-order monomial power series

is used for the activation function. Determining the right memory length

for the system under modeling is important. In our previous work, we have

demonstrated that longer memory length would result in better accuracy.

There is an elbow point for the memory length after which increasing length

will not obviously benefit accuracy. We found that for PAM-4 system under

modeling, memory length of 150 produces the optimal result. In this work,

we use the memory length of 150 for both FFN model and LVFFN model.

Back-propagation algorithm with an Adam optimizer is selected for minimiz-

ing the Mean Square Error (MSE). Dropout is not used during training. The

learning rate typically takes value in between 10−3 to 10−6. Bigger learning

rate leads to faster converge but worse training/testing accuracy. Typically

the training accuracy get above 90% in less than 25 epochs or less than 2

minutes CPU time using a desktop equipped with an Intel i7 quad core CPU.

The best training/testing accuracy of 98%/97% can be achieved by allowing

a longer training time.
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Figure 4.3: Plot of PAM-4 input output data

4.2.1 Determining Decay factor α and the Order Laguerre
Function

In LVFFN, the input signal is first convolved with the Laguerre functions.

4.4 plots the first five Laguerre functions for α = 0.2 and α = 0.5. As we

can see, the decay factor controls how fast the Laguerre function approaches

zero. Finding the right decay factor α is crucial for modeling. There have

been works reporting on how to obtain optimal α for a system. Campello et

al. reported that in Z domain, the corresponding rth Laguerre functions are

given by [55]

Φr(z) =
z
√

1− P 2
r

z − Pr
(
1− Prz
z − Pr

)n (4.1)
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Pr is also called a real number Laguerre pole. Then the optimal Laguerre

pole Pr can be obtained by solving the following optimization problem:

min
−1<pr<1

Jr =
∞∑
i1=1

...

∞∑
ir=1

(i1 + ...+ ir)α
n
i1,...,ir

(4.2)

The optimal pole can be obtained using equation (4.2). However the process

could be computationally prohibitive. Another approach to obtain the right

α takes advantage of neural network training. α is treated as one of the

parameters in the neural network and then converges to the optimal value

through back-propagation.

Figure 4.4: Plot of first five Laguerre functions

In the expansion, the number of Laguerre functions is truncated to a certain

quantity. Determining the minimum number of functions that are enough

to achieve the desired model accuracy is another challenge. Typically, more

functions are desired to achieve better prediction accuracy. However, more
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functions will deteriorate the benefit of Laguerre expansion for dimension re-

duction. Kang and Marmarelis et al. reported a method of principal dynamic

mode analysis to obtain the least number of Laguerre functions. This method

has also been applied to model EEG data for diagnosis of Alzheimer’s disease

[56]. In this method, the first and second order VKs have to be identified

using a traditional algorithm such as LMS. Then singular value decomposi-

tion (SVD) is applied to obtain the most significant elements on the first and

second order VK matrix. The number of significant VK elements relates to

the number of Laguerre functions is used in the expansion.

In this work, a simple brute force algorithm is used to obtain the optimal

α and the least number of Laguerre functions. Figure 4.5 shows the plot for

α value ( 4.5 (a)) and number of Laguerre functions (4.5 (b)) versus MSE

value. As seen in the figure, MSE magnitude approaches equilibrium as both

α value and the number of functions increase. Based on the plot, we can

determine the optimal value of α and the number of Laguerre functions for

the PAM-4 system. The optimal value of α is determined to be 0.91, and the

number of Laguerre functions is selected to be 10.

41



(a)

(b)

Figure 4.5: Plots of MSE vs (a) α, and (b) number of Laguerre functions
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4.2.2 Modeling Result

The PAM-4 system is modeled with LVFFN, regular FFN, and recurrent

neural network (RNN). In the RNN model, 6 stacked layers with 20 neurons

for each layer and memory length of 100 are employed [14]. 4.6 plots the

model output of LVFFN, FFN, RNN, and reference signal. As seen, all the

models demonstrate great accuracy. The FFN model needs 1 hidden layer

and 150 neurons, while LVFFN only needs 1 hidden layer and 10 neurons.

Figure 4.6: Model output comparison of LVFFN, RNN, FFN, and the
reference signal
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Figure 4.7: Comparison of model size for Volterra series, RNN, FFN, and
LVFFN

Model size comparison for Volterra series, RNN, FFN, and LVFFN is pre-

sented in 4.7. From the regular FFN network, VKs up to the 3rd order can

be obtained through equation (2.16)-(2.19). With the identified VKs, the

PAM-4 system can be completely described. However, according to equation

(2.10), we can calculate the total number of kernel value for the system of 3rd

order non-linearity and memory length of 150. The number of kernel value is

3,397,651. VKs have the attribute of symmetry, e.g. the h(a, b) is identical to

h(b, a). Taking this attribute into account, the total number of kernel value is

reduced to 1,698,826, which is still an exceptionally large model. The model

size that comes in the second place is the RNN model which has 485,200 pa-

rameters. Following RNN, the regular FFN requires 22,801 parameters. The

LVFFN only needs 111 parameters which is substantially smaller for similar

prediction accuracy. This is a significant model size reduction compared to

other regular machine learning models and Volterra series. The model size

reduction will improve the model transportability and computation efficiency.
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Figure 4.8: Comparison of number of multiplications for calculation of one
output sample for Volterra series, RNN, FFN, and LVFFN

4.8 shows the computational efficiency comparison for computing one out-

put sample. The number of multiplications is used here as the criterion to

characterize the model performance. As seen, LVFFN only requires 1.61K

multiplications to compute one output sample. The total number of multi-

plications for computing one output sample includes the computation of the

neural network, which is only 110, and the convolution of the input signal

with the 10 Laguerre functions, which is 1500. As we can see, the improve-

ment in computation efficiency is significant for the proposed LVFFN model.

In LVFFN, the majority of the computational power is used by the convolu-

tion of input signal with each Laguerre function. This computation can be

further reduced by calculating the filtered output recursively using [35]:

lr(n) =
√
αlr(n− 1) +

√
αlr−1(n)− lr−1(n− 1) (4.3)
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Initialization is carried out by

l0(n) =
√
αl0(n− 1) +

√
1− αx(n) (4.4)

System identification is popular in modeling non-linear systems. Typically,

VKs up to the desired order are identified with time series input signal. In

our previous work, we have reported MPSNN to extract VKs up to the third

order [13] for PAM-4 HSL system. In this work, we are able to extract

the VKs up to the third order using LVFFN for the same HSL system. In

LVFFN, we can identify Laguerre parameters. Then the Volterra kernels

up to desired order can be obtained through extracted Laguerre parameters

using equation (2.30)

Figure 4.9: First order VK extracted with FFN and LVFFN

4.9 shows the first order VKs extracted for PAM-4 system using FFN

and LVFFN. As we can see, the VKs extracted from both methods matche

fairly well. The kernel identified with LVFFN is smoother than the ones

with FFN. This is expected as the Laguerre expansion of VK is equivalent
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to orthonormal decomposition of VK, which removes redundant information

during the expansion process.

4.3 Modeling NRZ System with LVFFN

In the last section, we demonstrated that the LVFFN can model PAM-4 sys-

tem. The LVFFN PAM-4 model is much more concise and efficient compared

to traditional Volterra model and other machine learning models. To demon-

strate the versatility of the proposed LVFFN model, in this section, we model

a NRZ system (PAM-2) using LVFFN. Figure 4.10 shows the waveform at

different node. Waveform at node A is the excitation waveform. It has a

magnitude of ±0.1V and a data rate of 28 Gbps. The waveform, as shown,

is a perfect square wave. After the excitation passes through a channel, the

signal is deteriorated due to the channel loss and inter symbol interference

(ISI). The signal waveform after channel at node B is shown in waveform B
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Figure 4.10: NRZ waveform
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with orange color. The waveform C is the signal at node C. Distorted sig-

nal at node B is partially restored by DEF/FFE implemented in the receiver.

The LVFFN models the whole system from node A to node C.

The number of Laguerre functions and the decay factor α is obtained

through brute force searching. there is an elbow point after which MSE

improvement gets slow (number of Laguerre functions) or even worse (α).

According to the plots, we can determine that the best α value is 0.83 and

the best number-of-Laguerre-functions is 25. The memory length employed

in the application is 300 which has been approved to be efficient in chapter 3.

Figure 4.11: PAM-2 system LVFFN model prediction and reference
waveform

Figure 4.11 plots the model prediction and the reference signal. The aver-

age accuracy in terms of MSE is 96.5%. Comparison of model size for Volterra

series, FFN, and LVFFN are plotted in figure 4.12. Although, modeling NRZ

49



system requires more Laguerre functions,25 functions, than modeling PAM-4

system, which only need 10 functions. The model size for LVFFN is only 650

parameters, while for FFN 90,300 and Volterra series 13,500,000. This is a

significant dimensionality reduction comparing to regular FFN models and

traditional Volterra series.

Figure 4.13 shows the computation efficiency comparison for each model

to compute one output sample. The number of multiplications is used as

the criteria to characterize the model performance. As seen, LVFFN only

needs 8,150 multiplications to compute one output sample, while FFN needs

90,300, and Volterra series needs the most, 27,090,300 multiplications. With

LVFFN, the computation performance improvement is obvious, a several

order of magnitude enhancement. The majority of computation power in

LVFFN model attributes to the convolution of input signal with each La-

guerre filter in the filter bank. Such computation can be further improved by

calculation the filtered output recursively using the formula (4.3) and (4.4).
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Figure 4.12: LVFFN NRZ system model size comparison for Volterra series,
FFN, and LVFFN
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Figure 4.13: Number of multiplication comparison for Volterra series, FFN,
and LVFFN

4.3.1 Modeling NRZ system receiver

The whole NRZ and PAM-4 system can be modeled with LVFFN. However,

sometimes it is desired to model just the transmitter or receiver, or even the

FFE/DFE. The idea here is to separate channel out so that user can use the

model with different channels. In this part, we demonstrate that the LVFFN

can model individual component, e.g. NRZ receiver. In figure 4.10, the part

being modeled is between B and C. The waveform at B and C are used as

input and output for training.

The number of Laguerre functions used for modeling the NRZ receiver is

35 which is higher than the number functions for modeling the whole system.

The α is identified to be 0.83, the same as modeling the whole NRZ system.

Figure 4.14 shows the prediction waveform and the reference waveform. The
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prediction accuracy is 92.1% in terms of MSE.

Figure 4.14: PAM-2 receiver LVFFN model prediction and reference
waveform

Modeling NRZ system receiver with LVFFN requires more laguerre func-

tions than modeling the whole system. And the prediction accuracy is worse.

This is a proof-of-concept work demonstrating that the LVFFN can model

individual component in the HSL system. However more work on this re-

search is required to improve the model accuracy. This would be a future

work to extend the research reported here.
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4.4 Modeling CMOS Inverter with LVFFN

To demonstrate that LVFNN can not only model HSL system, a weakly

nonlinear system, but also can model a COMS inverter, a strongly nonlinear

system. The CMOS model is shown in figure 4.15. The inverter is poorly

biased. The input signal is a sinusoidal wave with amplitude of 6V centering

at 0V, while the resulted output is distorted square wave with amplitude

from 8.5V to 12V. LVFFN employed to model such inverter has a memory

length of 40 and the number of Laguerre functions is 20. The prediction

accuracy 0f 97% can be achieved in terms of the MSE error. The output

waveform of reference signal and predicted signal is shown in figure 4.16.

Figure 4.15: Schematic of inverter being modeled
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Figure 4.16: Output signal of inverter output (blue) and prediction from
LVFFN (orange)

4.5 Conclusion

In this chapter, we proposed an LVFFN approach to model the PAM-4 and

NRZ (PAM-2) HSL systems. In our approach, the time series input is pre-

processed by convolving the input with a certain number of orthonormal

Laguerre functions. The convolved output is then fed to the FFN for train-

ing and prediction. The LVFFN model with only one hidden layer and 10

neurons can be used to model the whole PAM-4 system. The model size is

dramatically reduced due to the signal preprocessing. Compared to other

models such as FFN, RNN, and Volterra series, the model size for LVFFN

is reduced by 5 orders of magnitude for the same prediction accuracy. The

improvement in computation efficiency for LVFFN is significant as well. To

compute one sample at output, the LVFFN only requires 1.61K multipli-

cations, while regular FFN, RNN, and Volterra series would need 22.65K,

485.2K, and 3,397.65K multiplications, respectively.

In addition, LVFFN can be used to conduct non-linear system identifica-
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tion. The first three order VKs are identified with the LVFFN. The highest

order VKs are controlled by the activation function. We compared the first

order VK identified with LVFFN to the one identified with regular FFN.

They match very well and VK identified with LVFFN is more accurate.

Modeling NRZ system requires more Laguerre functions than PAM-4 sys-

tem to achieve similar prediction accuracy. This could be resulted from the

channel in NRZ system. The channel could be longer or more lossy than the

channel in PAM-4 system, which makes the system more difficult to model.

Since the waveform used in training the model is from a black box circuit

provided by the HSL industry. We were not exposed the details about the

circuit. Therefore, more research needs to be done to understand the relation-

ship between number of Laguerre functions, α, and system being modeled.

Moreover, a proof-of-concept work is conducted on modeling HSL receiver.

The whole HSL system can be modeled with LVFFN. However such model

lacks of flexibility for co-simulation. For example, once you have the model

for the whole system, you cannot replace any individual component such

as transmitter, channel, or receiver. Therefore, modeling individual com-

ponent would make the model more practical for applications. The result

shows that the NRZ system recevier in which DFE/FFE, CDR, etc. can

be modeled with LVFFN. Although the accuracy is not as high as modeling

the whole system, more research is allocated to further improve the accuracy.

At last, we modeled a poorly biased COMS inverter to demonstrate the

versatility of the LVFFN model. With only 20 Laguerre functions, we can

get 97% prediction accuracy.
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Chapter 5

IBIS-AMI Model Generation and Simulation
Environment

5.1 IBIS-AMI Model Basics

IBIS-AMI standard specifies the interface between SerDes behavior model

and simulator. The model created under such specification is ensured to

work with the simulator that fulfills the same standard. A typical IBIS-AMI

model contains analog and algorithmic portions. The analog part includes

the IBIS specifications and channel S-parameter files. The algorithmic part

contains executable files and .ami files.The executable files are Dynamic Link

Library (DLL) files typically written in C++. The .ami files are ASCII text

files specifying all the parameters that are used by the executables and the

simulator.

Figure 5.1 presents a high-level diagram of IBIS-AMI model. The analog

part is composed of a list of S-parameter files which are used by the sim-

ulator to generate impulse responses. The S-parameter files are frequency

response of the chip packages and the channels. Typically, the algorithmic

model has two parts, Tx part and Rx part which are implemented in DLLs

and placed at the both ends. In Tx part, it either includes a FFE which

modifies the impulse response or receives and processes a bit stream coming

from simulator and gives them back to the simulator. In the Rx portion,

the Rx DLL implements a pre-processing block, the DFE, and a clock-data

recovery (CDR) block. The output of Rx DLL is either the recovered data

wave form and clock data, or the modified impulse response which is then

convolved with the data stream generated by the Tx DLL.
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Figure 5.1: IBIS-AMI model diagram

IBIS-AMI specification defines the application program interface (API)

functions which provides a platform for user to implement customized algo-

rithmic model. The model is specifically used for HSL simulation and analy-

sis. Such API includes three main functions: AMI_Init(), AMI_GetWave(),

and AMI_Close(). AMI_Init() is mainly doing initialization which includes

allocating/initializing dynamic memory, parsing parameters from .ami file,

and conducting impulse response filtering. AMI_GetWave(), on the other

hand, conducts bit-to-bit simulation on the in—ut waveform for nonlinear

and time-variant system. AMI_GetWave() is optional function which can be

explicitly disabled in the .ami file. If this function is disabled, the simulator

will use the impulse response returned by AMI_Init() for simulation. Other-

wise, the simulator will ignore the impulse response returned by AMI_Init().

It will then take the waveform returned by AMI_GetWave() for further sim-

ulation. The last function, AMI_Close(), typically conducts post-simulation

clean-up, which includes shutting down simulation engine, releasing memory

allocated, informing simulator that the simulation has been completed suc-

cessfully or with errors.

The whole IBIS-AMI simulation process starts from generating PRBS ex-

citation bit sequence. Then the simulator pre-processes the .ami file and

computes the impulse response from the analog S-parameter files. In the fol-

lowing, it presents all the information to the Tx AMI model. After that, the

simulator takes the impulse-response output from the AMI_Init() and con-

volves with initial excitation bit sequence, if the AMI_GetWave() is disabled.

Otherwise, it takes the waveform from AMI_GetWave() and convolves it with

analog impulse response. Next, the resulting waveform is presented at the

Rx AMI model input. The process is repeated in Rx DLL. The resulted out-
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put is either impulse response from Rx AMI_Init() or the waveform from

Rx AMI_GetWave(). The simulator will take the output from Rx DLL to

conduct the final eye diagram analysis.

IBIS-AMI model is an industry standard which defines the interface be-

tween model and simulator. Generating IBIS-AMI model is not trivial be-

cause it involves circuit design, signal processing, and software development.

There are tools available to help IBIS-AMI model generation. However such

tools require licenses, are not easy to learn. In this work, we report our ap-

proach of implementing the PAM-4 behavior model generated from LVFFN

into IBIS-AMI model. This model can be simulated in Keysight ADS, a

well-known circuit simulator.

5.2 IBIS-AMI Implementation

The trained LVFFN is implemented in IBIS-AMI DLLs. Figure 5.2 presents

the simulation environment in ADS for LVFFN IBIS-AMI model. The Tx

DLL is a come-and-pass model which passes the bits received from simulator

to Rx DLL. The whole PAM-4 LVFFN model is implemented in Rx DLL.

There is no channel in between Tx DLL and Rx DLL since the LVFFN model

incorporates the whole PAM-4 system including channel and packages. The

output of Rx DLL is feed to the eye diagram generator and analyzer for

signal integrity analysis.
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Figure 5.2: Snapshot of simulation environment in ADS for LVFFN
IBIS-AMI model

In Rx DLL there are three functions implemented: AMI_init(), AMI_getWave(),

and AMI_close(). The execution flow is illustrated in figure 5.3. Once the

bit signal is ready at input of Rx DLL, the simulator calls AMI_init() func-

tion. This function allocates necessary memory and loads Laguerre functions.

The trained FFN parameters are loaded as well. At the end of AMI_init()

function call, messages contains information such as execution status, debug

information, intermediate values, are printed at the simulator interface. Af-

ter AMI_init() returned, simulator calls AMI_getWave() function multiple

times to conduct the bit-to-bit simulation. The LVFFN model is imple-

mented in this function. The bit information is conveyed to AMI_getWave()

and then is returned to the simulator after processing completed. Once all

the bits are processed, simulator calls AMI_close() function to clean up the

memory allocated and to inform the simulator that the whole simulation has

been completed successfully or with errors. In the following, the simulator

will launch eye diagram analysis routine to conduct eye-diagram analysis.
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Figure 5.3: Flow diagram of Rx DLL execution

Figure 5.4 shows eye-diagram plotting for PAM-4 LVFFN model and the

reference signal. The bits for LVFFN model are generated from ADS and the

reference signal are generated from the PAM-4 IBIS-AMI model provided by

industry. For PAM-4 model, there are three eyes for eye-diagram plot. As

seen from the figure 5.4, eyes in both plots look very similar. Simulation of 1

million bits in ADS with the LVFFN model takes 142s. The majority com-

putation power goes to convolution of input signal with Laguerre functions.

Speed-up can be achieved further by replacing the convolution by a recursive

computation using equation 4.3 and 4.4
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Figure 5.4: Eye-diagram plot for (a)PAM-4 LVFFN model and (b)reference
model

5.3 THe ezAMI software

IBIS-AMI provides a great interface for HSL modeling. However, generation

of IBIS-AMI model is not trivial. It requires cross-disciplinary expertise such

as HSL circuit design, signal integrity, and C/C++ programming across dif-

ferent operating systems and platforms. There are commercial software for
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IBIS-AMI model generation. They are Matlab SerDes ToolboxTM in conjunc-

tion with Quantum Channel Designer from SiSoft, SystemVue from Keysight,

and AMI Builder from Cadence. These tools are excellent tools in generating

industrial standard IBIS-AMI model for high speed link transmitter/receiver

systems such as PCIe4, DDR5, and USB 3.1. However all these software are

graphic and wizard based in creating the model. The details behind gener-

ating IBIS-AMI model is hidden from users. Hence, the flexibility is limited

in customizing the model when using commercial IBIS-AMI generation tools.

ezAMI is an open source software for IBIS-AMI model generation. The

purpose of this software is to grant users more flexibility in IBIS-AMI model

generation. It allows user to either generate industrial standard SerDes

model, or implement any customized model, i.e. neural network model, into

IBIS-AMI standard. As the software is an open source software, users are able

to modify the software source code to add more flexibility to their IBIS-AMI

model generation. Moreover, this software supports model pre-generation

verification. Users can conduct high-fidelity simulation in ezAMI before gen-

erating the final IBIS-AMI model.
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Figure 5.5: ezAMI software architecture diagram
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5.3.1 Architecture of the Software

The software design is following the object oriented design (OOD) rule. Each

function module is an object. The communication between objects is either

through class inheritance or the signal-slot mechanism that is built in the

Qt interface design environment (IDE). Figure 5.5 shows the flow diagram of

the ezAMI architecture. Each box represents an function object. The arrow

lines between those objects denote the interactions. The center blue circle

represents the top graphic user interface (GUI). All other rectangle boxes are

the sub systems interacting with the main GUI. The whole software has the

following function blocks.

• Main interface

• Simulator

• Compiler

• Excitation generation

• Plotting

• Schematic drawing

• Project tree view

• Code formatting

• AMI model Generation

Detailed description of each function object is presented in the following.

Main GUI interface

The main GUI interface is implemented in MainWindow.cpp . It is the top

level object which interacts with each sub-object as illustrated in figure 5.5.

During initialization, an instance of each sub-object will be created. Table

5.1 summarizes the functionality of the subroutines.

Most of those functions are the handling functions when a menu or button

is clicked in the software main interface. Communication between the objects
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is also handled in some of the functions, e.g. updateProjectTreeFromCOmpiler()

which handles any signal sent by the compiler object. More detailed dis-

cussion on this topic will be presented in the following object introduction

sections.

Simulator

Simulator object is implemented in the simulator.cpp. According to fig-

ure 5.5, the simulator receives the excitation waveform from plotting ob-

ject and then prepare for simulation input. This is done in the function

receiveInputWave() and prepareInputWave(). Once the input waveform

is ready, then the run() function is called, in which a DLL is loaded and three

AMI functions: AMI_Init(), AMI_GetWave(), and AMI_Close() are called

consecutively. At the end of compilation, the prepareOutput() is called and

the outputReady() signal is emitted. The setDllPath() function is called

whenever a DLL is selected and is linked to the model in the AMI model

dialog.

Compiler and AMI model generation

The compiler object is implemented in the compiler.cpp. The AMI model

generation object is implemented in the generatedlldialog.cpp. Both ob-

jects are interacting closely with each other. Once all the development is

completed, the next step is compiling. A dialog window is popped up when

the build action is clicked from the software main interface.

There are three import functions: compile(), generateDll(), and

generateAmiFile() in compiler object. The first function builds the DLL for

simulation. The second function builds the IBIS-AMI DLL for simulation in

circuit simulator. The last function generates the .ami file that is associated

with the DLL when simulated in circuit simulator. There are two signals:

updateProjectArch() and sendBuildInfo(). The first one is emitted when

the project architecture is changed by the compilation. The main interface

updates project management window accordingly. The second sends the rules
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Table 5.1: Main interface functions

Functions Comments
MainWindow() Object constructor
~MainWindow() Object destructor
on_actionAMI_Generation_triggered() Generate AMI dialog
on_actionRun_2_triggered() Start simulation
on_actionAMI_Generation_triggered() Start AMI model generation
on_actionBuild_2_triggered() Start compiler build
on_actionSave_All_triggered() Save project and code
on_actionSave_triggered() Save just the code
on_actionExcitation_triggered() Draw excitation schematic
on_actionAMI_triggered() Draw all schematic
on_actionPlot_triggered() Draw plot schematic

on_doubleClicked()
Action when schematic is double

clicked

isInRegion()
Check which schematic is double

clicked
on_actionOpen_triggered() Open new project

on_projectTreeView_doubleClicked()
Open file from project
management window

onCustomContextMenu()
Handle right click in project

management window
setupContextMenu() Set up right click menu

setProjectInfo()
Initiate project architecture when

new project created
on_CustomContextMenu_triggered() Handle a click in right-click menu
saveProjectFile() Save project info into file
saveCodeFile() Save code into file

on_actionClean_2_triggered()
Clear project management window
when clear project menu is clicked

on_actionLVFFN_triggered() Setup LVFFN example in ezAMI

updateProjectTreeFromCompiler()
Update any change when

compilation is done

addModelFilesInDirectory()
Parse files in the directory selected

and add them to project model

updateModelByChild()
Update project model when branch

change

parseAmiFunctions()
Fill three AMI template functions

into code area

copyPath()
Copy whole LVFFN project file into

the new directory user selected

to the AMI model generation object for AMI model and .ami file generation.

The AMI model generation object is essentially a dialog window which

67



allows users to select the platform on which the AMI model is going to be

used and to specify parameters in the .ami file. Besides, any building errors

and messages generated by the compiler will be displayed to the users. This

object calls function in the compiler object to conduct the actual building

and compilation.

Figure 5.6: Tree model diagram
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Plotting

The plotting object is another big object which is implemented in the plotting.cpp.

This object draws the waveform generated from the excitation object and

simulator object. The setupCor() function creates an empty coordinate

system from scratch. XaxisSetup() updates the X axis with respect to a

variety of time scales.

The coordinateSetup() is a function handling communications between

the plotting object and the excitation generation object. It receives informa-

tion such as type, sample per bit, total number of bits, and amplitude. Then

it calls the updatePlotPoints() and updateCoor().

The updateCoor() function clears old plotting information and adds new

plot into the coordinate system in terms of the updated plotting information

from either the excitation generation or simulator object. The updatePlotPoints()

actually does plotting by drawing all the individual points. The last func-

tion, addSimulatedWave(), receives simulated waveform from the simula-

tor object and conducts necessary processing, and subsequently calls the

updateCoor() function.

Excitation generation

The excitation generation object and schematic object are implemented in

the excitationdialog.cpp. The excitation generation object generates two

level modulated and four level modulated PRBS bit sequences. The dialog

window is activated by a double-click on the excitation icon. Users can spec-

ify the data rate, samples-per-bit, total number of bits, amplitude, and offset

in the dialog. With the input from user, the sample waveform is plotted in

real time at the bottom half of the dialog window. User specifies the excita-

tion type which is either PAM-2 or PAM-4. The specifications in the dialog

window is routed to the simulator and plotting object when the ”Ok” button

is clicked.

There are two important functions implemented in the excitationdialog.cpp.

They are updateHash() and getSamples(). the user specified information
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in the dialog window is stored in a hash table. The updateHash() function

updates the hash table whenever there is a change in the dialog window.

The getSamples() function updates the excitation waveform information

for plotting.

Figure 5.7: Code region

Schematic

There is a schematic window in the main interface. It locates at the lower

left corner of the main window. The schematic symbols are handled by

the svgload.cpp, and sceneclick.cpp. Both classes are derived from the
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QGraphicView and QGraphicScene class. Most of the functions are over-

loaded functions from the parent classes. Both objects handle loading SVG

icons and double-clicking events.

Project Tree View

Project tree view object is a project hierarchy maintainer. The object is im-

plemented in the projecttreemodel.cpp and projecttreeitem.cpp. The

structure of the project is a tree-like structure as shown in figure 5.6. There is

a root node under which multiple children inherit. The child could also have

children. Each node preserves partial project information which is retrieved

and used by other objects.

There are three level descendants for the ezAMI software. A project root

node serves as the ancestor. At the second level, there are five siblings. They

are the project name node, source code node, executable node, AMI model

node, and resource node. The project name node contains the project name

and the local directory storing the project. The source code node contains all

the .cpp and .h files. The executable node saves the DLL for the simulator

project. The AMI model node contains the AMI DLL and the .ami files

after the AMI model generation is completed. The resource node saves all

the .txt files that are used during simulation.

The projecttreeitem.cpp implements the projectTreeItem object which

maintains a single tree node. It stores pointers to its parent and children. The

data associated with this object is stored in a vector. User can add/remove

child to the node using the function appendChild(), removeChild(), and

removeAllChild(), respectively. Data can be retrieved using the data()

function. Parent/child node can be accessed through the child() and parentItem()

function. The node information such as the number of child, data ele-

ments, and the position of itself in its parent node can be read out with

the childCount(), columnCount(), and row() function.

The projecttreemodel.cpp is an object maintains the project architec-

ture. This is an important object to other objects in the software. For
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instance, the compiler will have to retrieve the information stored in the

source code node before compilation. The main interface reads the informa-

tion in this object to update the graphics display in the project management

window. The object is inherited from the QAbstractItemModel. All the

functions implemented in this object are overloaded functions except for he

openModelData, getProjectRoot(), removeRow(), and setupModelData()

function. The documentation of the overloaded functions can be found in the

documentation of the QAbstractItemModel object on the Qt maintenance

website.

The openModel() function basically reads in the .ezproj project file, pop-

ulates the contents, and creates a project tree model. The getProjectRoot()

function retrieves the ancestor of the tree model. The removeRow() removes

the child given the parent node and the position.

Code formatting

ezAMI software is essentially an integrated development environment (IDE).

The code formatting object is to make the coding in the code space more

user friendly. This object is implemented in the codeformathighlight.cpp.

The object specifies font color for key words in the coding region, e.g. vari-

able type, macros, control key words etc. Figure 5.7 shows the result of this

object. When the project tree model object loads source code into coding

space, the source code is first parsed by the code formatting object and is

rendered with respect to the keywords as shown in figure 5.7.

The textToProcess() function reads all the text contents as a string

from the code space. Then it parse the text into a variety of categories

such as macros, comments, and regular code. The setCommentFlag() func-

tion sets a flag specifically for comments in between ”/*” and ”*/”. There

is a special case ”/*/” which is rare but there is possibility of existence.

The setCommentFlag() function is designed to address such scenario. The

setTextColor() conducts the evaluation per the input word and returns the

font color for the text editor to render.
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Figure 5.8: ezAMI main interface

73



5.3.2 Software interface

In this section, the software main window is introduced. The main inter-

face has four main regions:The menu action region, the project management

region, the schematic region, and the coding region. Figure 5.8 shows the

main window in which label A, B, C, and D denote the four regions men-

tioned above respectively.

Menu and actions

The menu actions are placed at the top of the software main interface. Figure

5.9 shows all the expanded menu. Figure 5.9(a) shows the expanded File

menu. New is a sub-menu which has two actions: Project and File. When

Project or File is clicked, s new project or a new file creation dialog is pro-

moted. The Open action promotes the open project dialog. It allows user to

open a .ezproj project file from a directory. Example is a sub-menu which

includes only one action: LVFFN. The LVFFN is a built-in example project

in which my PhD work on LVFFN is implemented. In Appendix B, a de-

tailed tutorial is included for interested user to learn how to use this software.

The Save and Save All are actions saving codes in coding region and the

project hierarchy in files. The Save action only saves code in source code

files, while the Save All saves both code and project hierarchy. The close

action closes the whole software. It is recommended that user should save

all the information before closing the project.

In the Edit menu (figure 5.9(b)), there are three actions: Copy, Cut, and

Paste. The implementation of these three actions are has not been com-

pleted in the current 1.0 release, but will be completed in the future release.

The Project menu (figure 5.9(c)) has six actions implemented. The

Copy Project action copies the whole project directory into the new loca-

tion. The Close Project will only clear up the project management region

and leave others as is.

The Build action calls compiler to compile all the source code and gener-
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ates a DLL which will be used in the simulation later on. The Clean action

deletes all the compiler generated files and restores the directory to the initial

state. The Run action calls the simulator to conduct the simulation using the

generated DLL with the excitations generated by the excitation object. The

AMI Generation action will generate IBIA-AMI DLL and .ami file, which

can be simulated in circuit simulation software like ADS.

The Help menu contains all the actions related to software logistics such

as software tutorial, documentation, and license information. The ezAMI 1.0

has only implemented the software introduction and license action which is

the About action (figure 5.9(d)).

Figure 5.9(e) shows the convenient menu bar in which the actions used

frequently is added. There are three icons in the red frame. They are new

actions for schematic drawing. The first icon with square wave in the icon is

an action for adding the excitation generation symbol and plotting symbol

into the schematic region (labeled C in figure 5.8). The second diagram with

”AMI” in the icon draws excitation, AMI model and plotting symbol. The

third icon only places the plotting symbol into the schematic region.

Project management region

The project management region is labeled B in figure 5.8. Once a new project

is created or an existing project is opened, the project hierarchy is displayed

in this region. The diagram displayed is a tree-like structure in which one

row represents one node. Each row has two columns. The left column con-

tains the name and the right one contains the location on local computer.

The project structure has a root node which is the name and the location

of the project. There are four children nodes that are the source code, ex-

ecutable, AMI model, and resource node. These four nodes have their own

child/children which is/are the specific file/files under the category. User can

add/remove files through right-clicking on the node. The file contents are

displayed in the code region when the node is double-clicked.
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Figure 5.9: Menu actions
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Schematic region

Schematic region is labeled C in figure 5.8. As shown, there are three symbols

which represents the excitation, AMI model, and plotting. The connection in

between represents the data flow from the excitation to the plotting through

the AMI model. The excitation is processed in the AMI model. The result

is plotted in the plotting object. Figure 5.10 shows the excitation genera-

tion dialog and AMI model dialog when the specific symbol is double-clicked.

The excitation generation dialog generates PRBS excitation for PAM-2 and

PAM-4. Users can select which of them to be generated using the checkbox.

Users can specify data rate, samples per unit interval, magnitude, offset etc.

All those information will be used for excitation waveform generation. The

model association dialog allows user to specify the DLL for simulation. The

DLL model is selected by choosing the DLL file in a directory through brows-

ing. Once the DLL model is selected, the model is associated with the AMI

symbol in the schematic window. Once the simulation is launched, the sim-

ulator will load the DLL and call the functions in this DLL for excitation

waveform processing.

Coding region

The coding region is labeled D in figure 5.8. It is for users to write their

code which will be compiled into the DLL. The coding region is a text editor

with keyword rendering. The code loaded will be pre-processed to highlight

the keywords such as variable declaration, control syntax, macros, and so

on so forth. The coding region has four windows. They are Your Code,

AMI Init, AMI GetWave, and AMI Close. Your Code interface displays

the code loaded by double-clicking the file in project management region.

AMI Init, AMI GetWave, and AMI Close are interfaces having the AMI_Init(),

AMI_GetWave(), AMI_Close() template functions displayed. Users can mod-

ify them as desired .
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Figure 5.10: Excitation generation dialog

5.4 Conclusion

The behavioral model generated from machine learning cannot be directly

simulated in circuit simulator software, which significantly limits its ap-

plications in practice. We successfully implemented the LVFFN model in

IBIS-AMI, a industrial standard. The model was verified using ADS from

Keysight. Eye diagram analysis were conducted in ADS as well. The eye

diagrams from LVFFN obtained with ADS appears very similar to the one

generated with the reference model.

To facilitate IBIS-AMI model generation for machine learning models, an

78



IBIS-AMI model generation tool software, ezAMI, is developed. The software

is written in C++ and is following object-orientated design principal. The

hierarchy of the software is discussed in this chapter. The main interface of

the software is also introduced.
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Chapter 6

Summary and Future Work

6.1 Summary

In this chapter, the completed work is first summarized. We will then go over

the challenges associated with the completed work. The proposed solution is

presented at the last. Figure 6.1 summarizes the current state of the research.

The research started with VK extraction for HSL system behavior modeling

using existing machine learning method. However the VKs extracted with

existing method has the following drawbacks:

• The order of VKs extracted is the same as the length of input signal,

which usually results in an astronomical number of VKs.

• It is impossible to reconstruct the signal with the vast number of VKs

identified.

• Accuracy is compromised due to Taylor expansion approximation.

To tackle the challenges associated with the existing VK extraction method,

we proposed a MPSNN method in which the mapping from neural network

weights to VKs is analytical. The highest order of VK to be identified is

detached from the select input signal length. The number of VKs extracted

with MPSNN can be drastically reduced, which make the signal reconstruc-

tion possible with the extracted VKs. We validated the MPSNN with an an-

alytical non-linear system. Then we employed such method to model PAM-4

and NRZ HLS systems. However, even the number of VKs can be reduced

with our method, the curse-of-dimensionality is still exists. To overcome

such challenge, we then proposed LVFFN to further reduce the number of

parameters for the system under modeling. LVFFN expands VKs with a
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finite number of Laguerre functions that are inter-orthonormal. Parameter

extraction shifted from VKs in MPSNN to Laguerre parameters in LVFFN.

The PAM-4 system is model with LVFFN in which only one layer and 10

neurons are employed.

Figure 6.1: RoadMap of current research

81



The model size reduction is achieved up to 6 order of magnitudes using

LVFFN compared to Volterra series. The computation efficiency improve-

ment is also significant. Although, the model extracted with LVFFN is com-

pact while maintaining the same accuracy, it has three main challenges which

is listed below:

• It lacks interoperability and transportability which makes the model

less useful

• It lacks flexibility because the model embrace the whole HSL system .

• The decay factor α and the order of Laguerre function need to be

identified separately

The interoperability and transportability challenges can be overcame by im-

plementation of the LVFFN model into IBIS-AMI, an industrial standard for

SerDes modeling. We have implemented the PAM-4 LVFFN into IBIS-AMI

and conducted simulation in Keysight ADS. Conceptually, the IBIS-AMI

model can be simulated and analyzed with any circuit simulator software

that support IBIS-AMI standard.

The whole HSL system can be modeled with LVFFN. However such model

lacks of flexibility for co-simulation. For example, once you have the model

for the whole system, you cannot replace any individual component such

as transmitter, channel, or receiver. Therefore, modeling individual compo-

nent would make the model more practical for applications. To demonstrate

the individual HSL component can be modeled with LVFFN, a NRZ system

receiver in which FFE/DFE and CDR are implemented is modeled. As a

proof-of-concept, the result show promising in such scenario. More research

is expected to further improve the accuracy.

IBIS-AMI model generation is not trivial. It requires cross-disciplinary

knowledge which involves circuit designing, signal processing, and software

engineering. Typically, an AMI model generation could take 12 months to

complete from scratch [57]. To overcome such challenge, an IBIS-AMI gen-

eration tool software, ezAMI, is developed. The first version, ezAMI 1.0,

has been released. The software is an open source software under GPL 3.0

license. Interested readers can download the software installer and source
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code from the following link: www.ezamiuiuc.net

The ezAMI software has the following features

• In software C/C++ coding

• In software model pre-verification simulation

• NRZ and PAM-4 PRBS excitation generation

• Automated AMI model and AMI config file generation

The LVFFN model is implemented in the software as a built-in example.

Interested users can use it as a tutorial to learn IBIS-AMI and this software.

6.2 Future work

Based on what we have accomplished, the following work are proposed for

the future work.

6.2.1 Continue to improve the ezAMI software and add more
features

The first version software has been released. However, it has a few things

needed to be improved. First, the plotting coordinate in plotting window

should be adapted according to the number of excitation samples. The first

version has the X axis fixed. A variety of excitation has to fit into the plot-

ting window when plotting is launched. If the plotting coordinate system can

be adapted to the excitation length, the plotting will be more user friendly.

Second improvement could be done for the coding interface. The 1.0 ver-

sion has a preliminary keyword color highlighting implemented. To make

it more user friendly, features such as auto-indent, spell-correction, function

recognition, and so on so forth should be added.
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Third, the AMI generation dialog should be improved. Because of the

tight schedule, only very basic functionalities are implemented. The param-

eter input interface should be restructured significantly.

Last but not the least, software maintenance should be made along the

way using. There could be bugs, or crashes that are not identified before

release. As more users are using it, those bugs/crashes could be exposed.

Bug fixing, software maintence should be done in a continuous manner.

Some new features that can be added in the next are listed below

• Add copy/paste actions

• Implement statistical simulation function

• Add dragable schematic icons

• Create Makefiles build to ease building process.

6.2.2 Development of channel independent IBIS-AMI HSL
Model

As mentioned previously, the LVFFN PAM-4 model is channel dependent.

The channel is included in the model. If there are changes in channel, the

model needs to be regenerated. To overcome this challenge, we propose to

develop a LVFFN model on the receiver, separating the channel out. This

way, the channel can be freely replaced. We have done some proof-of-concept

works on modeling HSL receiver. More research need to be done to work out

a best model for modeling individual component in the HSL system to sep-

arate the channel out.

6.2.3 Decay Factor α and Laguerre Function Order r
Determination

The function of decay factor α and the order of Laguerre function selection

has been discussed in chapter 4. Determining α and r is not trivial. One way
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to determine α is implement α as one of the parameters in LVFFN. During

training, the output error will be back propagated to α. α adjust by itself

during training and will converge to the optimal value at last. The process

is illustrated in Figure 6.2

Figure 6.2: Illustration of determination of α

Determining the minimal order of Laguerre function r so that a most

compact model can be achieved is another challenge. One way to optimize

r is principal dynamic mode methods reported by Marmarelis et.al to model

biological system[33]. The Procedure to identify the least r is list below:

1. Extract the 1st and 2nd VKs h1 and h2 through MPSNN method.

2. Construct the matrix M = [h1; s×h2], where s is the root mean square

of the input signal. This is to scale h2 so that the magnitude remain

the same as k1

3. Conduct singular value decomposition (SVD) of matrix M, where M =

UΛV′. Each column of U is a orthonormal basis vector, Λ is a diagonal

matrix with corresponding singular values on the diagonal.

4. Select the top R significant basis vectors from U based on the cumu-

lative summation of singular values is greater than a threshold, which

is usually chosen as 0.9[58].
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Appendix A

ezAMI Development Environment Setup

A.1 Installing Visual Studio 2019

ezAMI software requires MSVC C/C++ compiler. Installation of Visual Stu-

dio (VS) 2019 will automatically install the desired MSVC compiler VS2019

can be download from the link below

https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/

?sku=Community&rel=16

What you download from the link above is a VS2019 community version in-

staller vs_community__1176045115.1594347171.exe. Launch the installer

and follow the installation wizard to install the software on the C drive of

Windows10 X64 version. If successful, the software installation location will

be under Local Disk(C:)>Program Files(x86). Software folder will be

look like in figure A.1.

Figure A.1: VS 2019 installation snapshot
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A.2 Installing QT IDE 5.12

The ezAMI software is developed using C++ under QT IDE 5.12. The QT

IDE 5.12 can be downloaded from the link below

https://www.qt.io/offline-installers

Download Qt 5.12.9 for Windows as shown in figure A.2

Figure A.2: QT IDE download

QT IDE installation requires a Qt account. If you have one already, you

can just login to continue. Otherwise you have to sign one up (see figure A.3).

Then you can follow the installation wizard till to the step Qt 5.12.9 Setup.

Choose Select All as shown in figure A.4. After that, you can just follow

the default setting to complete the installation. Once installation is com-

pleted, you can launch the Qt Creator 4.9 as shown in figure A.5. The main

interface is shown in figure A.6.
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Figure A.3: QT IDE installation login

Figure A.4: QT IDE installation setup
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Figure A.5: Launch QT Creator

Figure A.6: QT Creator interface
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Appendix B

Tutorial for LVFFN example in ezAMI

B.1 Install ezAMI Software

Download ezAMI installer from the link below

www.ezamiuiuc.net

Launch installer and follow the installation wizard to complete the installa-

tion (figure B.1).

Figure B.1: ezAMI installation
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B.2 LVFFN example

Launch software and click the ”AMI” icon pointed by the blue arrow to
draw the schematic (figure B.2)

Figure B.2: Add schematic

Select ”File→Example→LVFFN” as figure B.3 shows

Figure B.3: Launch LVFFN example
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A window pop up to let select or create a folder to store LVFFN project

Figure B.4: Select folder to save LVFFN project

Once the LVFFN example project is loaded, the software main interface
will be showing like in figure B.5

Figure B.5: Software main interface after LVFFN example is loaded
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Click ”Build” in menu bar or select from ”Project→Build” to compile the
code to generate the DLL file for simulation. If compilation is successful, it
will look like in figure B.6).

Figure B.6: Software main interface after LVFFN example is loaded

Double-click the ”AMI” icon in the schematic window. A dialog window
pop up to let you select the DLL file you just compiled (see figure B.7).
The dll file will be in the project folder.

Figure B.7: Link dll file for simulation
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Double-click the Excitation icon in schematic window. It is the first one
from left. A dialog window is popped up to let you set the excitation
setting. Choose PAM-4 and 100 bits as shown in figure B.8. Leave other
settings as default, then click ”Ok”

Figure B.8: Excitation generation

The next is to click ”Run” in menu action bar or select ”Project→Run” to
launch simulation. If no errors happen, a window with plot for excitation
wave and model output will be shown as figure B.9

Figure B.9: Result display
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The last step is to generate the AMI model for simulation in circuit
simulator. Click ”AMI Generation” action in menu action bar or select
from ”Project→AMI Generation”. Select ”X64”. Leave ”.ami Settings” as
default since it is still being completed.

Figure B.10: Generate AMI model

If AMI model generation is successful, you will see both DLL file and .ami
file appear in the project management region under the ”AMI Model”
node, as shown in figure B.11. Both files are the AMI model package you
can use for simulation with commercial circuit simulator.

Figure B.11: Generated AMI model
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